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Abstract. In the present paper, we propose the g analogue of Szdsz-Beta-Stancu oper-
ators. By estimate the moments, we establish direct results in terms of the modulus
of smoothness. Investigate the rate of point-wise convergence and weighted approx-
imation properties of the g operators. Voronovskaja type theorem is also obtained.
Our results generalize and supplement some convergence results of the g-Szdsz-Beta
operators, thus they improve the existing results.
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1 Introduction

For f € C,[0,00), a new type of Szdsz-Beta operator studied by Gupta and Noor in [1] is
defined as

Salfi0)= [T Wa(e0F(0)= Lous(x) [ FObus(Ddt+si0(0fO), (0

where Wy, (x,t) =Y 22 151 k(%) by k (£) +5n,0(x)0(t), 6(f) being Dirac delta-function and

e (nx)t 1 -1

Sn,k(x):e K bn,k(t): B(n+1,k) (1+t)n+k+l’

are respectively Szdsz and Beta basis functions. In [1] Gupta and Noor studied some ap-
proximation properties for the operators defined in (1.1) and obtained the rate of point-
wise convergence, a Voronovskaja type asymptotic formula and an error estimate in si-
multaneous approximation.
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In 1987, Lupas introduced a g-analogue of the Bernstein operator and investigated its
approximating and shape preserving properties. Ten years later, Phillips [2] proposed
another generalization of the classical Bernstein polynomials based on g-integers. He
obtained the rate of convergence and Voronovskaya-type asymptotic formula for these
new Bernstein operators. An extension to g-calculus of Szdsz-Mirakyan operators was
given by Aral [7] and established a Voronovskaja theorem related to g-derivatives for
these operators.

In recent years, the application of g calculus is the most interesting areas of research
in the approximation theory. Several authors have proposed the g analogues of different
linear positive operators and studied their approximation behaviors. Gupta [5] intro-
duced a g-analogue of usual Bernstein-Durrmeyer operators and established the rate of
convergence of these operators. Gupta [6] proposed a generalization of the Baskakov op-
erators based on g integers and estimated the rate of convergence in the weighted norm
and some shape preserving properties.

Very recently in [9], Gupta introduced the g-analogue of Szdsz-Beta operators defined

as
323k /A
= L 0w [ A E b0 f0), a2
where
_ ([n]gx)* K 1 1
T I (R MO RS ey G 9

While for g =1, these operators coincide with the Szasz-Beta operators defined by (1.1).

First, we give some basic definitions and notations of g-calculus. All of the results can
be found in [10, 11]. Throughout the present paper, we consider g as a real number such
that 0 <g <1. For n €IN. The g integer and g factorial are respectively defined as

_1-q" | [lgln=1]g---[1]g, n=>1,
=1 [mw—{ll =
The g-binomial coefficients are given by
n [n],!
=———— 0<k<n.
{k]q [Klq![n—K]q!

The g-Jackson integrals and the g-improper integrals are defined as (see [12])

[ f@dyr=a-ga ioﬂaq")q", 2>,

and

[ =0 ¥ (%

q
)Z A>0, (1.4)
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provided the sum converge absolutely.
For t >0, the g-Gamma integral (see [12]) is defined by

1
I'q(if):/oh7 xtflEq(—qx)dqx, (1.5)
where
i (n—-1)/2 x" _
n=0 [ ]‘1!
Also
I"q(t—l—l):[t]qfq(t), I"q(l):l.
We denote

1+x)(14gx)---(1+4"1), n=12,--,
(1+x);z:{ g J(L+qx)-- (1+4") .

The g-Beta integral is defined by

t—1

B,(t,s) = K(A,1) /0 A : X

——dx, 1.6

where

_ 1 t 1\! 1—t
K(xt)=—5 (1+;)q(1+x)q .

It was observed in that K(x,t) is a g-constant i.e., K(qx,t) = K(x,t). In particular for any
positive integer 1, one has

i) T, ()T (s)

K(x,n)=q 7, K(x,0)=1 and B,(ts)= I‘lq(ﬂr) : (1.7)

For details on g-Beta function, we refer the readers to [19]. Inspired by the Stancu type
generalization of g-Baskakov operators. For 0 <a < we introduce the g-Szdsz-Beta-
Stancu operators defined as

SeB(f(1);x)
O 32 5 /A n
L [ r (T e B () 09

where SZ,k(X) and Pz,k(t) are given by (1.3). For a=5=0, we get (1.2). In the present paper,
we study the direct theorem, rate of approximation and Voronovskaja type asymptotic
formula for the operators S,/ ﬁ
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2 Moment estimates

Lemma 2.1 (see [9]). For Snlq(t’”;x), m=0,1,2, one has
(i) Sn,q(l;x) =1;
(i) Spq(t;x) =

(iii) Sy g (25x) = ”;[% forn>1.

Lemma 2.2. The following equalities hold:
(i) SM3 (Lx)=1;
(ii) Sn,q( ;X) = [n }qx+a.

[l’l]3 2

qln=1]4([n]g+p)

[2]4[n]3
qn-1],

(iii) Spb (250) = s+ (oo +2a[nlg) ¢ s for n>1.

X 062
], B2 T (T, 7P

Proof. Obviously the Sﬁjg are well defined on the function 1, ¢, . By Lemma 2.1, we
estimate the moments as follows: First, for f(t) =1, we have

3k2 3k § /A q
M (Lx)= Zq 2 nkx/o Py (D)dgt+Eq(—[n]gx) =Sy q(Lx) =1.

Next, we estimate the first order moment

Finally, for n>1,

i 2 Zk (x /OOO/APka(t)(%>qut+Eq(_[n]qX)<[n]:+ﬁ)2
n)?

3k2 3k q 0o/ A q 2,2
_}_’3 2 Z nk X /0 pn,k(t)q t dqt
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s k2 3k /A
+[5 ; ka/o ph c(D)gtdgt

1
+([ a+ﬁ (i T nk x)AW/APZrk(t)dqt+Eq(_[n]qx)>

|
D b |
Tl B0 [ 5o+ g g a1
e 20,12 N E
==ty Cam—tly " 20) G v
Thus, we complete the proof. O

Remark 2.1. Let n>1 and x € [0,00), then for every g€ (0,1), we have

St (=) = 2L

], + B
I”'“'ﬁzszis“t‘x)z”“):q[n—lgzﬁ;;w)z*<q[[2r]zq—[1]i*2"‘[”“) Qe
R
—<q[n-u§?ﬁfh +ﬁ)2+1_[5][:fﬁ)x2+[ q[[zr]zq—[nl]i* oble) o5~
:

(oA

Therefore
S ((t—x)%x) < (q[ﬁqﬂq —1)x2+q[n[2_]‘11]qx+ q ]:—iﬁ) 1)

3 Direct theorem

By Cp[0,00) we denote the class of all real valued continuous bounded functions f defined
on [0,00). The norm on this space is given by

Ifll= sup |f].

x€[0,00)

We denote the usual modulus of continuity of f € Cp[0,00) as

w(f,0)= sup sup |f(x+h)—f(x)]

0<h<4 xe[0,00)
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and the second order modulus of smoothness of f as

wy(f, V)= sup sup |f(x+2h)—2f(x+h)+f(x)].
0<h<+/5 x€[0,00)

The K-functional are defined as

Ka(f,0) =inf{]| f —gll+4llg"[I},

where 6 >0 and W2 ={g€Cp[0,00):¢’,¢” € Cp[0,00)}. By [14, pp. 177, Theorem 2.4], there
exist an absolute constant C > 0 such that

K»(f,6) < Cawn(f, V).

Theorem 3.1. Let f € Cg[0,00) and g€ [0,1). Then for every x € [0,00) and n> 1, there exists an
absolute constant C >0 such that

SER(F0)— ] < Can(£, 250 oo (b))

where

6a(%) = [T+ [i]_qf’; )2}

Proof. For x €[0,00), we consider the auxiliary operators Sijg , which is defined by

P [n]yx+a

Sﬁjg(f;x) =S$£§(f;X) _f( (], +PB

)+ £ (). (3.1)

We can learn from Lemma 2.2 that these operators S, ; are linear and vanish the linear
function:

Swh(t—x;x)=0. (32)

Let g€ W2 and x,t€[0,00), by Taylor’s expansion, we have

8()=g(0)+¢(x) (t=2)+ [ (t-w)g()"du

Applying (3.2), we get

Sif(gix) =g +5if ([

X

t

(t—u)g(u)"du;x).
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Hence, by (3.1), we have

st ( [ (t-w)g)"duix)

|55 (gix) —g(x)| <

R (e

[n]g+B
<83 (| [ (t-wgte)"au]x +/”"*ﬁ "H“— ug(u)"|du
S{S“ﬁ((t x)%; x)+([n]qx[iicﬁ> }Hg//H
_ ‘X_ﬁx 2 "
—<In,a,ﬁ+<[n]qx+’8) >Hg H
=0n(x)?(Ig" |- (3-3)
On the other hand, from (1.8) we know
St (F(1);x)]
3k2 -3k /A
< T [ o] (s e =) (g
SHfH, (3.4)
then by (3.1), we have
St ()| < |Sh (F) | +201F <3l £1l- (3.5)

Now using (3.1), (3.3) and (3.5), we have

ISKB(F(£):x) — F(2)| <ISSE(F—gix) — (f =) (%) | +1SkE (gi%) — g (%)

+ f([ﬁquj;‘ )= ()

<4l f—gll+ene 8”1+ (5

[n]gx+a
]y +p

)—f(x).

Thus, taking the infimum on the right hand over all g€ W?, we get

S0 -l < ka7 200 oo (1B,

In view of K»(f,8,(x)) < Cwa(f,V/9), we get

S0~ £ < Can (1,250 ) o1, E2),

This completes the proof of the theorem. O
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4 Rate of approximation

Let H,2[0,00) be the set of all functions f defined on [0,c0) satisfying the condition | f(x)|<
M f(1+x2), where M is a constant depending only on f. By C,2[0,00) we denote the
subspace of all continuous functions belonging to H,2[0,00). Let C%,[0,00) be the subspace
of all functions f € C,2[0,00), for which lim,, _m% is finite. The norm on C},[0,0) is
defined by

f(x)

14+x2°

1 fll2= SUPyc(0,00)

The modulus of continuity of f on the closed interval [0,4], >0 is

wa(f,0)= sup sup |f(x+h)—f(x)]

|t—x|<6 x,t€[0,a)

We can see that for a function f € C,2[0,00), the modulus of continuity w,(f,d) tends to
zero.

Theorem 4.1. Let q=gq, satisfies 0< g, <1and let q,— 1 as n— oco. For each f € C},]0,00), we
have

lim |35, () = f(x) |2 = 0.
Proof. Using the Korovkin’s theorem in [15], it is sufficient to verify the following three
conditions

lim [[S8, (#;%) —x°[ 2 =0 for v=0,1,2, (4.1)

since Sﬁjgn (1,x)=1, (4.1) holds for v=0. By Lemma 2.2, we have for n>1

, [rlgx+a_ \ 1
I35, (6x) =l = sup (TP —x)

xe[O,oo) [n]‘h +ﬁ a 1+x2
= & su — ﬁ su X
[”]qn+5xe[o,lzo)1+x2 [n]Qn+:Bx€[OEO)1+x2
44
< . .
il B 42

Thus

lim || S35, (%) = x| 2 =0.
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Similarly, we have

I1Shh (15x) =222

- P (Bl x
Qe L v M o e P N e
o? 1
(ke
nf3, 2
§<Qn[n—11qn<Tn]qn+ﬁ>2‘1)x2}3§o)@
[2]11”[”]2” 1 x a2 1
o=, 200 ) 7 228, T T 7, 5 T

which implies that
lim [|S5 B (25x) —x%[ 2 =0

This completes the proof of the Theorem 4.1. O

Theorem 4.2. Let f € C,2[0,00), g€ (0,1) and wq+1(f,6) be its modulus of continuity on the
finite interval [0,a+1] C [0,00), where a >0, then for every n>1, we have

HS“’ﬁ(f'X)—f(X)Hc[Oa

2, 12 o’
<oy 1440 [, 23~ o e G
2 2] o’ :
+2wa+1( Kq )x +q[n—1]qx+([n]q+[3)2] )
Proof. For x€[0,a], when t <a+1, we have
£~ £ <wrn (Bl < (14 5wy (£0) @3)
with 6 >0. When t >a+1, since t—x >1, we have
f(5) = f(x)]| SMf (242> +12) <6Mp(1+a%)(t—x). (4.4)
From (4.3) and (4.4), for x € [0,4] and t >0, we have
|t—x|

()= f)] <6Mp(14a%) (=) + (145 )@ (f,0).
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Hence, by Lemma 2.2 and Schwartz’s inequality, we have for every g€ (0,1), x € [0,4]
[Shh (Fix)— f(x)]
<SR(F(E) = f(x) )
%, 1 a
<My (14+a) Sy ((£=x)23) +wen (£,0) (145 (i (E=x)%x))

[”]q
Q[”_l]q

N—
N———

[z]q X o2
-1, " <[n]q+/s>2]

[1’1] 2 [2] [14
+“’“+1(f'5)<1+%[(q[n—quq_l)x +q[n—q1]qx+

§6Mf(1+a2){< —1>x2+

By taking

[7’1] 2 [2] 8
- [(q[n—ql]q —1)x +q[n—q1]qx+

we have the desired result. O

5 Pointwise estimates

We say a function f€C[0,00) isin Lip « on D, DC[0,00), a€(0,1], if f satisfies the condition
|f(t)—f(x)| <My|t—x|", te€[0,00) and x€D,

where My is a constant depending only on « and f. Now, we give some pointwise esti-
mates for the rate of convergence of the g analogues of Szdsz-Beta-Stancu operators.

Theorem 5.1. Let f € Lip «, € (0,1, D C [0,00),then

b e My e P
sin0 el <My ([ Gpiy, =) g, o, 7

where d(x,D) represents the distance between x and D.

i ]%+2d“(x,D)>,

Proof. For xg € D, the closure of the set D in [0,00), we have

(D)= FO S F(6)— f(x0)|+]f(x0) —f(x)], x€[0,00),
so we have
1Sh (F3) = F () | <SwB (L (£) — F(x0) [x) + | f(x0) — f(2)]
<MSyh ([t=x0%) + My xo —x|" (5.1)
On the other hand,
S (|E—x|%x) < (Syb(|t—x[%x)) 2 (Sih (1x)) 18 (5.2)
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and
Shb (|t —x0]%x) < (Shb(|t—x]%x))E + |x0— x|,

Using (5.1), (5.2) and the inequality (2.1), we have
S () = £ ()] SMp (S (8 —x1%5x)) F 4+-2M | xo —x*
[

<M (S“’ﬁ(]t—xlz‘ )2 +2d%(x,D)]

2 o2 I
<Mf<[<q )x +q[n[—]q1]qx+([”]q+ﬁ)2} +2d (x,D))

Thus the result holds. U

6 Voronovskaja type theorem

Lemma 6.1. Let =g, satisfies 0<q, <1 and let g,—1, q}; — A as n— oco. For each x € [0,00),
we have

lim [n]anﬁjgn((t—x);x) =a—px,

n—00
lim [n],, Sﬁjgn ((t—x)%x) =2x.

n—o0

Using Lemma 2.2 and making necessary process we can easily get the proof of this
Lemma so we omit it.

Theorem 6.1. Let g, —1, g — A, as n— o0, f €C,[0,00), and f', f"" € C%,[0,00), then we have

tim [n]y, (Swf, (f:%) = f(x)) = (a—Bx) f'(x) +xf" (x).

n—oo

Proof. Using Taylor’s expansion, we get

f(t)=f(x) Zf/(X)(f—XH%f”(x)(f—x)2+f(fIX)(f—X)2,

where r(t, x) is Peano form of the remainder, and r(t,x) — 0 as t — x. By applying the
operator Swh "4 (f5X) to the above relation, we obtain

S (fi) = f(x)
= () (6 =x);) 4 3 £ (VS (1= 2)%2) 4+, (r (1) (= x)%5).

Applying Cauchy-Schwarz inequality, we have

1]y, S8 (r(£,%) (b= x)%%) < \[SSE (r(1, )20\ [n]2, 56, (t—x)%52).
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It’s easy to observe that
lim S;; g (r (t,x)z,x) =0,

n—00

and using Lemma 2.2 and making necessary process, we know lim,_,[n ]%Sﬁ gn((t

x)*,x) is finite. So we get

lim 1], Swb (r(£,x) (t—x)%x) =0

n—oo n

Therefore, using Lemma 6.1, we yield

lim [1]g, (Sich, (f3%) = f(x))

= (x) lim ] S5, (£ —x);) 4 o " (3) lim [l S, (£ 2)%52)
+ lim [n], Sih, (r(,%) (=) )
— () f () +xf" (x),

which complete the proof. O
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