Some L^{γ} Inequalities for the Polar Derivative of a Polynomial

Abdullah Mir ${ }^{1, *}$, M. Bidkham ${ }^{2}$ and Bilal Dar ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Kashmir, Srinagar, 190006, India
${ }^{2}$ Department of Mathematics, Semnan University, Semnan, Iran
${ }^{3}$ Govt. Degree College, Pulwama

Received 5 August 2014; Accepted (in revised version) 28 July 2016

Abstract

In this paper, we consider an operator D_{α} which maps a polynomial $P(z)$ in to $D_{\alpha} P(z):=n p(z)+(\alpha-z) P^{\prime}(z)$, where $\alpha \in \mathcal{C}$ and obtain some L^{γ} inequalities for lucanary polynomials having zeros in $|z| \leq k \leq 1$. Our results yields several generalizations and refinements of many known results and also provide an alternative proof of a result due to Dewan et al. [7], which is independent of Laguerre's theorem.

Key Words: Polar derivative, polynomials, L^{γ}-inequalities in the complex domain, Laguerre's theorem.

AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction

Let P_{n} be the class of polynomials

$$
P(z)=\sum_{v=0}^{n} a_{v} z^{v}
$$

of degree n. For $P \in P_{n}$, define

$$
\begin{aligned}
& \|P\|_{\gamma}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{\gamma}\right\}^{\frac{1}{\gamma}}, \quad \gamma>0, \\
& \|P\|_{\infty}:=\max _{|z|=1}|P(z)|, \quad m:=\min _{|z|=k}|P(z)| \quad \text { and } \quad m_{1}:=\min _{|z|=1}|P(z)| .
\end{aligned}
$$

[^0]For fixed $\mu, 1 \leq \mu \leq n$, let $P_{n, \mu}$, denote the class of polynomials

$$
P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}
$$

of degree n having all zeros in $|z| \leq k, k \leq 1$.
If $P \in P_{n}$, then according to the following well-known Bernstein's inequality (for reference see [5]), we have

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \leq n\|P\|_{\infty} . \tag{1.1}
\end{equation*}
$$

Equality holds in (1.1) if and only if $P(z)$ has all its zeros at the origin.
For the class of polynomials $P \in P_{n}$ having all zeros in $|z| \leq 1$, Turán [14] proved that

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq \frac{n}{2}\|P\|_{\infty} \tag{1.2}
\end{equation*}
$$

Inequality (1.2) was refined by Aziz and Dawood [1] and they proved under the same hypothesis that

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq \frac{n}{2}\left\{\|P\|_{\infty}+m_{1}\right\} . \tag{1.3}
\end{equation*}
$$

Both the inequalities (1.2) and (1.3) are best possible and become equality for polynomials $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$. As an extension of (1.2), it was shown by Malik [12], that if $P \in P_{n, 1}$, then

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq \frac{n}{1+k}\|P\|_{\infty} \tag{1.4}
\end{equation*}
$$

where as the corresponding extension of (1.3) and a refinement of (1.4) was given by Govil [9] who under the same hypothesis proved that

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq \frac{n}{1+k}\left\{\|P\|_{\infty}+\frac{m}{k^{n-1}}\right\} . \tag{1.5}
\end{equation*}
$$

In the literature, there already exist some refinements and generalizations of all the above inequalities, for example see Aziz and Shah [4], Dewan, Mir and Yadav [8], Govil, Rahman and Schemeisser [10], Dewan, Singh and Lal [6], etc.

Aziz and Shah [4] (see also Dewan, Mir and Yadav [8]) generalized inequality (1.5) and proved that, if $P \in P_{n, \mu}$, then

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq \frac{n}{1+k^{\mu}}\left\{\|P\|_{\infty}+\frac{m}{k^{n-\mu}}\right\} . \tag{1.6}
\end{equation*}
$$

For $\mu=1$, inequality (1.6) reduces to inequality (1.5).
For a complex number α and for $P \in P_{n}$, let

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) .
$$

Note that $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$. This is the so-called polar derivative of $P(z)$ with respect to α (see [13]). It generalizes the ordinary derivative in the following sense

$$
\lim _{\alpha \rightarrow \infty}\left\{\frac{D_{\alpha} P(z)}{\alpha}\right\}=P^{\prime}(z) .
$$

Aziz and Rather [3] extended (1.4) to the polar derivative of a polynomial and proved that if $P \in P_{n, 1}$, then for every complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\left\|D_{\alpha} P\right\|_{\infty} \geq n\left(\frac{|\alpha|-k}{1+k}\right)\|P\|_{\infty} . \tag{1.7}
\end{equation*}
$$

Recently, Dewan et al. [7] generalized as well as refined inequality (1.7) by proving that if $P \in P_{n, \mu}$, then for every $\alpha \in \mathcal{C}$ with $|\alpha| \geq s_{\mu}$,

$$
\begin{equation*}
\left\|D_{\alpha} P\right\|_{\infty} \geq n\left(\frac{|\alpha|-s_{\mu}}{1+k^{\mu}}\right)\|P\|_{\infty}, \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{1.9}
\end{equation*}
$$

In the same paper, Dewan et al. [7] extended (1.6) to the polar derivative and proved that if $P \in P_{n, \mu}$, then for $\alpha \in \mathcal{C}$ with $|\alpha| \geq k^{\mu}$, we have

$$
\begin{equation*}
\left\|D_{\alpha} P\right\|_{\infty} \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right)\|P\|_{\infty}+\frac{m n}{k^{n}}\left(\frac{|\alpha| k^{\mu}+A_{\mu}}{1+k^{\mu}}\right) \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\mu}=\frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{1.11}
\end{equation*}
$$

If we divide both sides of (1.11) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we recover (1.6).
The main aim of this paper is to provide an L^{γ} analogue of (1.10) and to present a proof of it independent of Laguerre's theorem. Firstly, we shall present the following extension of inequality (1.8).

Theorem 1.1. If $P \in P_{n, \mu}$, then for every $\alpha \in \mathcal{C}$ with $|\alpha| \geq s_{\mu}$ and for every $\gamma>0$, we have

$$
\begin{equation*}
n\left(|\alpha|-s_{\mu}\right)\left\|\frac{P}{D_{\alpha} P}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma} \tag{1.12}
\end{equation*}
$$

where s_{μ} is as defined in (1.9).

Remark 1.1. Since for every $\alpha \in \mathcal{C},\left|D_{\alpha} P\left(e^{i \theta}\right)\right| \leq\left\|D_{\alpha} P\right\|_{\infty}, 0 \leq \theta<2 \pi$, the following result easily follows from Theorem 1.1.

Corollary 1.1. If $P \in P_{n, \mu}$, then for every $\alpha \in \mathcal{C}$ with $|\alpha| \geq s_{\mu}$ and for every $\gamma>0$, we have

$$
\begin{equation*}
n\left(|\alpha|-s_{\mu}\right)\|P\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma}\left\|D_{\alpha} P\right\|_{\infty} . \tag{1.13}
\end{equation*}
$$

If we let $\gamma \rightarrow \infty$ in (1.13) and note that $\left\|1+k^{\mu} z\right\|_{\gamma} \rightarrow\left(1+k^{\mu}\right)$, we get (1.8). Also, if we divide both sides of (1.13) by $|\alpha|$ and then let $|\alpha| \rightarrow \infty$, we get a result of Aziz and Rather [3].

By Lemma 2.2, we have

$$
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu},
$$

which further implies $s_{\mu} \leq k^{\mu}$. Therefore Theorem 1.1 holds for every $\alpha \in \mathcal{C}$ with $|\alpha| \geq k^{\mu}$ as well. We immediately get the following useful consequence from Theorem 1.1.

Corollary 1.2. If $P \in P_{n, \mu}$, then for every $\alpha \in \mathcal{C}$ with $|\alpha| \geq k^{\mu}$ and for every $\gamma>0$, we have

$$
\begin{equation*}
n\left(|\alpha|-k^{\mu}\right)\left\|\frac{P}{D_{\alpha} P}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma} . \tag{1.14}
\end{equation*}
$$

Next, we shall prove the following more general result which as a special case provides a proof of inequality (1.10) independent of Laguerre's theorem.

Theorem 1.2. If $P \in P_{n, \mu}$, then for every $\alpha, \beta \in \mathcal{C}$ with $|\alpha| \geq k^{\mu},|\beta|<1$ and for each $\gamma>0$, we have

$$
\begin{equation*}
n\left(|\alpha|-A_{\mu}\right)\left\|\frac{P-\frac{m \beta z^{n}}{k^{n}}}{D_{\alpha} P-\frac{\alpha \beta m n z^{n-1}}{k^{n}}}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma} \tag{1.15}
\end{equation*}
$$

where A_{μ} is defined by formula (1.11).
Remark 1.2. Since

$$
\left|D_{\alpha} P\left(e^{i \theta}\right)-\frac{\alpha \beta m n e^{i(n-1) \theta}}{k^{n}}\right| \leq\left\|D_{\alpha} P-\frac{\alpha \beta m n z^{n-1}}{k^{n}}\right\|_{\infty^{\prime}} \quad 0 \leq \theta<2 \pi,
$$

we get from inequality (1.15) that

$$
\begin{equation*}
n\left(|\alpha|-A_{\mu}\right)\left\|P-\frac{m \beta z^{n}}{k^{n}}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma}\left\|D_{\alpha} P-\frac{\alpha \beta m n z^{n-1}}{k^{n}}\right\|_{\infty} . \tag{1.16}
\end{equation*}
$$

If we let $\gamma \rightarrow \infty$ in (1.16) and note that $\left\|1+k^{\mu} z\right\|_{\gamma} \rightarrow\left(1+k^{\mu}\right)$, we get

$$
\begin{equation*}
\left\|D_{\alpha} P-\frac{\alpha \beta m n z^{n-1}}{k^{n}}\right\|_{\infty} \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right)\left\|P-\frac{m \beta z^{n}}{k^{n}}\right\|_{\infty} . \tag{1.17}
\end{equation*}
$$

Let z_{0} be on $|z|=1$ such that $\left|P\left(z_{0}\right)\right|=\max _{|z|=1}|P(z)|$, then from (1.17), we get

$$
\begin{align*}
\left|\left\{D_{\alpha} P(z)\right\}_{z=z_{0}}-\frac{\alpha \beta m n z_{0}^{n-1}}{k^{n}}\right| & \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right)\left|P\left(z_{0}\right)-\frac{m \beta z_{0}^{n}}{k^{n}}\right| \\
& \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right)\left\{\left|P\left(z_{0}\right)\right|-\frac{m|\beta|}{k^{n}}\right\} . \tag{1.18}
\end{align*}
$$

Since the polynomial $P(z)-\frac{m \beta z^{n}}{k^{n}}$ has all zeros in $|z|<k, k \leq 1$, where $|\beta|<1$, therefore by the Guass-Lucas theorem, the polynomial $P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}$ also has all its zeros in $|z|<k$, $k \leq 1$ and hence

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \geq \frac{m n|z|^{n-1}}{k^{n}} \quad \text { for }|z| \geq k \tag{1.19}
\end{equation*}
$$

Because if (1.19) is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \geq k$ such that

$$
\left|P^{\prime}\left(z_{0}\right)\right|<\frac{m n\left|z_{0}\right|^{n-1}}{k^{n}}
$$

If we take $\beta=\frac{k^{n} P^{\prime}\left(z_{0}\right)}{m n z_{0}^{n-1}}$, so that $|\beta|<1$, then with this choice of β, we have

$$
P^{\prime}\left(z_{0}\right)-\frac{m n \beta z_{0}^{n-1}}{k^{n}}=0
$$

where $\left|z_{0}\right| \geq k$, which contradicts the fact that all the zeros of $P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}$ lie in $|z|<k$, $k \leq 1$.

Also for $|z|=1$,

$$
\begin{aligned}
\left|D_{\alpha} P(z)\right| & =\left|n P(z)+(\alpha-z) P^{\prime}(z)\right| \\
& \geq|\alpha|\left|P^{\prime}(z)\right|-\left|n P(z)-z P^{\prime}(z)\right| \\
& =|\alpha|\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right|
\end{aligned}
$$

Combining this inequality with Lemma 2.3, we get for $|z|=1$ and $|\alpha| \geq k^{\mu}$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq\left(|\alpha|-k^{\mu}\right)\left|P^{\prime}(z)\right|+\frac{m n}{k^{n-\mu}} \tag{1.20}
\end{equation*}
$$

Inequality (1.20) in conjunction with (1.19) gives for $|z|=1$ and $|\alpha| \geq k^{\mu}$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq \frac{|\alpha| m n}{k^{n}} \tag{1.21}
\end{equation*}
$$

If in (1.18), we choose the argument of β such that

$$
\left|\left\{D_{\alpha} P(z)\right\}_{z=z_{0}}-\frac{\alpha \beta m n z_{0}^{n-1}}{k^{n}}\right|=\left|\left\{D_{\alpha} P(z)\right\}_{z=z_{0}}\right|-\frac{m n|\beta||\alpha|\left|z_{0}\right|^{n-1}}{k^{n}}
$$

which easily follows from (1.21), we obtain

$$
\begin{equation*}
\left|\left\{D_{\alpha} P(z)\right\}_{z=z_{0}}\right|-\frac{m n|\beta||\alpha|\left|z_{0}\right|^{n-1}}{k^{n}} \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right)\left|P\left(z_{0}\right)\right|-n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right) \frac{m|\beta|}{k^{n}} . \tag{1.22}
\end{equation*}
$$

Since z_{0} lies on $|z|=1$ and $\left|P\left(z_{0}\right)\right|=\max _{|z|=1}|P(z)|$, inequality (1.22) is equivalent to

$$
\begin{equation*}
\left|\left\{D_{\alpha} P(z)\right\}_{z=z_{0}}\right| \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}|P(z)|-n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right) \frac{m|\beta|}{k^{n}}+\frac{m n|\beta||\alpha|}{k^{n}} . \tag{1.23}
\end{equation*}
$$

Now, if in (1.23) we make $|\beta| \rightarrow 1$, we get

$$
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-A_{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}|P(z)|+\frac{m n}{k^{n}}\left(\frac{|\alpha| k^{\mu}+A_{\mu}}{1+k^{\mu}}\right),
$$

which is (1.10) and this proves the required claim.

2 Lemmas

We need the following lemmas to prove the theorems.
Lemma 2.1. If $P \in P_{n, \mu}$, then on $|z|=1$,

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq k^{\mu}\left|P^{\prime}(z)\right|, \tag{2.1}
\end{equation*}
$$

where here and throughout this paper $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
The above lemma is due to Aziz and Shah [4]. The following lemma is due to Aziz and Rather [2].

Lemma 2.2. If $P \in P_{n, \mu}$, then on $|z|=1$,

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq s_{\mu}\left|P^{\prime}(z)\right| \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu} \tag{2.3}
\end{equation*}
$$

where s_{μ} is defined by the formula (1.9).
Lemma 2.3. If $P \in P_{n, \mu}$, then on $|z|=1$,

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq k^{\mu}\left|P^{\prime}(z)\right|-\frac{n m}{k^{n-\mu}} . \tag{2.4}
\end{equation*}
$$

Lemma 2.4. If $P \in P_{n}$ with all its zeros in $|z| \leq k, k>0$, then $|Q(z)| \geq \frac{m}{k^{n}}$ for $|z| \leq \frac{1}{k}$ and in particular

$$
\begin{equation*}
\left|a_{n}\right|>\frac{m}{k^{n}} \tag{2.5}
\end{equation*}
$$

Lemma 2.5. If $P \in P_{n, \mu}$, then

$$
\begin{equation*}
A_{\mu} \leq k^{\mu} \tag{2.6}
\end{equation*}
$$

where A_{μ} is defined by the formula (1.1).
Lemma 2.6. The function

$$
\begin{equation*}
S_{\mu}(x)=\frac{n x k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n x k^{\mu-1}+\mu\left|a_{n-\mu}\right|}, \tag{2.7}
\end{equation*}
$$

where $k \leq 1$ and $\mu \geq 1$, is a non-increasing function of x.
The above Lemmas 2.3-2.6 are due to Dewan et al. [7].

3 Proof of theorems

Proof of Theorem 1.1. If

$$
Q(z)=z^{n} P\left(\frac{1}{\bar{z}}\right),
$$

then

$$
P(z)=z^{n} \overline{Q\left(\frac{1}{\bar{z}}\right)}
$$

and it can be easily verified that for $|z|=1$,

$$
\begin{equation*}
\left|Q^{\prime}(z)\right|=\left|n P(z)-z P^{\prime}(z)\right| \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P^{\prime}(z)\right|=\left|n Q(z)-z Q^{\prime}(z)\right| . \tag{3.2}
\end{equation*}
$$

As $P(z)$ has all its zeros in $|z| \leq k$, therefore, by using Lemma 2.1 and (3.2), we have for $|z|=1$,

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq k^{\mu}\left|n Q(z)-z Q^{\prime}(z)\right| . \tag{3.3}
\end{equation*}
$$

Now for every complex number α with $|\alpha| \geq s_{\mu}$, we have

$$
\left|D_{\alpha} P(z)\right|=\left|n P(z)+(\alpha-z) P^{\prime}(z)\right| \geq|\alpha|\left|P^{\prime}(z)\right|-\left|n P(z)-z P^{\prime}(z)\right|
$$

which on using (3.1) and Lemma 2.2 gives for $|z|=1$,

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \geq|\alpha|\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right| \geq\left(|\alpha|-s_{\mu}\right)\left|P^{\prime}(z)\right| . \tag{3.4}
\end{equation*}
$$

Again since $P(z)$ has all its zeros in $|z| \leq k, k \leq 1$, it follows by the Guass-Lucas theorem that all the zeros of $P^{\prime}(z)$ also lie in $|z| \leq k, k \leq 1$. This implies that the polynomial

$$
z^{n-1} \overline{P\left(\frac{1}{\bar{z}}\right)}=n Q(z)-z Q^{\prime}(z)
$$

has all its zeros in $|z| \geq \frac{1}{k} \geq 1$. Therefore, it follows from (3.3) that the function

$$
W(z)=\frac{z Q^{\prime}(z)}{k^{\mu}\left(n Q(z)-z Q^{\prime}(z)\right)}
$$

is analytic for $|z| \leq 1$ and $|W(z)| \leq 1$ for $|z| \leq 1$. Furthermore, $W(0)=0$ and so the function $1+k^{\mu} W(z)$ is subordinate to the function $1+k^{\mu} z$ for $|z| \leq 1$. Hence by a well-known property of sub-ordination [11], we have for each $\gamma>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+k^{\mu} W\left(e^{i \theta}\right)\right|^{\gamma} d \theta \leq \int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{\gamma} d \theta . \tag{3.5}
\end{equation*}
$$

Now

$$
1+k^{\mu} W(z)=\frac{n Q(z)}{n Q(z)-z Q^{\prime}(z)},
$$

which gives with the help of (3.2) that for $|z|=1$,

$$
\begin{equation*}
n|Q(z)|=\left|1+k^{\mu} W(z)\right|\left|P^{\prime}(z)\right| . \tag{3.6}
\end{equation*}
$$

Since $|P(z)|=|Q(z)|$ for $|z|=1$, therefore from (3.6), we get

$$
\begin{equation*}
\left|P^{\prime}(z)\right|=\frac{n|P(z)|}{\left|1+k^{\mu} W(z)\right|} \quad \text { for }|z|=1 \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.7), we deduce that for each $\gamma>0$ and $0 \leq \theta<2 \pi$,

$$
n^{\gamma}\left(|\alpha|-s_{\mu}\right)^{\gamma} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{D_{\alpha} P\left(e^{i \theta}\right)}\right|^{\gamma} d \theta \leq \int_{0}^{2 \pi}\left|1+k^{\mu} W\left(e^{i \theta}\right)\right|^{\gamma} d \theta .
$$

The above inequality in conjunction with (3.5) gives

$$
n^{\gamma}\left(|\alpha|-s_{\mu}\right)^{\gamma} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{D_{\alpha} P\left(e^{i \theta}\right)}\right|^{\gamma} \leq\left|1+k^{\mu} e^{i \theta}\right|^{\gamma} .
$$

Equivalently, we write

$$
n\left(|\alpha|-s_{\mu}\right)\left\|\frac{P}{D_{\alpha} P}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma}
$$

which proves Theorem 1.1 completely.
Proof of Theorem 1.2. By hypothesis, the polynomial

$$
P(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, \quad 1 \leq \mu \leq n,
$$

has all its zeros in $|z| \leq k, k \leq 1$. If $P(z)$ has a zero on $|z|=k$, then $m=0$ and the result follows from Theorem 1.1 in this case. Henceforth, we suppose that all the zeros of $P(z)$ lie in $|z|<k, k \leq 1$, so that $m>0$.

Now $m \leq|P(z)|$ for $|z|=k$, therefore, if β is any complex number with $|\beta|<1$, then

$$
\left|\frac{m \beta z^{n}}{k^{n}}\right|<|P(z)| \quad \text { for }|z|=k
$$

Since all the zeros of $P(z)$ lie in $|z|<k$, it follows by Rouche's theorem that all the zeros of $P(z)-\frac{m \beta z^{n}}{k^{n}}$ also lie in $|z|<k, k \leq 1$. Hence we can apply Theorem 1.1 to $P(z)-\frac{m \beta z^{n}}{k^{n}}$ and obtain for $|\alpha| \geq k^{\mu} \geq s_{\mu}^{\prime}$ and $\gamma>0$,

$$
\begin{equation*}
n\left(|\alpha|-s_{\mu}^{\prime}\right)\left\|\frac{P-\frac{m \beta z^{n}}{k^{n}}}{D_{\alpha}\left(P-\frac{m \beta z^{n}}{k^{n}}\right)}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\mu}^{\prime}=\frac{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} . \tag{3.9}
\end{equation*}
$$

Since for every β with $|\beta|<1$, we have

$$
\begin{equation*}
\left|a_{n}-\frac{m \beta}{k^{n}}\right| \geq\left|a_{n}\right|-\frac{m|\beta|}{k^{n}} \geq\left|a_{n}\right|-\frac{m}{k^{n}} \tag{3.10}
\end{equation*}
$$

and $\left|a_{n}\right|>\frac{m}{k^{n}}$ by Lemma 2.4. Now combining (3.9), (3.10) and Lemma 2.6, we have for every β with $|\beta|<1$,

$$
\begin{align*}
s_{\mu}^{\prime} & =\frac{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \\
& \leq \frac{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left(\left|a_{n}\right|-\frac{m}{k^{n}}\right) k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \\
& =A_{\mu} . \tag{3.11}
\end{align*}
$$

Further by Lemma 2.5, we have $A_{\mu} \leq k^{\mu}$, it follows from (3.8) and (3.11)) that for every α with $|\alpha| \geq k^{\mu}$ and $\gamma>0$,

$$
\begin{equation*}
n\left(|\alpha|-A_{\mu}\right)\left\|\frac{P-\frac{m \beta z^{n}}{k^{n}}}{D_{\alpha} P-\frac{m n \alpha \beta z^{n-1}}{k^{n}}}\right\|_{\gamma} \leq\left\|1+k^{\mu} z\right\|_{\gamma} \tag{3.12}
\end{equation*}
$$

which is inequality (1.15) and this completes the proof of Theorem 1.2.

References

[1] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306-313.
[2] A. Aziz and N. A. Rather, Some Zygmund type inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
[3] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Ineq. Appl., 1 (1998), 231-238.
[4] A. Aziz and W. M. Shah, An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28 (1997), 1413-1419.
[5] S. Bernstein, Lecons Sur Les Proprietes Extremals et la Meilleure Approximation des Fonctions Analytiques d'une Fonctions Reelle, Gauthier-villars, Paris, 1926.
[6] K. K. Dewan, N. Singh and R. Lal, Inequalities for the polar derivative of a polynomial, Int. J. Pure. Appl. Math., 33 (2006), 109-117.
[7] K. K. Dewan, N. Singh and A. Mir, Extensions of some polynomial inequlities to the polar derivative, J. Math. Anal. Appl., 352 (2009), 807-815.
[8] K. K. Dewan, A. Mir and R. S. Yadav, Integral mean estimates for polynomials whose zeros are with in a circle, IJMMS, 4 (2001), 231-235.
[9] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66 (1991), 29-35.
[10] N. K. Govil, Q. I. Rahman and G. Schemeisser, On the derivative of a polynomial, Illinois J. Math., 23 (1979), 319-330.
[11] E. Hille, Ananlytic Function Theory, Vol II, Ginn and Company, New York, Toranto, 1962.
[12] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[13] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002.
[14] P. Turán, Über die Ableitung von Polynomen, Compositio Math., 7 (1939), 89-95.

[^0]: *Corresponding author. Email addresses: mabdullah_mir@yahoo.co.in (A. Mir), mbidkham@gmail.com (M. Bidkham), darbilal85@ymail. com (B. Dar)

