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Abstract. This paper is part II of ”On Copositive Approximation in Spaces of Contin-
uous Functions”. In this paper, the author shows that if Q is any compact subset of real
numbers, and M is any finite dimensional strict Chebyshev subspace of C(Q), then for
any admissible function f ∈C(Q)\M, the best copositive approximation to f from M
is unique.

Key Words: Strict Chebyshev spaces, best copositive approximation, change of sign.

AMS Subject Classifications: 41A65

1 Introduction

If Q is a compact Hausdorff space, then C(Q) denotes the Banach space of all continuous
real valued functions on Q, together with the uniform norm, that is, ‖ f‖=max{| f (x)| :
x ∈ Q}. If M is a subspace of C(Q), and f ∈ C(Q), then g ∈ M is said to be copositive
with f on Q iff f (x)g(x)≥ 0 for all x∈Q. The element g0 ∈ M is called a best copositive
approximation to f from M iff g0 is copositive with f on Q and ‖ f −g0‖= inf{‖ f −g‖ :g∈
M, and g is copositive with f on Q}. The set {g∈M :g is copositive with f on Q} is closed,
so if the dimension of M is finite, then the best copositive approximation to each f ∈C(Q)
from M is attained. If Q is a compact subset of real numbers, then the n-dimensional
subspace M of C(Q) is called Chebyshev subspace of C(Q) if each g 6= 0 in M has at
most n−1 zeros. The n-dimensional Chebyshev subspace M of C(Q) is called a ”Strict
Chebyshev subspace” of C(Q) if each g 6=0 in M has at most n−1 changes of signs, that
is, no g 6= 0 in M alternates strongly at n+1 points of Q, which means that there do not
exist n+1 points, x0< x2< ···< xn+1 in Q so that g(xi)g(xi+1)<0 for all i=1,2,··· ,n.
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This paper is a continuation of the author’s paper [1]. In this paper the author in-
vestigates the uniqueness of the best copositive approximation by elements of finite di-
mensional subspaces of C(Q). Passow and Taylor [2] showed that when Q is any finite
subset of real numbers, and M is a finite dimensional strict Chebyshev subspace of C(Q)
then the best copositive approximation to each f ∈ C(Q) from M is unique. Zhong [3]
proved the same result for the case when Q is a closed and bounded interval [a,b] of the
real numbers, and f does not vanish on any subinterval of [a,b]. In this paper it is shown
that this fact is true for any compact subset of real numbers.

The rest of this section will be used to cover some notation and results that will be
used later in Section 2. As in Kamal [1], If Q is a compact subset of real numbers, and
x1<x2 in Q then the ”intervals” (x1,x2),(x1,x2], [x1,x2), and [x1,x2] in Q are defined in the
ordinary way, for example; (x1,x2)={x∈Q:x1<x<x2}. If Q is not connected then none of
those intervals need to be connected. The point z0 in Q is called ”a limit point from both
sides” in Q if z0 is an accumulation for the set {x∈Q : x< z0}, and the set {x∈Q : x> z0}.
If z0 is an accumulation point for the set {x∈Q : x< z0} or the set {x∈Q : x> z0} but not
for both then z0 is called ”a limit point from one side” in Q. The function f ∈C(Q) is said
to have at ”least k changes of sign in Q” if there are k+1 point t1 < t2 < ··· ,tk+1 in Q so
that f (ti) f (ti+1)< 0 for all i= 1,2,··· ,k. The ”number of changes of sign of f ” is defined
to be the sup{k : f has at least k changes of sign}. Assume that f 6= 0 in C(Q), the point
z∈Q is said to be a ”double zero” for f in Q if f (z)=0, and there are x<z<y in Q so that
f (α) f (β)>0 for all α 6=z, and β 6=z in [x,y]. If f (z)=0, and z is not a double zero then z is
called a ”single zero” in Q (see [4]). Finally the function f ∈C(Q) is called admissible if f
does not vanish on any infinite interval of Q.

The following Proposition presents some of the known propertis of strict Chebyshev
subspaces.

Proposition 1.1. Assume that Q is a compact subset of real numbers containing at least
n+1 points, and that M is an n-dimensional strict Chebyshev subspace of C(Q). The
following facts hold;

i). If z1<z2< ···<zn−1 are n−1 points in Q, then there is g∈M, such that g(x)=0 for
all x∈{z1,z2,··· ,zn−1} and;

1). g(x)>0, if x< z1,

2). (−1)n−1g(x)>0 if x> zn−1, and;

3). (−1)ig(x)>0 if x∈ (zi,zi+1), and i=1,2,··· ,n−1.

ii). No g 6= 0 in M alternates weakly at n+1 points in Q, that is, there do not exist
x1< x2< ···< xn+1 in Q, and g 6=0 in M such that (−1)ig(xi)≥0 for each i=1,2,··· ,n+1.

iii). If g 6= 0 in M and k is the number of single zeros of g, and m is the number of
double zeros of g then k+2m≤n−1.

Part i) in Proposition 1.1 can be obtained from Lemma 6.5 in Zielke [4], part ii), is
in [4, Lemma 3.1b], part iii) is [4, Lemma 6.2].
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Lemma 1.1 (see [1]). Assume that Q is an infinite compact subset of real numbers, M is an
n-dimensional strict Chebyshev subspace of C(Q), and q is a limit point from both sides in Q. If g

and h are two elements in M and h 6=0, then limx→q−
g(x)
h(x) and limx→q+

g(x)
h(x) both exist as extended

real numbers.

Lemma 1.2. Assume that Q is an infinite compact subset of real numbers, and that M is an
n-dimensional strict Chebyshev subspace of C(Q). Let q be a limit point from both sides in Q and
let g and h be two nonzero elements in M, such that g(q)=h(q)=0. If the number of zeros of g
is n−1, then

lim
x→q−

g(x)

h(x)
6=0 and lim

x→q+

g(x)

h(x)
6=0.

Proof. It will be shown that limx→q−
g(x)
h(x) 6= 0. With the same method one can prove that

limx→q+
g(x)
h(x) 6=0. By Lemma 1.1, limx→q−

g(x)
h(x) exists as an extended real number. Assume

that limx→q−
g(x)
h(x)

=0, and let x1<x2< ···<xn−1
be the zeros of g. For each k=1,2,··· ,n−2,

let Ik=(xk,xk+1). Let I0={x∈Q : x<x1}, and In−1={x∈Q : x>xn−1}. By Proposition 1.1,
all the zeros of g are single zeros. Thus one can assume without loss of generality that
(−1)kg(x)>0 for all x∈ Ik, and k=0,1,2,··· ,n−1. The proof will be given first for the case
at which Ik 6=φ for all k. In this case for each k, choose tk ∈ Ik. Then g alternates strongly
at the n points t0 < t1 < ···< tn−1 in Q. Since q = xi0 for some i0, then ti0−1 < xi0 < ti0 .
It is clear that g does not changes sign in neither [ti0−1,xi0 ] nor in [xi0 ,ti0 ]. Let c > 0 be

chosen so that c‖h‖<min{|g(t0)|,|g(t1)|,··· ,|g(tn−1)|}. Since limx→q−
g(x)
h(x)

=0, then there

is y0 6=xi0 in (ti0−1,xi0), so that |g(y0)|<c|h(y0)|. If g(ti0−1)h(y0)>0, then let ψ=g−ch, and
if g(ti0−1)h(y0)<0, then let ψ=g+ch. In both cases ψ 6=0, and ψ(ti0−1)ψ(y0)<0. Therefore,
ψ alternates weakly at the n+2 points of the set {t0,t1,··· ,ti0−1,y0,xi0 ,ti0 ,··· ,tn−1,}, which
contradicts Proposition 1.1.

Second, assume that some of the intervals I0, I1,··· , In−1 are empty. The proof will
be given by strong induction. Assume that the number of empty intervals among
I0, I1,··· , In−1 is k. Then 0 ≤ k < n. The hypothesis is true for k = 0. Now let k ≥ 0, and
assume that the hypothesis is true for all 0≤ i≤ k. It will be shown that it is true for k+1.
Assume that the number of empty intervals is k+1, and let Ij =(xj,xj+1) be one of those
empty intervals. Since xi0 is a limit point from both sides in Q then Ij 6= Ii0−1 and Ij 6= Ii0 .
Q is infinite, so one can find a natural number α∈{0,1,2,··· ,n−1}, so that Iα is infinite.
Let s be any point in Iα such that {x∈ Iα : x< s} 6=φ and {x∈ Iα : x> s} 6=φ, and let g0 be a
non zero element in M having n−1 zeros at [{x1,x2,··· ,xn−1}\{xj+1}]∪{s}. The zeros of
g0 includes q=xi0 , and if J0, J1,··· , Jn−1 are the intervals between its zeros then the number

of empty intervals among them is no more than k. By induction limx→q−
g0(x)
h(x)

6= 0. But

limx→q−
g(x)
h(x)

=0. So limx→q−
g(x)
g0(x)

=0. Let t1 be any element in Ii0−1, and t2 be any element

in Ii0 , then xi0−1< t1<xi0 < t2<xi0+1. Choose c>0 be so that c‖g0‖<min{|g(t1)|,|g(t2)|}.

Since limx→q−
g(x)
g0(x)

= 0, then there is y0 6= xi0 in (t1,xi0) such that |g(y0)|< c|g0(y0)|. If
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g(t1)g0(y0)> 0, then let ψ = g−cg0, and if g(t1)g0(y0)< 0, then let ψ = g+cg0. In both
cases ψ 6= 0, and ψ(t1)ψ(y0)< 0, and since g(t1)g(t2)< 0, it follows that ψ(t2)ψ(y0)> 0.
Therefore, ψ alternates weakly at the points t1<y0<xi0 < t2. But g(xk)=g0(xk)=0 for all
k 6= j+1. So ψ(xk)=0 for all k 6= j+1. Thus ψ alternates weakly at the n+1 points of the set
[{x1,x2,··· ,xn−1}\{xj+1}]∪{t1,t2,y0}, which contradicts Proposition 1.1.

2 The main results

This section is devoted to show that the best copositive approximation is unique. Let n
be any natural number, Q be any compact subset of the real numbers containing more
than n+1 points, and let M be any n-dimensional strict Chebyshev subspace of C(Q).

Let f be any element in C(Q). If f has more than n−1 changes of sign then there
are n+1 points t1 < t2 < ···< tn+1 in Q so that f (ti) f (ti+1)< 0 for all i= 1,2,··· ,n. If g is
any best copositive approximation to f from M then g(ti)g(ti+1)≤ 0 for all i= 1,2,··· ,n.
Therefore by Proposition 1.1. g must be zero. Hence g= 0 is the unique best copositive
approximation to f from M. So in this section the function f will have no more than n−1
changes of sign.

As in Kamal [1], if Q is a compact subset of real numbers containing at least n+1
points, and f is an admissible function in C(Q) having no more than n−1 changes of
sign. Define X0( f )={z1,z2,··· ,zm} to be the set of all z∈Q such that z is a limit point from
both sides in Q, and that f changes sign at z. If M is an n-dimensional strict Chebyshev
subspace of C(Q), then for each g 6=0 in M, copositive with f , define;

X1( f ,g)={x∈Q : | f (x)−g(x)|=‖ f−g‖}∪{x∈Q : f (x) 6=0 and g(x)=0},

X2( f ,g)={x∈Q : g(x)=0, f (x)=0, and x is not an isolated point inQ}.

Let X( f ,g)=X1( f ,g)∪X2( f ,g), and define M0 to be {g∈M :g(z)=0 for all z∈X0( f )}.
It is clear that M0 is an (n−m)-dimensional subspace of M, and that if g∈M is copositive
with f on Q, then g∈M0.

The function θ 6=0 in M is said to be ”copositive with f around the elements of X0( f )”
if for each z∈X0( f ), there is a neighborhood Uz around z such that f (x)θ(x)≥ 0 for all
x∈Uz. It is clear that θ(z)=0 for all z∈X0( f ). For such function, define X3( f ,g,θ) to be

{

z∈X0( f ) : lim
x→z−

g(x)

θ(x)
=0

}

and X4( f ,g,θ) to be
{

z∈X0( f ) : lim
x→z+

g(x)

θ(x)
=0

}

.

Lemma 2.1 (see [1]). Assume that f is admissible function in C(Q)\M having no more than
n−1 changes of sign. If g is a best copositive approximation to f from M then there is a non-zero
function ϕ∈M0 copositive with f around the elements of X0( f ), such that the number of elements
in [X( f ,g)\X0( f )]∪X3( f ,g,ϕ)∪X4( f ,g,ϕ) is more than or equal to n−m+1.
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Lemma 2.2. Assume that f is admissible function in C(Q)\M having no more than n−1
changes of sign, g is a best copositive approximation to f from M, and let ϕ be any element in
M0 copositive with f around the elements of X0( f ). For any h0 ∈M0, if there are ξ1,ξ2,··· ,ξη in
X( f ,g)\X0( f ), and y1,y2,··· ,yr in X3( f ,g,ϕ)∪X4( f ,g,ϕ), such that η+r=n−m+1, h0(ξi)=0
for all i=1,2,··· , η, and for all j=1,2,··· ,r, either

lim
x→(yj)+

h0(x)

ϕ(x)
=0 or lim

x→(yj)−

h0(x)

ϕ(x)
=0,

then h0 =0.

Proof. By contradiction, assume that there is h0 ∈ M0 with the given properties, and
that h0 6= 0. Since h0 has zeros at the points of the two distinct sets {ξ1,ξ2,··· ,ξη} and
{z1,z2,··· ,zm}, then η+m≤n−1. If Q is finite then r=0, so η=n−m+1. Thus η+m=n+1.
But then h0 has more than n−1 zeros, which contradict the fact that M is a strict n-
dimensional Chebyshev space. So one may assume that Q is infinite, and that r > 0.
By Proposition 1.1, let h1 be any nonzero element in M having n−1 zeros, including
{ξ1,ξ2,··· ,ξη}∪{z1,z2,··· ,zm}, and choose the location of the extra zeros so that h1, and h0

have the same sign in some neighborhood around yj for all j=1,2,···r. This can be done
by replacing each double zero of h0 by two very close single zeros for h1. By Proposition
1.1, the number of zeros of h1 may still less than n−1. To make this number equal n−1,
one can add extra zeros after zm or before z1. For each j = 1,2,··· ,r, choose ej in Q so

that if limx→(yj)−
h0(x)
ϕ(x)

=0, then ej <yj, and if limx→(yj)+
h0(x)
ϕ(x)

=0 then ej >yj, and with the

properties that, if Ij is the open interval between ej and yj in Q, then Ij does not intersect
{ξ1,ξ2,··· ,ξη}, neither h0, nor h1 change sign or have zeros in Ij, and h0(ej) 6=0. Let λ0>0,
so that

λ0‖h1‖<min{|h0(e1)|,|h0(e2)|,··· ,|h0(er)|},

and let h2 = h0−λ0h1. It is clear that h2 6= 0, and that h2(x)= 0 for all x∈{ξ1,ξ2,··· ,ξη}∪

{z1,z2,··· ,zm}, and that h2(ej)h0(ej)>0 for all j. For each 1≤ j≤r, either limx→(yj)−
h0(x)
ϕ(x) =0,

or limx→(yj)+
h0(x)
ϕ(x) =0. Assume first that limx→(yj)−

h0(x)
ϕ(x) =0. Since h1 has n−1 zeros and Q is

infinite and yj is a limit point from both sides in Q, then by Lemma 1.2 limx→(yj)−
h1(x)
ϕ(x)

6=

0. So limx→(yj)+
h0(x)
h1(x)

= 0. Since h1 and h0 have the same sign at ej, and h2(ej)h0(ej)> 0,

then h2(ej)h1(ej) > 0. On the other hand limx→(yj)−
h2(x)
h1(x)

= −λ0. Thus there is a point

uj in Q such that ej < uj < yj and that h2(uj)h1(uj)< 0. Since h1 has a constant sign in

[ej,yj) and h2(ej)h1(ej)>0 then h2(ej)h2(uj)<0. In the same manner, if limx→(yj)+
h0(x)
ϕ(x)

=

0, then one can find point uj in Q such that yj < uj < ej and that h2(uj)h2(ej)< 0. Let
{s1,s2,··· ,sη+m}= {ξ1,ξ2,··· ,ξη}∪{z1,z2,··· ,zm}, then h2(si) = 0 for all i = 1,2,··· ,η+m,
and if si = yj for some j, then the two points uj, ej lie between si and si−1 or si, and si+1.
Furthermore h2(uj)h2(ej)<0. Thus one can choose tj∈{uj,ej} so that h2 alternates weakly
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at the points of {s1,s2,··· ,sη+m}∪{t1,t2,··· ,tr}. But η+m+r=(n−m+1)+m=n+1. So h2

alternates weakly at n+1 points of Q. This is a contradiction.

Theorem 2.1. Assume that Q is a compact subset of real numbers having at least n+1 points,
and that M is an n-dimensional strict Chebyshev subspace of C(Q). If f is an admissible function
in C(Q)\M, then the best copositive approximation to f from M is unique.

Proof. If f has more than n−1 changes of sign then as the argument at the start of this
section, the best copositive approximation to f from M is unique. So one may assume that
f have no more than n−1 changes of sign. By contradiction, assume that g1 and g2 are
two distinct best copositive approximations to f from M. Let g∗= g1+g2

2 , g0=g1−g2, then
g0 6=0 and g∗ is another best copositive approximation to f from M. By Lemma 2.1, there
is a non-zero function ϕ∈ M0 copositive with f around the elements of X0( f ) such that
the number of the elements in [X( f ,g∗)\X0( f )]∪X3( f ,g∗,ϕ)∪X4( f ,g∗,ϕ) is more than or
equal to n−m+1. Thus let ξ1,ξ2,··· ,ξη be elements in X( f ,g∗)\X0( f ), and let y1,y2,··· ,yr

be elements in X3( f ,g∗,ϕ)∪X4( f ,g∗,ϕ) such that η+r=n−m+1.
It will be shown that g0(ξi) = 0 for all i = 1,2,··· ,η, and for all j = 1,2,··· ,r, either

limx→(yj)+
g0(x)
ϕ(x) =0 or limx→(yj)−

g0(x)
ϕ(x) =0. If this is true, then by Lemma 2.2, g0 =0, which

is a contradiction.
For each i=1,2,··· , η,ξi∈X( f ,g∗)\X0( f )=[X1( f ,g∗)∪X2( f ,g∗)]\X0( f ). So either ξi∈

X1( f ,g∗), or ξi∈X2( f ,g∗)\X0( f ). If ξi∈X1( f ,g∗), and |( f−g∗)(ξi)|=‖ f−g∗‖, then since

‖ f −g∗‖=‖ f−g1‖=‖ f−g2‖ and |( f−g∗)(ξi)|=
∣

∣

∣

f −g1

2
(ξ1)+

f −g2

2
(ξ1)

∣

∣

∣
,

it follows that
( f−g1)(ξi)=( f−g2)(ξi)=±( f−g∗)(ξi).

Therefore,
g0(ξi)=(g2−g1)(ξi)=( f−g1)(ξi)−( f−g2)(ξi)=0.

If ξi∈X1( f ,g∗), and f (ξi) 6=0, but g∗(ξi)=0, then since g∗, g1, and g2 are copositive with

f on Q, and g∗(ξi)=
g1(ξi)

2 + g2(ξi)
2 , it follows that g1(ξi)= g2(ξi)=0. Therefore g0(ξi)=0.

If ξi ∈X2( f ,g∗), then g∗(ξi)=0 and ξi is a limit point either from both sides or from one
side in Q. Since g∗, g1 and g2 are all continuous on Q, and copositive with the admissible
function f , then g1(ξi)= g2(ξi)= g∗(ξi)=0. Thus g0(ξi)=0.

Finally, it will be shown that for each j = 1,2,··· ,r, either limx→(yj)+
g0(x)
ϕ(x)

= 0 or

limx→(yj)−
g0(x)
ϕ(x)

= 0. Since yj ∈X3( f ,g∗,ϕ)∪X4( f ,g∗,ϕ), then either limx→(yj)−
g∗(x)
ϕ(x)

= 0 or

limx→(yj)+
g∗(x)
ϕ(x) = 0. Assume first that limx→(yj)−

g∗(x)
ϕ(x) = 0. Since g∗, g1, g2 are all contin-

uous on Q, and copositive with the admissible function f , then limx→(yj)−
g1(x)
ϕ(x) = 0, and

limx→(yj)−
g2(x)
ϕ(x)

=0. So

lim
x→(yj)−

g0(x)

ϕ(x)
= lim

x→(yj)−

g2(x)

ϕ(x)
− lim

x→(yj)−

g1(x)

ϕ(x)
=0.
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In the same method one can show that if limx→(yj)+
g∗(x)
ϕ(x) =0 then limx→(yj)+

g0(x)
ϕ(x) =0.
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