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Abstract. We consider the three dimensional Cauchy problem for the Laplace equation

U (%, 2) +uyy(x,y,z) +uz(x,yz) =0, xeRyeR0<z<1,

u(x,y,0) = g(x,y), x€R,y€eR,
uz(x,y,O):O, XER,yER,

where the data is given at z = 0 and a solution is sought in the region x,y € R,0 < z <
1. The problem is ill-posed, the solution (if it exists) doesn’t depend continuously on the
initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet
approximate solution. Furthermore, we shall give a recipe for choosing the coarse level

resolution.
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1 Introduction

Many physical and engineering problems require the solution of the following Cauchy prob-

lem for Laplace equation:

”xx(xv)’vz) +”yy(xay72) +MZZ(x7y7Z) = 07 DS Rvy € R7O <z S 17
u(x,y,O) :g(x,y), xeR,yeR, (1.1)
uz(x,y,O) =0, xeR,yeR

Wavelet regularization methods for solving the Cauchy problem for Laplace Equation have
been studied by many authors. They used the wavelet method to approximate the Laplace Equa-
tion by Meyer wavelets (see [1]-[2]), but most authors concentrated on the two dimensional case.
In this paper, we consider the three dimensional Cauchy problem for Laplace Equation.

To the authors’ knowledge, so far there are many papers on the Laplace Equation, but the-
oretically the error estimates of most regularization methods are in L>—sense. In this paper,
we improve the results and get uniform convergent wavelet solution. We also give a rule for
choosing an appropriate wavelet subspace depending on the noise level of the data.

For v(x,y) € L?(R?), define

1

Il ([ IePay) (1)

and for v(x,y) € L'(R?)(NL*(R?), define
. 1
9(8,7) =

E/sz(x,y)efi(éx”y)dxdy. (1.3)
In this paper, g(x,y) € L?>(R?) denotes the accurate data, g5(x,y) denotes the measured data

satisfying
I&5(x,y) = 8(x.y) [[2< 8, (1.4)

where 0 represents a bound on the measurement error.

Applying Fourier transform with respect to x, y to the problem (1.1), we get

i.(E,7,2) = (E2+2)i(€,1,2), E€RTER0<z <,
(8, 7,0) =2(&.7), EER,T€R, (1.5)
MAZ(é,T,O):O, €€R,T€R,

The solution of the problem (1.5) can be expressed by

ﬁ(é,T,Z):gA(é,T)COSh(V §2+T2Z)7 (16)
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or equivalently,
u(x,y,z) 277:/ 8(€,7) cosh(y/E2 + 122) &™) dE dr. (1.7)

Since for z € (0,1], i(-,-,z) € L*(R?), (1.6) implies that §(&,T), which is the Fourier trans-
form of the exact data g(x,y), must decay rapidly as |§| — oo or |7| — 0. Such a decay is
not likely to occur in the Fourier transform of the measured data g5(&, 7), hence the problem is
ill-posed. In this paper, we shall always assume (&, 7) is continuous and satisfies

f(&7) = 4(6, 0 e L'(R)NL(RY). (18)

This paper is organized as follows: in section 2 we give some basic properties of Meyer

wavelets; in section 3 we prove some auxiliary results and in the last section we present the

main conclusion of this paper.

2 Meyer Wavelets

2.1 Multiresolution Analysis

Following [3], A multi-resolution analysis (MRA) of L*(R) is a set of closed linear sub-
spaces V; satisfying:

(@) Forall j€Z,V; CV,,y;

(b) If f(x) is C? on R, then f(x) € span{V,}ez. That is, for any given & > 0, exist j € Z
and g(x) € V;such that || f—g ||;2< €&

©) Njez Vi ={0};

(d) f(x) € Vy if and only if f(2/x) € V};

(e) There exists a function ¢ (x) € L?(R), called the scaling function, such that {@(x —n)},cz

is an orthonormal system of translates and

Vo =span{(x—n)}uez.

2.2 One Dimensional Meyer Wavelet

In [4], a Meyer scaling function ¢(x) is given by its Fourier transform

b &)< 2
V2m' B
. 1 T 3 2 4
o(8) mcos[20(4ﬂ|§| )l 37T_|‘§|—37T’
0, otherwise,
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where v € C*(R) and satisfies

v(x)+v(l—x)=1for0<x<1.

The corresponding wavelet function y/(x) is given by

1 4

i 2
N AT R L S
. 1 3 4 8
VE)= | meteoslyu(p el -1 sl <3
0, otherwise.

Let ¢(x) be the Meyer scaling function, then ¢(x) € C*(R) and

an

() ()| < Sk
[0 (x)| < AT

(2.1)

where k=1,2,3,---;n=2,3,4,--- ;x € RP,
Denote Wi (x) = 22 y(2/x — k), @jx(x) = 229(2/x — k), j, k € Z, then for arbitrary k € Z,

supp(¥u) = (& : 3727 < |§] < 3m27), supp(@) = {61 [¢l <372}, (22)

2.3 Two Dimensional Tensor-product Wavelets
Lemma 2.15)  Ler ¢(x) and w(x) be the scaling and wavelet function associated with a

MRA respectively and define
D(x,y) =)o), P (xy) =@ y(y),

YO (x,y) = y(@)e(), ¥V (xy) = yw(),
For each j,ky,k; € Z, define

1
Dty ko (X4,Y) = P 1y (X)Qjik, (), lP5k)1 5 () = 0k ()W) s, (),

P ) = Vi (00 (), P () = Wik (0w ),

then
(1) The collection {®@; s, k,(X,¥) }, ez is an orthonormal basis on V; = 5pan{®; x, i, (X,¥) }x, jocz-
(2) The collection{‘PE.",?l o (x,¥) Mi<m<3 ks krcz IS an orthonormal basis on

oy
W, = span{‘I‘j’khkz}lgmgz,kl ko€Z-
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(3) The collection wlm) X, V) F<m<3.ix kocz IS an orthonormal basis on L*(R?).
Jo M5, ],K1,K2

J7kl

269

(4) For each J € Z, the collection{®;, 1, (x,¥) } 1, krcz. U{‘Pg’l)l oY) Mems<s 20k kez is

an orthonormal basis on L*(R?).

From the definition of Fourier transform, we can easily get
A . o (1 . N
D)y 1o (85 7) = Pjay (8)Pjay (T), ‘I‘;le,kz(i’f) =0 (E)Wjn (1),
4,2 N . & N N
P2 (60 = Wik ()0 (7). W, 1, (6,7) = W, ()W, (9):

and for each ki, k, € Z, we have

s 4 .
Supp{q)j,kl,kz(gar)} = {(5,1’) : |‘S|a |T| < 57'[2]}’
- 4 .2 . 8 .
supp{)) 1, (6.7)} = {(§.7) : [£] < 372/, S22 < Jo] < Sm2),

&2 2 . 8 . 4 .
supp {17 1, (€.} = {(&.7): 72 < [&| < 3m2 o] < a2},

N 2 . 8
supp {3 1, (6.7)} = {(§,7): 572 < [&].Je| < 3m2}.

Yu € L*(R?), let

Pi:L*(R) =V, Pu= Y (P 10)Pk k0

kl,kzeZ
212 3 ) yqm)
m
Q] L (R )_>W] Q]u: Z Z <u’lpj,k1,k2>lpj,k1,k2’
m=1ky ky€Z
then
#(E,7) = Pu(E,7), E,TE€A; L,
ﬁ(é’f)_Pju(gar):qu(gar)a é’TGAj\Ajfla
where A; := [—372/, 372/] x [~ 372/, 3 72]].
Let

5 s S gylm)
Vi =span{®;x, k, bk ez, Wj=3pan{¥ ;. hi<m<in kez,

(2.3)

(2.4)

IA’j and @\] be the orthogonal projection operator from L?(R?) to \7] and 17V; respectively, then

Pif=PBf. 0;f = 0;f.
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3 Auxiliary Results

Consider the approximate solution of (1.1) in V;.

Pjuxx(xayaz) +Pj”yy(x’y’z) +uzz(xay’z) = O’ RS R’y € R,O <z S 15
u(x,y,0) = Pig(x,y), xcR,yeR,

uz(x,y,O) =0, xeR,yeR,

or equivalently,

(uxx(x,y,z) +uyy(x’yaz) +MZZ(x’y’Z)aq)jk1k2 (x,y)> = O’ X e R’y € R)O <z< 15

<u(x7y70)7q)jk1k2(~x7y)> = <g(x7y)7q)jk1k2(~x7y)>7 X € Ray € R7

<Mz(x’y’0)aq)jk1k2(xay)> :O’ XGR,yeR,

where ® i1, (x,y) denotes the two dimensional tensor-product scaling function generated by the

one dimensional Meyer scaling function.

Define u;(x,7,2)= Y, Ok@Pin(xy)= Y, Ok (@)@ (x)@ (v) tobe the Meyer
ki ko €Z ki ko €Z

wavelet solution in V;, and the infinite matrix @ = {@x, x, (2) }, pez satisfying the following

equation:
d2
i ’w(z) = —D;0 — 0D;,
©(0) =7, (3.1)
' (0) =0,

where the infinite matrix D; = {(D})u kez,1cz = {(fp}/l,(ij>}keZ,leZ,j and the infinite vector
Y=kt ez = {((6,), Ptk (X.7)) b ez

Lemma 3.1. Let Dj = {(Dj)u }rezicz = {((p]’.’l,(pjk>}kez7lez, and @(x) be a one dimen-
sional Meyer scaling function,then

(D) {(Dj)u tkeziez = {(D;j)uk biez kezs

() || Dy || < 3222,

Proof. It is similar to [4], here we omit it.

Lemma 3.2. Let ¢(x) be Meyer scaling function, then

Z ‘(ij ’2 < 2]1‘/[1
keZ

Z ‘(ij ’ < 221‘42
keZ
where My, My are constants.
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Proof. see [10].
Lemma 3.3, Suppose u and v are positive continuous functions, x > a, ¢ > 0. If u(x) <

e+ 2 [2v(t)u(t)dtds, then
M(X) < Cefaxfas V(T)dfds.

From Lemma 3.3, we can easily get the following lemmas:
Lemma 3.4. Suppose (z) is the solution of the equation (3.1), then
22
| @) o< v ™25
Lemma 3.5.  Suppose u(x,y,z) is the solution of the equation (1.1), then
2
(8, 7,2)| < [8(8, 7))

Lemma 3.6. Suppose u(x,y,z) is the exact solution of the equation (1.1), and the condition
(1.8) holds, then

— 3 20
() [ 10uldgdr < re ) £,

ANAj-1

a2 9 s 2
@ [ 1GuPdgde < e | £
ANAj-1

Proof. Since

0ja(§,t.2) =

™ I
=
k)
m
N

i=1 k Z
3 3
- Z], ‘P§3 lP% Zﬁlpjoo|2
(1)
=~ : 0
/ |Qjuld&dr <} / ja|[ ¥, [2dE d
J\AJ 1 lZlAj\Ajfl
1 3
< WZ / aldEde
N \A/]
1 ¢ 24
< oY [ e dgde
i=1
AjNA -
3 N _9(g2 2
= = [ 1l #E e
ANAj-
3 _apori
< 13e [ f 1z

4r
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(2
— 3 N
/ Qjulfdédt < 32 / (¥ [*ag d
AjNAj- = /\A/I
<
- 167t42 / @ dgd
/\A/I
< gmL [ WEor e
J\Ajl
9 A Co(E2. 2
= 1 [ @ oPe S agar
AjNAj
9 —8 222j 2
< Tort® S A [P
Since

x )’7 Z bk]k2 ]klkz X Y)
ki k2

satisfies the following equation:

(Pju)zz = _Pj(PjM)xx —Pj(Pju)yy —Pj[(I—Pj)u]xx —Pj[(I—Pj)u]xx, xeRyeR 0<z<1,
Pju(x,y,0) = P;g(x,y), xeR,yER,

Pju,(x,y,0) =0, xeR,yeR,
then we can get the coefficient matrix
b(2) = {buk, (2) by oz = {((x,,2), Py 1o (%, 9)) b kocz
satisfies the following equation:

b,,=-Djb(z)—b(z)D;—T(z), 0<z<1,

b(0) =,
b.(0) = 0.

where

Y=Yk Sathoez = {(8(6,2), Pjky (%, 3)) by krez,
T(2) = {Tik, (2) Yy boez = {{[(T = Pj)ut]cx + (I = Pj)utlyy, Py 1y (X,9)) Yhy by ez
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If let w;(x,y,z) = Pju(x,y,z) — u;(x,y,z), and

h(z) = {hix, (Z)}k1,k2€Z = {<Wj(x’yaz)aq)jk1k2 () by ko €Z>

then h(z) = b(z) — @(z) satisfies the following equation:

1(0) =0,

h.(0) = 0.

1.e.,

h(z) :/Z/S(—Dj)h(r)drds—l—/z/sh(r deS+// 7)]dds,
00 00

therefore, we have

| 1(2) //H—D Il h(e ||drds+//ur ) | deds

Lemma 3.7. Suppose u(x,y,z) is the solution of the equation (1.1), and §(&, 1) satisfies
(1.4), then

2 22/

1
Ih(z) I< —2e™ = f .2 -

Proof.
IT(2) 2 =l Py — P+ Pi(1 — P)uy ||
=2(|| (1 — By)iree |I* + || Bi(1— B))iyy ||*)
=2(|| P(E2(a— Pyu)) ||? + || By( (2 — P)) |1?)
=4 (2 (@a—Puw)) 13, , +4 1 B2 (@ —Pu) lapa, , +4 1 (&2~ Pw)) [lgora,
=0+4 || Bi(E2(a— P)) [lapa,, +O
<4 E2(i—Pu) lapa,
< S w2 | B B3,
5 R

Due to Lemma 3.6, we get

4 5. o o4
1 T(7) [IP< Ezzje S (Y
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therefore,
P VAR
8@ 1 < 2 [ 1=l 4@ | deds+ [ [ 7(2) | deds
00 00
FAN 1
< 2 [1-D; (o) | dvds+ 27| £ s
00
1 . )
< e e

4 Convergence Results

Theorem 4.1.  Suppose uj(x,y,z) and v;(x,y,z) are the Meyer wavelet solution of (1.1)
satisfying the boundary condition g(x,y) and gs(x,y) respectively. If (1.4) holds and j is chosen
satisfying

1
logz(mln(g)), (4.1)
then
(x,3.2) = v (2.3.2)] < Ci(In 5)2 52,
where Cy is a constant.
Proof. 'We have

uj(x,3,2) =vien2)l = | Y 0 k@0 @)Qmn0) = Y, kO (X))
ki ko €Z ki,ko€Z
~ 1 1

< ( Z ’(thkz(z)—(thkz(z)’z)z( Z ‘(pjkl(x)(pjkz(y)’2)2
kl,kzeZ kl,kzeZ

< 2M 0@ -0

< M|y T

S 2]M 6”222/15

1
If j < — logz( (5)),wehave

1
|uj(x,y,z) —Vj(x,y,Z)| < Cl (1n5)76§,

where C| is a constant.
Theorem 4.2. Suppose u(x,y,z) is the solution of (1.1), and (1.4)(1.8) hold. If we choose

J such that satisfies
b
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then

1
|u(x,y,z) —Pju(x,y,z)| < C2665

where C; is a constant.

Proof.
1 —~
u.2) ~ Pyl < o [ lalEe.2) — PulE, 7,0)ldEde
R
1
= o |u—Pu|d§d’L‘+ / @~ PuldEde
Aj

/\A./ 1

+ / | — P; u|d§d’r)

R2\A;
= 0+ [ |ouagar+ [ jalagar
AN R2\4;
Due to Lemma 3.6 and (1.8), we get
3 _Ag202 1 . 1(E2472)
u(e2) =Pyl < e ™ fllubs [ 8@ 0l Eagdr)
R2\A;
3 .
< @6747@2] 1 Il +_ / |f %(€2+T2)d§df)
R2\A
e P PR Y
= 3¢ Flw ¢ Flw

< T

1 1 1
From j > Elog2(24 5 (g)), we have

u(-,y) = Pju(-,y)| < C28%,

where C» is a constant.

Theorem 4.3.  Suppose u(x,y,z) is the exact solution of the equation (1.1), u;(x,y,z) is the
Meyer wavelet solution of (1.1), §(&,7) satisfies (1.4), and (1.8) holds. If we choose j such that
(4.1) and (4.2) holds, then we have

1

|uj(x,y,z) —Pju(x,y,z)| < C3(1n_

5)8%,

where Cx is a constant.
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Proof.
uj(x,,2) = Piu(x,y,2) = | Y, @5&)P0,xy)
ll,lzeZ
- Z <u(x’yaz)aq)jlllz(xay)>q)jlllz(x’y)|
L ,bLeZ
1 1
< (Y o) = xy,2), @ n ()Y (R (xy))?)?
L ,bLeZ l,hLeZ
< |l h(z) [| 2/M.
From Lemma 3.7 and
1 1 1 1 1 1
—1 —In(=)<j< =1 —In(—=
we have
1
| h(e) [|< Ms(ing)2 5%,
therefore,

1
‘uj(xvyvz) _Pju(xvyvz)‘ S C3(1n5)521_47

where M3, C3 are constants.

From Theorems 4.1, 4.2 and 4.3, we have the main theorem.

Theorem 4.4.  Suppose u(x,y,z) is the solution of (1.1), vj(x,y,z) is the Meyer wavelet
approximate solution of (1.1) satisfying the boundary condition gs(x,y). If (1.8) holds , §(&,7)
satisfies (1.4), j satisfies (4.1) and (4.2), then

1 1
\u(x,y,z) - Vj(X,y,z)] < C(lng)éﬂv

where C is a constant.

| =

1
Remark: There integer j satisfying (4.1) and (4.2) must exist. In fact, let M = ?ln(

then the inequality

1 1 1 1 1 1
—1 —In(=)) < i< =1 —In(=
7 0g2(24n_2 n(é)) >/ 2 Og2(67172 n(é))v
means
1 M o1 M
Elogz(ﬂ) <J< —logz(g)-
Since

1 M 1 M
—1 —)— =1 —)=1

therefore, j can be chosen so that (4.1) and (4.2) hold.
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