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Abstract. We will study the strong approximation by Fourier-Vilenkin series using
matrices with some general monotone condition. The strong Vallee-Poussin, which
means of Fourier-Vilenkin series are also investigated.
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1 Introduction

Let P={p,}3_, be a sequence of natural numbers such that2<p; <N,ieIN={1,2,--- }.
By definition Z(p;)={0,1,---,pj—1}, mo=1, my=p1pa---pu for n€N. Then every x€[0,1)
has an expansion

xzzﬁ, x, €Z(py), neN. (1.1)

n=1"Mn

For x=k/m;, 0 <k <my, k,I €N, we take the expansion with a finite number of x, #
0. Let G(P) be the Abel group of sequences x = (x1,x2,:+), X, € Z(py), with addition
x®y =z =(z1,22,-+), where z, € Z(p,) and z, = x,+y, (mod p,), n € N. We define
maps ¢:[0,1) = G(P) and A: G(P) — [0,1) by formulas g(x) = (x1,x2,---), where x is
in the form (1.1) and A(x) =Y ;2 x;/m;, where x € G(P). Then for x,y € [0,1), we can
introduce x®y:=A(g(x)®g(y)), if z=g(x)®g(y) does not satisfy equality z; = p;—1 for
all i >iy. In a similar way, we introduce x©y and for all x,y € [0,1) generalized distance
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p(x,y)=A(g(x)©g(y)). Every ke Z. ={0,1,2,--- } can be expressed uniquely in the form
of

k=Y kpmuy_1, ko€Z, neN. (1.2)
n=1

For a given x € [0,1) with expansion (1.1) and k € Z with expansion (1.2), we set
Xi(x) =exp(27i} 2 x;k;/ pj). The system {xx};2 is called a multiplicative or Vilenkin
system. It is orthonormal and complete in L[0,1) and we have

xc(x0y) =xc()xe),  xx(x0y) =xx(*)xc(y),

for a.e. y, whenever x €[0,1) is fixed (see [8, Section 1.5]).
The Fourier-Vilenkin coefficients and partial Fourier-Vilenkin sums for f € L'[0,1) are
defined by

n—1
=47umumw,kezh ()0 = L0, neN

Iffge L'[0,1), then fxg(x fo f(xot)g(t)dt :folf (xot)dt. For Dirichlet kernel

Dy (t) = 7= xx(t), n €N, we have an equality S,(f)(x)= folf(x@t)Dn(t)dt. The space
LP[0,1), 1< p <o consists of all measurable functions f on [0,1) with finite norm || f||, =
(Jo LF(OIPde) /P TE W (£,6)c0 i=sup{| f(x) = f(y)] : 2,y € [0,1), p(x,y) <8}, $€[0,1], then
C*[0,1) contains all functions f with property lim,_,ow*(f,h)s=0 and finite norm || f||c=
supc o £ (x)].

Let us introduce a modulus of continuity w*(f,6), =supy_;,.; | f(x©h)—f(x)[/, in
LP[0,1), 1<p<oo. If P, ={f€L[0,1):f (k) =0,k>n}, then E,(f),=inf{| f—tulp,tn €Pu},
1<p<oo. Let w(d) be a function of modulus of continuity type (w(d) € Q)), i.e., w(d)
is continuous and increasing on [0,1) and w(0) =0. Then the space H'[0,1) consists
of feLP[0,1) (1< p<co)or feC*0,1) (p=oco) such that w*(f,d), < Cw(d), where C
depends only on f. Denote by I the subspace of Hy’ consioting of all functions f such
that limy, ,ow*(f,h),/w(h)=0. The spaces 1[0,1) and Hy'[0,1), 1 <p <o, with the norm
1 fllpw = [l fllp+supgopqw*(f,h)p/w(h) are Banach ones. In h[0,1) we can consider
En(f)pw=mf{||f —tullpw,tn €Pn}, n€N.

Let A={a,};_, be alower triangle matrix such that

n
Ay >0, nkeN, Y a,,=1. (1.3)
k=1

Using matrix A, we can define a summation method by formula

)= Y ansSk(f) (x)
k=1
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In the case of trigonometric system and monotone by k sequence {a, };;_, the estimates
of || f—Tu(f)||« were obtained by P. Chandra [4] in terms of modulus of continuity. Later
L. Leindler [10] generalized these results to the cases

n—1
Y awg—anpi1| <Caym, 1<m<n—1, neN, (1.4)
k=m
and
m—1
Y lapk—api1| <Canm, 1<m<n, neN. (1.5)
k=1

Here C doesn’t depend on m, n. For Vilenkin system {x;}¢, the estimates of | f—
Ta(f)llp, 1<p<oo, and | f—T,(f)|p0 for f € HY, where v(t) =tF, w(t) =t*, B<a, are
obtained in [9]. Further we shall consider

1/r

Ral 1) ()= ( kz A S (X) = ()

The estimates of ||R,(f,7)|lc for monotone by k sequence {a,};_, with additional re-
strictions on their oscillations were proved by T. Xie and X. Sun in [19]. For matrices
satisfying (1.4) and (1.5), similar results are established by B. Szal [16]. In [17], some
estimates close to ones of P. Chandra [3] and L. Leindler [8] are obtained.

In the present paper, we study the rate of ||R,(f,r)||,, 1 < p < co, where a matrix A
satisfies one of the following conditions:

2m—1
n—1
Z |an,k_an,k+1’§Kan,mr 1§}’I’l§( 5 ), (1.6)
k=m
or

m—1

Z |an,k_an,k+l’§Kan,m, 2<m<mn. (1.7)
k=[m/2]

In both cases K does not depend on n,m. The class GM of real non-negative se-
quences {a;},, satisfying inequality Y 2" 1 |a; —ar11| < Ca,, m € N, was introduced by
S. Tikhonov [18]. In particular, in [18] it is established that GM contains the class of quasi
monotone sequences QM (with property a,n~ " 0 for some 7>0 and n €IN). Further, we
assume that w(t) € Q) satisfies A,-condition, i.e., w(t) <Cw(t/2), t€[0,1).

Some results are devoted to the strong Fejer and de la Valle-Poussin means (Lemmas
2.7,2.8, Theorem 3.5, Corollaries 3.1, 3.2).
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2 Auxiliary propositions

Lemma 2.1. For f € LP[0,1), 1 <p < oo, we have ||S,(f) |, < C||fl|p, n €N, where C does not
depend on f and n. As a corollary, we obtain inequality

Hsn(f)_fHPS (C+1)En(f)pz n&IN.

For arbitrary sequence {p,}: ;, Lemma 2.1 is established by W.-S. Young [20], E.
Schipp [14] and P. Simon [15].
Let g=(g1,82,"**,8j,"**), where g; are measurable on [0,1) functions. Let us define

||g||m<lr>=H(]@gjr)”’ . ||g||zr(m=(é\gﬂ\;)m.

Lemma 2.2. If 1<r<p<oo, then ||g| ror) <|gllirrr)-
The proof of Lemma 2.2 is similar to the case r =2, studied by S. Fridli [5].

Lemma 2.3. Let {a,}$ , €C. Then for g € (1,00) a Sidon-type inequality

holds. For q = oo, we also have

:ZlakaHl SC(Q)nl_l/q<i’ﬂk|q>l/q 1)

k=1

|

In an implicit form, inequality (2.1) is proved in [3] for bounded sequences {p, }5_;.
M. Avdispahic and M. Pepic [2] obtained its analog in a more general case.
The following Lemma is due to A. V. Efimov (see [8, Section 10.5]).

n
Zakaul <Cn sup |ag|.
k=1

1<k<n

Lemma 2.4. Let f€LP[0,1), 1<p<oo,or f€C*[0,1). Then

271W*(f/1/mn)p <Em,(f)p < If = Sm, (Ollp Sw™(f,1/mn)p, n€N.

Lemma 2.5. If w(t) € Q) satisfies the Ay-condition, then from f € Hy' it follows that Ey(f), <
Cw(1/n), neN.

Proof. Let ||fl|p,w=C1, w(t) < Cow(t/2), t€[0,1), and n € [my,myy1), k € Z,. Then by
Lemma 2.4

En(f)y < Em(f)p <w*(f,1/mi), < Craw(1/my) < CrCE8 N (1 /my 1) < Caw(1/m).

Thus, Lemma 2.5 is proved. O
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Lemma 2.6. (i) Let a matrix A satisfies conditions (1.3) and (1.6). Then a, ; < (K+1)ay,, for
m <i<2m <mn, where K is the constant from (1.6).

(ii) Let a matrix A satisfies conditions (1.3) and (1.7). Then a, ; < (K+1)ay,m, for [m/2] <i<
m, where K is the constant from (1.7).

Proof. Part (i) may be found in [18]. In order to establish (ii), we find for [m/2] <i<m

that
-1

Kanm> Z |ank ank+1’>‘ Z Ank— ank—H) >an1_anmz
k=[m/2]

whence (K+1)a,,, >a, ;. In the case i =m, the statement (ii) is evident. Thus, Lemma 2.6
is proved. O

The trigonometric counterpart of Lemma 2.7 is due to L. Leindler [11].

Lemma 2.7. Let f€C*[0,1), 1 <r<oo. Then
n 1/r
lowlf) = || (n P L ISUAON) | _<MIlflle, e, 2)
k=1 «©

where M does not depend on n €IN and f.

Proof. Let us consider i € N such that n € [m;_1,m;). Then
*1Z|Sk |’<Nm12|sk (x)|"=NIlhll;,

where h(t) equals to Si(f)(x) on Il = [k/m;,(k+1)/m;), 1<k<n, and h(t)=0 on other I..
It is clear that ||/||, =sup folh(t) g(t)dt, where sup is taken over constant on I} functions
¢(t) with the property ||g||,» <1, 1/r+1/7'=1. In other words, if ¢(t)=ay for te I}, 1<k<n,
then

/

(Zn:]ak]r,>1/r Smg/’, ( sup |ag| <1 for rzl). (2.3)
k=1

1<k<n

We have
1 1 n
/0 h( df— lZﬂkSk m;l/o Zaka(t)f(x@t)dt
k=1
<7 flle Z“kaHl-
k=1
Using (2.1) and (2.3), we find that

-1 1/r ¢ ! 4
lou(fr) oo < Com | fllem!” (L lail”) ™ =Call fllo:
k=1

So, Lemma 2.7 is proved. O
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The inequality (2.5) of Lemma 2.8 in the case m = [n/2] is stated without proof by S.
Fridli and F. Schipp [6] for some general systems. In [6] also one can find the idea of
application of (2.1) to problems of strong approximation (see also [7]).

Lemma 2.8. Let f € C*[0,1), 1<r<oo, vn<m<n, where ve (0,1). Then

W0 =] (n4)7 3 15HOF) | <m0 @y
and

n

W llei= | (m 47 3 18cnO=fFOF)

k=n—m

< (M(V)‘f‘l)Enfm(f)OO/ (25)

[ee]

where M(v) does not depend on n,m € N and f.

Proof. By (2.2) we have

(1) [, noo—H(k_nfmISk o).
m—1

<|(x LS. o) |+ saenor) .

k= k=1
Cl(nl/r (n=m=1)"")]|f ]I,

whence (2.4) follows in virtue of inequality vn <m.

The inequality (2.5) is derived from (2.4) by substitution f —t,_,, instead of f, where
tuem € Pr—m and || f —tyn—m|loc = En—m(f) . Here we use the equality Sg(t,_) =t_m for
k>n—m and Minkowski inequality in /" as follows:

n

Wl E )< (om0 L StF=tumOr)

k=n—m o
(e ir-nenon) |
=[|Un,m (f —tn—m") oo+ En—m(f)oo < CaEp(f)co- (2.6)
So, Lemma 2.8 is proved. O

Remark 2.1. The counterparts of (2.4) and (2.5) for ||-||, and p >r are easily follows from
Lemma 2.1 and Lemma 2.2 (see the proof of Theorem 3.2).

The following lemma is an analog of Leindler-Meir-Totik theorem [12].
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Lemma 2.9. Let w,p € Q) be such that A(t) = w(t)/u(t) is increasing on (0,1). Then for an
operator An(f) =Ky f, Ky € L'[0,1), and f € Hy the inequality

1An(F) = Fllpu CULARS) = fllp/ u(n™ ) +A 0™ A+ Al Lr10))
holds.
The proof of Lemma 2.9 is similar to one of Theorem 8 in [9].

Lemma 2.10. Let w,p € Q) be such that A(t) =w(t)/u(t) is increasing on (0,1). If w satisfies
Ao-condition and f € Hy, then Ey(f)p <CA(1/n), n€N.

Proof. Let K,, = Zi” I'Dy/n and A, (f) =K,*f. Then for any t, € P,, we have K, xt, =
t,. In virtue of Lemma 2.5 and by the standard procedure, we deduce || A, (f)—fl|, <
CiEu(f)p <Cow(1/n). In addition, || A, (f) | rr—rr <|[|Ky|l1 <C3 (see, for example, [9]). By
Lemma 2.9, we obtain

1AR(F) = Fllpp < Calw(n™) /p(n™) +A(n 1)) =2C4A (7).

Thus, Ep(f)pu < 2CsA(n~'). Using monotonicity of best approximations and As-
condition, we get the inequality of Lemma. O

Remark 2.2. The condition of increasing of w(t)/u(t) introduced by J. Prestin and S.
Prossdorf [13] is suitable for some applications, for example, the theory of multiplicators
of Lipschitz classes (see [1]).

3 Main results

Theorem 3.1. Let a matrix A satisfies conditions (1.3) and (1.7), f €C*[0,1), ¥ > 1. Then

[log,n]—1

1/r
IRa(f ) w=0( Y 2 L)ooty +18nEf 1y () -
k=0

Proof. Let n€N and j=j(n) € Z be defined by inequality 2/ <n <2/*1,i.e,, j=[log,n].
Then we have

jo2k—1

RN == 1 T andSi()()~f I + Y sl S: () (x) — F(x) = b+ In

=1j=2k-1 i=2/

Using Abel’s transform (summation by parts), (1.7) and Lemma 2.6, we obtain

i, 2k2 i 21
h< X (X Il 1 ISOA@ 0+ a0 T 18O 1)
k=1 j=02k-1 ]=2k-1 j=0k-1
2k—1

<C12an2’f Y S x)—f)I"

j=2k-1
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According to (2.5),

j j-1
L<C Y a,525  E 1(foo=Ca Yy 501 2°Ey (f) o (3.1)
k=1 k=0

Itis clear that (1.7) implies Z?;[%nJrl)/Z] @y i—ay 11| <Csy,y. Since [(n+1)/2]<(n+1)/2<
2, using of Abel’s transform and (2.5) gives

n—1 k n

L< ) ag—anenl Y, IS —fO +ans Y [Si()(x) - f()I
k=[(n+1)/2] i=[(n+1)/2] i=[(n+1)/2]
From (3.1) and (3.2), the statement of theorem follows. O

Theorem 3.2. Let a matrix A satisfies conditions (1.3) and (1.7), f€LF[0,1), 1<p<oco, p>r>1.
Then

1/r
IRa(f.1) =0 (zankEk ) (33)
Proof. Applying Lemma 2.2, we have
IRuF )= | (nalSiHC) =) )
=1

Therefore by Lemma 2.1, ||Ry(f,7) [}, < CYk_qanxE;(f)p, whence the inequality of theo-
rem follows. 0

n 1/r

= (Lol seNO-70l)

Theorem 3.3. Let a matrix A satisfies conditions (1.3) and (1.6), f € C*[0,1), r>1. Then

IRl =0( LansEi(e)

Proof. We shall use again j = j(n) with property 2/ <n <2/*1, ie., j=[log,n]. Applying
Abel’s transform, we obtain

(R(f7) (Y
j 21
skzl( Y i il 2 SIAE) = FR +a,00 L [S(HE-FE))
—2k—1 j=0k—1

n—1 n
+ ) lani— ﬂnm!Z!Sz ()= f ) +anu Y 1Sk(f) (x) = f(x)[".

k=2 =21 k=2
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By (1.6), Lemma 2.6 and (2.5), we have

(R )61 <o 12 (2 B ()2 0B (1))

k=1

, j
+C2”n,2f'2] ES/ (f)eo<Cs sz”n,zkEEk (f)oo-
k=0

Since
L 2k_1
2 71ﬂn’2k <Cs Z Ap,i

i=2k-1

by Lemma 2.6, we find that
jo2k-1
(Rul£,1) ()" < Co(ant BN (oot Yo Y aniEi(f)eo),
k=1;=0k-1
whence the inequality of theorem follows. O
Similarly to Theorem 3.2, one can prove

Theorem 3.4. If a matrix A satisfies conditions (1.3) and (1.6), f€LF[0,1), 1<p<oo, p>r>1,
then (3.3) holds.

Theorems 3.3 and 3.4 imply
Corollary 3.1. Let f€LF[0,1), 1<p<oo,1<r<p,or f€C*[0,1) (p=00), 1<r<oo. Then
1/r 1/r

(7 Sisitn 1) =0 (L xtr/m) ", nen.

In particular, for r=1and f € Lip* («a,p) (i.e., w*(f,h), =O(h")) we obtain

" O(n™"), O<a<l,
[ Isken £ { O(In(n+1)/(n+1)), a=1,
k=1 P O(n71), a>1.

Remark 3.1. It is well known that for f € k) and 0y (f) = Yk_;S¢(f)/n, the equality
l%mnﬁoo | f =u(f)|lpw=0holds (see [9] for w(h) =h*). In particular, for f € hy we have
llmnﬁoo En (f)p,w :0.

Theorem 3.5 gives an analog of the estimate (2.5) for Holder metric.

Theorem 3.5. Let f chi), 1<p<co, p>r>1for p<ocoand 1<r<cofor p=oco. Ifyn<m<n,
v e (0,1), then we have

| Vi (fo7) Hp,w <CW)En—m(f)pw-
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Proof. By Minkowski inequality and commutativity of translation and convolution, we
have

[Unm (f,7) (-S1) = U (f,7) ()l (U (f - SH) = (), [l p- (34)
Hence, in virtue of (2.4) and Remark 2.1, it follows that

[Un,m(f(-Sh) = f().0)
(| U (f )pr<Hunm( )Hp+05<12121 w(h) g

[(f(-eh)—f0)l
DO i

where in the case p=0o0, the constant C; is equal to M (v) from Lemma 2.8. Let t,,_,, €P,_p,
be such that || f —t; | pw=En—m(f)pw- Using equality Si(t,,—p)=tn_m for k>n—m, we
obtain similarly to (2.6)

[V () o <N Un (f = tnem )l p+ 1 f = tn—mlp
SCle_tn—m”ﬂ‘ Hf_tn—me < (C1+1)En—m(f)p,w' (3'5)

On the other hand, by (3.4) and (3.5) (we use notation A, f = f(-©h) — f(+))
sup || ApVam(f,r)llp/w(h)

<Ci(Ifllp+ sup

0<h<1

0<h<1
< sup [[Vim(Buf,7r)llp/w(h)
0<h<1
< sup ([ U (84 (F = ta?)lp+ 180 F = a1 /o)
0<h<1
(G f—tn-mllpw=(Cr1H+1) En—m(f) p- (3.6)
Combining estimates (3.5) and (3.6), we finish the proof of theorem. O

Corollary 3.2. Let 1 < p <oo, w,u € (), where w(t) satisfies Ay-condition, while A(t) =
w(t)/u(t) is increasing on (0,1) and lim;0A(t) =0. If f € Hy, p>r>1, and numbers
n,meN are such thatvn<m<n, ve(0,1), then || Vi m(f,7) || pu <CA((n—m)~1), (n—m)€N.

Proof. In virtue of Theorem 3.5, ||V} (f,7) || p,u < C1(v) En—m(f)p,u, while by Lemma 2.10,
we have E;_(f)pu <CoA(1/(n—m)). Substituting the second inequality into first one,
we prove the theorem.

Following the idea of Szal [16], we assume in two last theorems that there exists a €
(0,1), such that w*(t)/u(t) is increasing on (0,1). We also require that w,u € ) and w
satisfies A>-condition. O

Theorem 3.6. Let a matrix A satisfies conditions (1.3) and (1.7), f € H¥[0,1), r > 1. Then

[log, ] (1-a)/r
||Rn(f )HOO}[ C(1—|—nﬂl 04/1’( Z 2 a 2k+1(&) 2 k)—}—nan,nwr(]’lil)) .
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Proof. In virtue of Theorem 3.1 and Minkowski inequality

sup [[AnRu(f/7) oo/ () < sup [|Ru(Apf,r)leo /1 (h)

0<h<1 0<h<1
[log,n]—1 1/r
< sup Cl( Z ZkE Ahf ool 2k+1+nan ”E[(n—H /2] (Ahf ) /y )
0<h<1
=: sup ClAl/y( )/ u(h).
0<h<1

By Lemmas 2.4 and 2.5, the estimates
Epi(Anf)eo S2Ep(floe S Cow(275),  Ef(s1)/2)(Anf)ee < Caw((n+1)71), (3.7)
hold. On the other hand, Ex (A, f)eo < ||Af|lee <w(h), k€N, and as Corollary,

[log,n]—1
An(h) <" () ( Y 2%a, +mz,w) < Cy" (W) (1+napny), (3.8)
k=0
since 2a ok < C5Z2 ;;11&11 by Lemma 2.6 and Y} _;a,x =1 by (1.3). Writing A,(h) as
Ap(h)=A,(h)*A, (h) * and applying (3.8) to the first factor and (3.7) to the second one,
we obtain the required estimate for sup_;,_ [|An Ry (f,7)||eo / pt(h). For || R, (f,7)]|co similar
result follows from Theorem 3.1 and second inequality (3.8). The theorem is proved. [

Theorem 3.7. Let a matrix A satisfies conditions (1.3) and (1.6), f € LP[0,1), 1 < p < oo, or
feC*0,1) (for p=co), p>r>1. If f€ H}, then

n _ (1—a) /7
IR () o < C (L))
k=0

The proof of Theorem 3.7 is similar to the one of Theorem 3.6, and uses Theorems 3.3
and 3.4 instead of Theorem 3.1.

Remark 3.2. The conterparts of Theorems 3.1 and 3.7, proved in [16], contain the term
In2na, , instead of na, , in the present paper (by authors opinion, it is more correctly to
write 14+In* nan ). Such estimates may have a better order of decreasing (for example, if
ann=1,a, =0, 1<k<n). It will be interesting to refine Theorems 3.1 and 3.7 in a similar
manner and to study [|R,(f,7)]|, in the case of p=1.
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