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1 Introduction

In [1], V. Chousionis studied the boundedness of a class of singular integral operators asso-

ciated with homogeneous Calderón-Zygmund standard kernels on Sierpinski gaskets. In [1], the

author mainly cares about such singular integral operator

Tλ ,ε f (x) =
∫

|x−y|>ε

Ωλ ((x− y)/|x− y|)
hλ (x− y)

f (y)dµλ (y),

where µλ is the restriction of the d-dimensional Hausdorff measure on λ -Sierpinski gasket Eλ

for dλ = − log3

logλ
and λ ∈ (0,1/3), here Ωλ (·) is an odd function defined on the unit sphere

S1 and hλ (·) satisfies some kind of increasing conditions. In fact, a kind of T(1) theorem[4]

on Sierpinski gasket is given in [1]. As we know, in a series of papers, L. Grafakos and R.H.

Torres(see[5][6][7][8] etc) gave a version of T(1) theorem for multilinear singular integrals in

Euclidean space. Here naturally we have one problem: What is about the boundedness of mul-

tilinear singular integrals correponding to [1] on Sierpinski gaskets?The purpose of the paper is

to give a complete answer of the problem.

In fact, Sierpinski gaskets considered in the paper with suitable metric can be seen as a

space of homogenous type. The multilinear T(1) theorem on a space of homogenous type can
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be given directly as an extension of the case in Euclidean geometric structure. But in the process

it seems that we lose some speciality of fractal structure. Thus it’s necessary to study such kind

of problems so that we can know deeply the speciality of some fractal structure which leads to

some speciality of the boundedness of singular integral operators.

The paper is organized as follows: In section 2, we give the notion of some Sierpinski gaskets

and the definition of multilinear singular integral operator, for simplicity, we only consider the

bilinear operator. At last we give the statement of main theorem in the paper; In section 3, we

give the proof of main theorem.

Through out the paper, the constant “C” and “c” may be different somewhere, but it is not

essential.

2 Some Important Lemmas and Main Theorem

The following notations come from the corresponding part in [1]. For λ ∈ (0,1/3), SGλ can

be achieved by the following similitude sλ
i : R2 → R2(i = 1,2,3),

(1) sλ
1 (x,y) = λ (x,y);

(2) sλ
2 (x,y) = λ (x,y)+ (1−λ ,0);

(3) sλ
3 (x,y) = λ (x,y)+ (

1−λ

2
,

√
3

2
(1−λ ).

For α ∈ In, say α = (i1, . . . , in), define sλ
α : R2 → R2 through the iteration

sλ
α = sλ

i1
◦ sλ

i2
· · · ◦ sλ

in
.

Let A be the equilateral triangle with vertices (0,0),(1,0),(1/2,
√

3/2). Denote sλ
α(A) = Sλ

α ,

I0 = {0} and sλ
0 = id. The limit set of the iteration can be given by

Eλ =
⋂

j≥0

⋃

α∈I j

Sλ
α

with Hausdorff dimension dλ =− log3

logλ
. The measure µλ is the restriction of Hausdorff measure

to Eλ , which is dλ -AD regular, that is,

µ(B(x,r)) ∼ rdλ , (2.1)

where B(x,r) is a ball with center x ∈ Eλ and 0 < r ≤ 1. Also here let α ∈ In,β ∈ Ik, set β⌊n = α

to denote the restriction of β in its first n coordinates α .

From the condition (2.1), it’s easy to know that (Eλ ,ρ ,µλ ) is a space of homogeneous type

(see [9]), where ρ(x,y) = inf{r > 0 : y ⊂ B(x,r)} is a quasi-metric function associated to µλ . In
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the following, for simplicity, we denote ρ(x,y) = |x− y|. From [9], we know that such quasi-

metric ρ is equivalent to another quasi-metric which is Lipschitz continuous with Lipschitz index

less than some positive number δ0 > 0. From [3], we know the test function space on a space of

homogeneous type (Eλ ,ρ ,µλ ) can also be defined as follows.

Definition 2.1. For fixed 0 < ε ≤ δ0 and x0 ∈ Eλ , a function f is said to be a test function

of type M(Eλ ), if

| f (x)| ≤ c

(1+ |x− x0|)dλ +ε
;

| f (x)− f (x′)| ≤ c[
|x− x′|

1+ |x− x0|
]ε

1

(1+ |x− x0|)dλ +ε
,

for|x− x′| ≤ (1−2λ )(1+ |x− x0|);
∫

Eλ

f (x)dµλ (x) = 0.

Its dual space M
′(Eλ ) can be given as a replacement of the generalized function space in Eu-

clidean space. Hence we can define T : M(Eλ )×M(Eλ ) → M
′(Eλ ) as the following

T ( f ,g)(y0) =
∫

Eλ×Eλ

Kλ (y0,y1,y2) f (y1)g(y2)dµλ (y1)dµλ (y2),y0,y1,y2 ∈ Eλ , (2.2)

where

Kλ (y0,y1,y2) =
Ωλ ( (y0−y1,y0−y2)

|(y0−y1,y0−y2)|)

hλ (|(y0 − y1,y0 − y2)|)
,

and the functions Ω and hλ satisfy some kind of conditions which we’ll give later in details; the

notation |(·)| denotes the modulo of (·).
Here in the paper, the key to the proof of our main results is how to define the kernel

Kλ (y0,y). Let θ(x,y)(x,y ∈ R
2) denote the angle formed by the vector x − y and the vector

(1,0). As in [1], for any x,y ∈ Eλ and x 6= y, there exists some positive number ελ such that

θ(x,y) ∈ ( kπ
3
− ελ , kπ

3
+ ελ ) for k ∈ {0,1, · · · ,5} which divideds [0,π] into six disjoint parts. Here

let θ̃(y0,y1,y2,y3)(y0,y1,y2,y3 ∈ Eλ ) denote the angle θ(y0,y2) × θ(y1,y3), which means that for any

y0,y1,y2,y3 ∈ Eλ there exists some ελ > 0 such that θ̃(y0,y1,y2,y3) ∈ ( kπ
3
− ελ , kπ

3
+ ελ )× ( jπ

3
−

ελ , jπ
3

+ ελ ) for (k, j) ∈ {0,1, . . . ,5}×{0,1, . . . ,5}. Here θ(x,y) satisfies that for α 6= β 6= γ ∈ In

and α⌊n = β⌊n = γ⌊n (see[1]).

(1) If x ∈ Sλ
α ,y ∈ Sλ

β ,z ∈ Sλ
γ and θ(x,y) ∈ ( kπ

3
− ελ , kπ

3
+ ελ ), then θ(x,z) ∈ (mπ

3
− ελ , mπ

3
+ ελ )

for m = (k + 1)mod6 or m = (k−1)mod6.

(2) If x,z ∈ Sλ
α , y ∈ Sλ

β and θ(x,y) ∈ ( kπ
3
− ελ , kπ

3
+ ελ ), then θ(z,y) ∈ ( kπ

3
− ελ , kπ

3
+ ελ ) too.

Next we give our definitions of the kernel, define C∞ and the odd function Ωλ on S1 ×S1 by

(1) Ωλ (z1,z2) = (−1)k+ j for θ̃(z1,z2,0,0) ∈ ( kπ
3
− ελ , kπ

3
+ ελ )× ( jπ

3
− ελ , jπ

3
+ ελ ) for (k, j) ∈

{0,1, . . . ,5}×{0,1, . . . ,5}.
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(2) Ωλ (−z1,−z2) = −Ωλ (z1,z2) for any (z1,z2) ∈ S1 ×S1.

Notice for the above definition, we conclude that Ωλ (z1,z2) = Ωλ (z2,z1) for any (z1,z2) ∈
S1 ×S1 immediately. Then we can define hλ (·, ·) ∈C∞ : R+×R+ → R+ by

hλ |[( 1
λ −2)λ k,λ k−1]×[( 1

λ −2)λ m,λ m−1] = (λ (k−1) + λ (m−1))2dλ for k,m ∈ N.

Thus we have h(r1,r2) ∼ (r1 + r2)
2dλ for 0 < r1,r2 ≤ 1. Then we can define

Kλ (y0,y1,y2) =
Ωλ ( (y0−y1,y0−y2)

|(y0−y1,y0−y2)|)

hλ (|y0 − y1|, |y0 − y2|)
.

We’ll prove that there exist some constants 0 < ε ≤ 1 and c > 0 such that

|Kλ (y0,y1,y2)| ≤
c

( ∑
k,l=0

|yk − yl|)2dλ
; (2.3)

|Kλ (y0,y1,y2)−Kλ(y′0,y1,y2)|+ |Kλ (y1,y0,y2)−Kλ(y1,y
′
0,y2)|

+|Kλ (y2,y1,y0)−Kλ(y2,y1,y
′
0)| ≤

c|y0−y′0|ε
( ∑

k,l=0

|yk−yl |)2dλ +ε ,

for |y0 − y′0| < (1−2λ ) max
0≤ j≤2

|yi − y j|.

(2.4)

In fact, (2.3) can be got immediately by the definition of Ωλ and hλ . (2.4) can be replaced by

the following conditions

Kλ (y0,y1,y2)−Kλ(y′0,y1,y2) = Kλ (y1,y0,y2)−Kλ(y1,y
′
0,y2)

= Kλ (y2,y1,y0)−Kλ(y2,y1,y
′
0) = 0,

for |y0 − y′0| < (1−2λ ) max
0≤ j≤2

|yi − y j|.

(2.5)

Now we prove that

Kλ (y0,y1,y2)−Kλ(y′0,y1,y2) = 0,

for |y0 − y′0| < (1−2λ ) max
0≤ j≤2

|yi − y j|.
(2.6)

In fact, we set y0 ∈ Sλ
i (Sλ

α),y0 ∈ Sλ
i′ (S

λ
α )(i 6= i′,α ∈ Iν) and y0 ∈ Sλ

j (S
λ
β ),y0 ∈ Sλ

j′(S
λ
β )( j 6= j′,β ∈

Im), then we deduce that

(1/λ −2)λ ν+1 ≤ |y0 − y1| ≤ λ ν ;

(1/λ −2)λ m+1 ≤ |y0 − y2| ≤ λ m.
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Since

|y0 − y′0| ≤ (1−2λ ) max
0≤ j≤2

|yi − y j|,

we have

|y0 − y′0| < (1−2λ )λ ν and |y0 − y′0| < (1−2λ )λ m,

due to

d(Sλ
i (Sλ

α ),Sλ
ĩ
(Sλ

α)) = (1−2λ )λ ν and d(Sλ
j (S

λ
β ),Sλ

j̃
(Sλ

β )) = (1−2λ )λ m

for any i 6= ĩ, j 6= j̃, α ∈ Iν and β ∈ Im. Hence we have

y′0 ∈ Sλ
i (Sλ

α) and y′0 ∈ Sλ
j (S

λ
β ).

Thus we have

θ̃(y0,y0,y1,y2), θ̃(y′0,y
′
0,y1,y2) ∈ (

kπ

3
− ελ ,

kπ

3
+ ελ )× (

jπ

3
− ελ ,

jπ

3
+ ελ )

for some (k, j) ∈ {0,1, . . . ,5}×{0,1, . . . ,5}. Therefore

Ωλ (
(y0 − y1,y0 − y2)

|(y0 − y1,y0 − y2)|
) = Ωλ (

(y′0 − y1,y0 − y2)

|(y0 − y1,y0 − y2)|
)

and

hλ (|y0 − y1|, |y0 − y2|) = hλ (|y′0 − y1|, |y′0 − y2|) = (λ k + λ j)2dλ .

Hence we get (2.6) immediately. We can also prove the other equalities in (2.5) in the sameway

which is even that for easier than proving (2.6). We omit the details. The proof of (2.5) is

completed.

Now we give our main theorem.

Theorem 2.1. Fixed 1 < q1,q2,q < ∞ and 1/q1 + 1/q2 = 1/q. Let

T : M(Eλ )×M(Eλ ) → M
′(Eλ )

be a bilinear singular integral operator with the kernel

Kλ (y0,y1,y2) =
Ωλ ( (y0−y1,y0−y2)

|(y0−y1,y0−y2)|)

hλ (|(y0 − y1,y0 − y2)|)
,

where Ωλ (·, ·) and hλ (·) are defined as above. Then there exists a constant c > 0 such that

‖T‖Lq1×Lq2→Lq ≤ c.
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3 The Proof of Main Theorem

Definition 3.1. For δ ∈ (0,1], x ∈ Eλ and r > 0, define A(δ ,x,r) to be the set of all φ ∈ M

supported in a ball B(x,r), satisfying ‖φ‖L∞ ≤ 1 and

|φ(x)−φ(y)| ≤ r−δ |x− y|δ .

A singular integral operator T : M(Eλ )×M(Eλ )→ M
′(Eλ ) is bilinear weakly bounded if there

exists δ ∈ (0,δ0] and c > 0 such that for all x ∈ Eλ , r > 0, and φ ,ϕ ,ψ ∈ A(δ ,x,r),

| < T (φ ,ϕ),ψ > | ≤ cµ(B(x,r)).

To prove our main theorem, we need the following theorem

Theorem 3.1. Fixed 1 < q1,q2,q < ∞ and 1/q1 +1/q2 = 1/q. A bilinear singular integral

T : M(Eλ )×M(Eλ )→ M
′(Eλ ) with kernel Kλ (y0,y1,y2) satisfying (2.3),(2.4), for any f ,g,h ∈

M such that

< T (1,g),h >=< T ( f ,1),h >=< T ( f ,g),1 >

= < T (1,1),h >=< T (1,g),1 >=< T ( f ,1),1 >= 0

(3.1)

and T is also bilinear weakly bounded. Then there exists a constant c > 0 such that

‖T‖Lq1×Lq2→Lq ≤ c.

Proof. The theorem is a direct extension of the bilinear T(1) theorem in [5]-[8] on the space

of homogeneous type. Similar discussion can be found in [10].

Remark 3.1. (3.1) makes sense in the norm of M
′(Eλ ). Related details about (3.1) can be

found in [2].

Proof of Theorem 2.1. From the definition of the kernel Kλ , we see that T satisfies bilinear

weakly bounded properties immediately, since for any f ,g,h ∈ A(δ ,x,r)

< T ( f ,g),h >=
1

2

(

∫

Eλ

∫

Eλ

∫

Eλ

Kλ (y0,y1,y2) f (y1)g(y2)

(h(y0)−h( y1+y2

2
))dµλ (y1)dµλ (y2)dµλ (y0)

)

.
(3.2)

We consider the following truncated singular integral operator for f ,g ∈ M and n ∈ N

T n
λ ( f ,g)(y0) =

∫

|y0−y1|>λ n

∫

|y0−y2|>λ n
Kλ (y0,y1,y2) f (y1)g(y2)dµλ (y1)dµλ (y2). (3.3)

We prove that such truncated integral operator satisfies (3.1). Since the proof of the other equal-

ities in (3.1) are simpler or similar, it’s sufficient to verify that

T n
λ (1,1) = 0 for all n ∈ N. (3.4)
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Inspired by the idea in [1], we can also prove it by induction.

The first step: for n = 1, let y0 ∈ Sλ
i for i ∈ I, then j 6= k and j,k ∈ I, we have

T 1
λ (1,1)(y0) =

∫

|y0−y1|>λ

∫

|y0−y2|>λ
Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)

=
∫

Sλ
j

⋃

Sλ
k

∫

Sλ
j

⋃

Sλ
k

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)

=

∫

Sλ
j ×Sλ

j

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+

∫

Sλ
j ×Sλ

k

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)

+

∫

Sλ
k ×Sλ

j

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+

∫

Sλ
k ×Sλ

k

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2).

From the definition of Kλ (y0,y1,y2), we know that

(1) For (y0,y1) ∈ Sλ
j ×Sλ

k , Ωλ ( (y0−y1,y0−y2)
|(y0−y1,y0−y2)|) = (−1)m+m+1;

(2) For (y0,y1) ∈ Sλ
j ×Sλ

j , Ωλ ( (y0−y1,y0−y2)
|(y0−y1,y0−y2)|) = (−1)m+m;

(3) For (y0,y1) ∈ Sλ
k ×Sλ

j , Ωλ ( (y0−y1,y0−y2)
|(y0−y1,y0−y2)|) = (−1)m+m+1;

(4) For (y0,y1) ∈ Sλ
k ×Sλ

k , Ωλ ( (y0−y1,y0−y2)
|(y0−y1,y0−y2)|) = (−1)m+m+2

for some m ∈ {0,1, · · · ,5}.

Moreover, hλ (|y0 −y1|, |y0 −y2|) = 1 due to 1−2λ ≤ |y0 −y1| ≤ 1 and 1−2λ ≤ |y0 −y2| ≤
1.Hence we have

T 1
λ (1,1) = (−1)2m+1µλ (Sλ

j ×Sλ
k )+ (−1)2mµλ (Sλ

j ×Sλ
j )

+ (−1)2m+1µλ (Sλ
k ×Sλ

j )+ (−1)2m+2µλ (Sλ
k ×Sλ

k ) = 0.

The second step: we suppose that T n
λ (1,1)= 0 firstly. Now it’s sufficient to prove that T n+1

λ
(1,1)=

0. Let y0 ∈ Sλ
α for some α = (i1, i2, . . . , in, in+1)∈ In+1. β = (i1, i2, . . . , in, j) and γ = (i1, i2, . . . , in,k)

for j,k ∈ I\{in+1}, j 6= k,

T n+1
λ (1,1)(y0) =

∫

|y0−y1|>λ n+1

∫

|y0−y2|>λ n+1
Kλ (y0,y1,y2)dµλ (y1)dµλ (y2).
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Then we have

T n+1
λ (1,1)(y0) =

∫

|y0−y1|>λ n

∫

|y0−y2|>λ n
Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)

+
∫

|y0−y1|>λ n

∫

y2∈Sλ
α

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+
∫

|y0−y1|>λ n

∫

y2∈Sλ
β

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2))

+

∫

|y0−y2|>λ n

∫

y1∈Sλ
α

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+

∫

|y0−y2|>λ n

∫

y1∈Sλ
β

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2))

+
∫

y1∈Sλ
α

∫

y2∈Sλ
α

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+
∫

y1∈Sλ
α

∫

y2∈Sλ
β

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2))

+

∫

y1∈Sλ
β

∫

y2∈Sλ
β

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2)+

∫

y1∈Sλ
β

∫

y2∈Sλ
α

Kλ (y0,y1,y2)dµλ (y1)dµλ (y2))

= I + II + III + IV +V +V I +V II +VIII +V IIII.

I = 0 can be obtained by the assumption. II + III = 0, IV +V = 0, V I +V II +V III +V IIII = 0

can be got by the similar method in the first step. Thus we obtain

T n+1
λ (1,1) = 0.

We can also obtain that {T n
λ } is bilinear weakly bounded by using similar argument to (3.2).

Meanwhile the kernels of {T n
λ } also satisfy (2.3),(2.4). Hence we obtain that ‖T n

λ ‖Lq1×Lq2→Lq ≤ c

uniformly. By using the standard dense argument, we can obtain that for any φ ,ϕ ∈ M(Eλ ),

{T n
λ (φ ,ϕ)} is a Cauchy sequence in the norm of Lq. Hence by using the standard dense argu-

ment, we obtain that for any f ∈ Lq1 ,g ∈ Lq2 ,

lim
n→∞

T n
λ ( f ,g) → T ( f ,g)

in the norm of Lq. Then we obtain the following inequality immediately

‖T‖Lq1×Lq2→Lq ≤ c.

Remark 3.2. In [1], V. Chousionis also gave the proof of the divergence of principle value

of the singular integral operator. Thus there’s no need to consider such a question in the bilinear

case. Moreover, actually in [1], he also considered the boundedness of the maximal singular in-

tegral. We can also get similar results by using the bilinear Cotlar inequality as a direct corollary

of our main theorem. Hence we have given the answer to our problem completely.
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