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Abstract. In this paper, we consider an operator Dα which maps a polynomial P(z)
in to DαP(z) := np(z)+(α−z)P′(z), where α ∈ C and obtain some Lγ inequalities for
lucanary polynomials having zeros in |z|≤k≤1. Our results yields several generaliza-
tions and refinements of many known results and also provide an alternative proof of
a result due to Dewan et al. [7], which is independent of Laguerre’s theorem.
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1 Introduction

Let Pn be the class of polynomials

P(z)=
n

∑
ν=0

aνzν

of degree n. For P∈Pn, define

‖P‖γ :=

{

1

2π

∫ 2π

0
|P(eiθ)|γ

}
1
γ

, γ>0,

‖P‖∞ :=max
|z|=1

|P(z)|, m :=min
|z|=k

|P(z)| and m1 :=min
|z|=1

|P(z)|.
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For fixed µ, 1≤µ≤n, let Pn,µ, denote the class of polynomials

P(z)= anzn+
n

∑
υ=µ

an−υzn−υ

of degree n having all zeros in |z|≤ k, k≤1.
If P∈ Pn, then according to the following well-known Bernstein’s inequality (for ref-

erence see [5]), we have

‖P′‖∞ ≤n‖P‖∞. (1.1)

Equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P∈Pn having all zeros in |z|≤1, Turán [14] proved that

‖P′‖∞ ≥
n

2
‖P‖∞. (1.2)

Inequality (1.2) was refined by Aziz and Dawood [1] and they proved under the same
hypothesis that

‖P′‖∞ ≥
n

2

{

‖P‖∞+m1

}

. (1.3)

Both the inequalities (1.2) and (1.3) are best possible and become equality for polynomials
P(z)=αzn+β, where |α|= |β|. As an extension of (1.2), it was shown by Malik [12], that
if P∈Pn,1, then

‖P′‖∞ ≥
n

1+k
‖P‖∞, (1.4)

where as the corresponding extension of (1.3) and a refinement of (1.4) was given by
Govil [9] who under the same hypothesis proved that

‖P′‖∞ ≥
n

1+k

{

‖P‖∞+
m

kn−1

}

. (1.5)

In the literature, there already exist some refinements and generalizations of all the above
inequalities, for example see Aziz and Shah [4], Dewan, Mir and Yadav [8], Govil, Rah-
man and Schemeisser [10], Dewan, Singh and Lal [6], etc.

Aziz and Shah [4] (see also Dewan, Mir and Yadav [8]) generalized inequality (1.5)
and proved that, if P∈Pn,µ, then

‖P′‖∞ ≥
n

1+kµ

{

‖P‖∞+
m

kn−µ

}

. (1.6)

For µ=1, inequality (1.6) reduces to inequality (1.5).
For a complex number α and for P∈Pn, let

DαP(z)=nP(z)+(α−z)P′(z).
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Note that DαP(z) is a polynomial of degree at most n−1. This is the so-called polar
derivative of P(z) with respect to α (see [13]). It generalizes the ordinary derivative in the
following sense

lim
α→∞

{

DαP(z)

α

}

=P′(z).

Aziz and Rather [3] extended (1.4) to the polar derivative of a polynomial and proved
that if P∈Pn,1, then for every complex number α with |α|≥ k,

‖DαP‖∞ ≥n
( |α|−k

1+k

)

‖P‖∞. (1.7)

Recently, Dewan et al. [7] generalized as well as refined inequality (1.7) by proving that
if P∈Pn,µ, then for every α∈C with |α|≥ sµ ,

‖DαP‖∞ ≥n
( |α|−sµ

1+kµ

)

‖P‖∞, (1.8)

where

sµ =
n|an|k2µ+µ|an−µ|kµ−1

n|an |kµ−1+µ|an−µ|
. (1.9)

In the same paper, Dewan et al. [7] extended (1.6) to the polar derivative and proved that
if P∈Pn,µ, then for α∈C with |α|≥ kµ , we have

‖DαP‖∞ ≥n

(

|α|−Aµ

1+kµ

)

‖P‖∞+
mn

kn

(

|α|kµ+Aµ

1+kµ

)

, (1.10)

where

Aµ=
n
(

|an|−
m
kn

)

k2µ+µ|an−µ|kµ−1

n
(

|an |−
m
kn

)

kµ−1+µ|an−µ|
. (1.11)

If we divide both sides of (1.11) by |α| and let |α|→∞, we recover (1.6).
The main aim of this paper is to provide an Lγ analogue of (1.10) and to present a

proof of it independent of Laguerre’s theorem. Firstly, we shall present the following
extension of inequality (1.8).

Theorem 1.1. If P∈Pn,µ, then for every α∈C with |α|≥ sµ and for every γ>0, we have

n
(

|α|−sµ

)

∥

∥

∥

∥

P

DαP

∥

∥

∥

∥

γ

≤‖1+kµz‖γ, (1.12)

where sµ is as defined in (1.9).
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Remark 1.1. Since for every α∈C,
∣

∣DαP(eiθ)
∣

∣≤‖DαP‖∞, 0≤ θ<2π, the following result
easily follows from Theorem 1.1.

Corollary 1.1. If P∈Pn,µ, then for every α∈C with |α|≥ sµ and for every γ>0, we have

n
(

|α|−sµ

)

‖P‖γ ≤‖1+kµz‖γ‖DαP‖∞. (1.13)

If we let γ → ∞ in (1.13) and note that ‖1+kµz‖γ → (1+kµ), we get (1.8). Also, if
we divide both sides of (1.13) by |α| and then let |α| → ∞, we get a result of Aziz and
Rather [3].

By Lemma 2.2, we have
µ

n

∣

∣

∣

an−µ

an

∣

∣

∣
≤ kµ,

which further implies sµ ≤ kµ. Therefore Theorem 1.1 holds for every α∈C with |α|≥ kµ

as well. We immediately get the following useful consequence from Theorem 1.1.

Corollary 1.2. If P∈Pn,µ, then for every α∈C with |α|≥ kµ and for every γ>0, we have

n
(

|α|−kµ
)

∥

∥

∥

∥

P

DαP

∥

∥

∥

∥

γ

≤‖1+kµz‖γ. (1.14)

Next, we shall prove the following more general result which as a special case pro-
vides a proof of inequality (1.10) independent of Laguerre’s theorem.

Theorem 1.2. If P∈Pn,µ, then for every α,β∈C with |α|≥kµ , |β|<1 and for each γ>0, we have

n
(

|α|−Aµ

)

∥

∥

∥

∥

P− mβzn

kn

DαP− αβmnzn−1

kn

∥

∥

∥

∥

γ

≤‖1+kµz‖γ, (1.15)

where Aµ is defined by formula (1.11).

Remark 1.2. Since

∣

∣

∣
DαP(eiθ)−

αβmnei(n−1)θ

kn

∣

∣

∣
≤
∥

∥

∥
DαP−

αβmnzn−1

kn

∥

∥

∥

∞
, 0≤ θ<2π,

we get from inequality (1.15) that

n
(

|α|−Aµ

)

∥

∥

∥

∥

P−
mβzn

kn

∥

∥

∥

∥

γ

≤‖1+kµz‖γ

∥

∥

∥

∥

DαP−
αβmnzn−1

kn

∥

∥

∥

∥

∞

. (1.16)

If we let γ→∞ in (1.16) and note that ‖1+kµz‖γ → (1+kµ), we get

∥

∥

∥

∥

DαP−
αβmnzn−1

kn

∥

∥

∥

∥

∞

≥n
( |α|−Aµ

1+kµ

)

∥

∥

∥

∥

P−
mβzn

kn

∥

∥

∥

∥

∞

. (1.17)
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Let z0 be on |z|=1 such that |P(z0)|=max|z|=1 |P(z)|, then from (1.17), we get

∣

∣

∣

{

DαP(z)
}

z=z0

−
αβmnzn−1

0

kn

∣

∣

∣
≥n

( |α|−Aµ

1+kµ

)∣

∣

∣
P(z0)−

mβzn
0

kn

∣

∣

∣

≥n
( |α|−Aµ

1+kµ

)

{

|P(z0)|−
m|β|

kn

}

. (1.18)

Since the polynomial P(z)− mβzn

kn has all zeros in |z|< k, k≤1, where |β|<1, therefore by

the Guass-Lucas theorem, the polynomial P′(z)− mnβzn−1

kn also has all its zeros in |z|< k,
k≤1 and hence

|P′(z)|≥
mn|z|n−1

kn
for |z|≥ k. (1.19)

Because if (1.19) is not true, then there is a point z= z0 with |z0|≥ k such that

|P′(z0)|<
mn|z0|n−1

kn
.

If we take β= kn P′(z0)

mnzn−1
0

, so that |β|<1, then with this choice of β, we have

P′(z0)−
mnβzn−1

0

kn
=0,

where |z0|≥ k, which contradicts the fact that all the zeros of P′(z)− mnβzn−1

kn lie in |z|< k,
k≤1.

Also for |z|=1,

|DαP(z)|=|nP(z)+(α−z)P′(z)|

≥|α||P′(z)|−|nP(z)−zP′(z)|

=|α||P′(z)|−|Q′(z)|.

Combining this inequality with Lemma 2.3, we get for |z|=1 and |α|≥ kµ ,

|DαP(z)|≥ (|α|−kµ)|P′(z)|+
mn

kn−µ
. (1.20)

Inequality (1.20) in conjunction with (1.19) gives for |z|=1 and |α|≥ kµ ,

|DαP(z)|≥
|α|mn

kn
. (1.21)

If in (1.18), we choose the argument of β such that

∣

∣

∣

{

DαP(z)
}

z=z0

−
αβmnzn−1

0

kn

∣

∣

∣
=
∣

∣

∣

{

DαP(z)
}

z=z0

∣

∣

∣
−

mn|β||α||z0 |n−1

kn
,
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which easily follows from (1.21), we obtain

∣

∣

∣

{

DαP(z)
}

z=z0

∣

∣

∣
−

mn|β||α||z0 |n−1

kn
≥n

( |α|−Aµ

1+kµ

)

|P(z0)|−n
( |α|−Aµ

1+kµ

)m|β|

kn
. (1.22)

Since z0 lies on |z|=1 and |P(z0)|=max|z|=1 |P(z)|, inequality (1.22) is equivalent to

∣

∣

∣

{

DαP(z)
}

z=z0

∣

∣

∣
≥n

( |α|−Aµ

1+kµ

)

max
|z|=1

|P(z)|−n
( |α|−Aµ

1+kµ

)m|β|

kn
+

mn|β||α|

kn
. (1.23)

Now, if in (1.23) we make |β|→1, we get

max
|z|=1

|DαP(z)|≥n
( |α|−Aµ

1+kµ

)

max
|z|=1

|P(z)|+
mn

kn

( |α|kµ+Aµ

1+kµ

)

,

which is (1.10) and this proves the required claim.

2 Lemmas

We need the following lemmas to prove the theorems.

Lemma 2.1. If P∈Pn,µ, then on |z|=1,

|Q′(z)|≤ kµ |P′(z)|, (2.1)

where here and throughout this paper Q(z)= znP( 1
z ).

The above lemma is due to Aziz and Shah [4]. The following lemma is due to Aziz
and Rather [2].

Lemma 2.2. If P∈Pn,µ, then on |z|=1,

|Q′(z)|≤ sµ |P
′(z)| (2.2)

and

µ

n

∣

∣

∣

an−µ

an

∣

∣

∣
≤ kµ, (2.3)

where sµ is defined by the formula (1.9).

Lemma 2.3. If P∈Pn,µ, then on |z|=1,

|Q′(z)|≤ kµ |P′(z)|−
nm

kn−µ
. (2.4)
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Lemma 2.4. If P ∈ Pn with all its zeros in |z| ≤ k,k > 0, then |Q(z)| ≥ m
kn for |z| ≤ 1

k and in
particular

|an |>
m

kn
. (2.5)

Lemma 2.5. If P∈Pn,µ, then

Aµ≤ kµ, (2.6)

where Aµ is defined by the formula (1.1).

Lemma 2.6. The function

Sµ(x)=
nxk2µ+µ|an−µ|kµ−1

nxkµ−1+µ|an−µ|
, (2.7)

where k≤1 and µ≥1, is a non-increasing function of x.

The above Lemmas 2.3-2.6 are due to Dewan et al. [7].

3 Proof of theorems

Proof of Theorem 1.1. If

Q(z)= znP
(1

z

)

,

then

P(z)= znQ
(1

z

)

and it can be easily verified that for |z|=1,

|Q′(z)|= |nP(z)−zP′(z)| (3.1)

and

|P′(z)|= |nQ(z)−zQ′(z)|. (3.2)

As P(z) has all its zeros in |z|≤ k, therefore, by using Lemma 2.1 and (3.2), we have for
|z|=1,

|Q′(z)|≤ kµ |nQ(z)−zQ′(z)|. (3.3)

Now for every complex number α with |α|≥ sµ , we have

|DαP(z)|= |nP(z)+(α−z)P′(z)|≥ |α||P′(z)|−|nP(z)−zP′(z)|,
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which on using (3.1) and Lemma 2.2 gives for |z|=1,

|DαP(z)|≥ |α||P′(z)|−|Q′(z)|≥ (|α|−sµ)|P
′(z)|. (3.4)

Again since P(z) has all its zeros in |z|≤ k, k≤ 1, it follows by the Guass-Lucas theorem
that all the zeros of P′(z) also lie in |z|≤ k, k≤1. This implies that the polynomial

zn−1P
(1

z

)

=nQ(z)−zQ′(z)

has all its zeros in |z|≥ 1
k ≥1. Therefore, it follows from (3.3) that the function

W(z)=
zQ′(z)

kµ(nQ(z)−zQ′(z))

is analytic for |z|≤ 1 and |W(z)|≤ 1 for |z|≤ 1. Furthermore, W(0)= 0 and so the func-
tion 1+kµW(z) is subordinate to the function 1+kµz for |z|≤1. Hence by a well-known
property of sub-ordination [11], we have for each γ>0,

∫ 2π

0

∣

∣

∣
1+kµW(eiθ)

∣

∣

∣

γ

dθ≤
∫ 2π

0

∣

∣

∣
1+kµeiθ

∣

∣

∣

γ

dθ. (3.5)

Now

1+kµW(z)=
nQ(z)

nQ(z)−zQ′(z)
,

which gives with the help of (3.2) that for |z|=1,

n|Q(z)|= |1+kµW(z)||P′(z)|. (3.6)

Since |P(z)|= |Q(z)| for |z|=1, therefore from (3.6), we get

|P′(z)|=
n|P(z)|

|1+kµW(z)|
for |z|=1. (3.7)

From (3.4) and (3.7), we deduce that for each γ>0 and 0≤ θ<2π,

nγ(|α|−sµ)
γ
∫ 2π

0

∣

∣

∣

∣

P(eiθ)

DαP(eiθ)

∣

∣

∣

∣

γ

dθ≤
∫ 2π

0

∣

∣1+kµW(eiθ)
∣

∣

γ
dθ.

The above inequality in conjunction with (3.5) gives

nγ(|α|−sµ)
γ
∫ 2π

0

∣

∣

∣

∣

P(eiθ)

DαP(eiθ)

∣

∣

∣

∣

γ

≤
∣

∣1+kµeiθ
∣

∣

γ
.
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Equivalently, we write

n
(

|α|−sµ

)

∥

∥

∥

∥

P

DαP

∥

∥

∥

∥

γ

≤‖1+kµz‖γ,

which proves Theorem 1.1 completely. �

Proof of Theorem 1.2. By hypothesis, the polynomial

P(z)= anzn+
n

∑
υ=µ

an−υzn−υ, 1≤µ≤n,

has all its zeros in |z| ≤ k, k≤ 1. If P(z) has a zero on |z|= k, then m= 0 and the result
follows from Theorem 1.1 in this case. Henceforth, we suppose that all the zeros of P(z)
lie in |z|< k, k≤1, so that m>0.

Now m≤|P(z)| for |z|= k, therefore, if β is any complex number with |β|<1, then
∣

∣

∣

mβzn

kn

∣

∣

∣
< |P(z)| for |z|= k.

Since all the zeros of P(z) lie in |z|< k, it follows by Rouche’s theorem that all the zeros

of P(z)− mβzn

kn also lie in |z|<k, k≤1. Hence we can apply Theorem 1.1 to P(z)− mβzn

kn and
obtain for |α|≥ kµ ≥ s′µ and γ>0,

n
(

|α|−s′µ

)

∥

∥

∥

∥

P− mβzn

kn

Dα

(

P− mβzn

kn

)

∥

∥

∥

∥

γ

≤‖1+kµz‖γ, (3.8)

where

s′µ =
n
∣

∣

∣
an−

mβ
kn

∣

∣

∣
k2µ+µ|an−µ|kµ−1

n
∣

∣

∣
an−

mβ
kn

∣

∣

∣
kµ−1+µ|an−µ|

. (3.9)

Since for every β with |β|<1, we have
∣

∣

∣
an−

mβ

kn

∣

∣

∣
≥|an |−

m|β|

kn
≥|an|−

m

kn
(3.10)

and |an|>
m
kn by Lemma 2.4. Now combining (3.9), (3.10) and Lemma 2.6, we have for

every β with |β|<1,

s′µ =
n
∣

∣

∣
an−

mβ
kn

∣

∣

∣
k2µ+µ|an−µ|kµ−1

n
∣

∣

∣
an−

mβ
kn

∣

∣

∣
kµ−1+µ|an−µ|

≤
n
(

|an|−
m
kn

)

k2µ+µ|an−µ|kµ−1

n
(

|an |−
m
kn

)

kµ−1+µ|an−µ|

=Aµ. (3.11)
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Further by Lemma 2.5, we have Aµ ≤ kµ, it follows from (3.8) and (3.11)) that for every α

with |α|≥ kµ and γ>0,

n
(

|α|−Aµ

)

∥

∥

∥

∥

P− mβzn

kn

DαP− mnαβzn−1

kn

∥

∥

∥

∥

γ

≤‖1+kµz‖γ, (3.12)

which is inequality (1.15) and this completes the proof of Theorem 1.2. �
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