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1 Introduction

Throughout this paper, N denotes the set of all positive integers. Let E be a real Banach
space and C a nonempty subset of E. A mapping 7 : C — C is called asymptotically nonexpan-

sive if for a sequence {k,} C [1,e0) with lim k, = 1, we have
n—o0
IT"x =Ty < knllx =y

forall x,y € C and n € N. T is called uniformly L-Lipschitzian if for some L > 0,

=T <
L|jx —y|| for all x,y € C and n € N. Also, T is called a contraction if for some 0 < k < 1,
|Tx — Tyl|| < k|jx—yl| forall x,y € C.

Fix a sequence {a,} C [0,0) with r}gr; a, = 0, then according to Agarwal et allll, T is said

to be nearly asymptotically nonexpansive if k, > 1 for all n € N with lim k,, = 1 such that

n—o0

HT”X— T”yH < kn(Hx_yH +an)
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for all x,y € C. T will be nearly uniformly L-Lipschitzian if k, < L for all n € N.
Note that every asymptotically nonexpansive mapping is nearly asymptotically nonexpan-
sive and every nearly asymptotically nonexpansive mapping is nearly uniformly L-Lipschitzian.

We know that Picard and Mann iteration processes for a mapping 7 : C — C are defined as:

x1=x€C,
(1.1)
Xp1 =Tx,, neN
and
x1=x€eC,
(1.2)
X1 = (1= 04)x, + 0, Tx,, n €N
respectively, where {a, } isin (0,1).
Recently, Agarwal et al.[!! introduced the following iteration scheme:
x1=x€C,
Xn1 = (1= 04)T"x, + 0, Ty, (1.3)

yn = (1= Bp)xy+ BuT"x,, n €N,

where {a, } and {B,} are in (0,1). They showed that this scheme converges at a rate same as
that of Picard iteration.
On the other hand, we state without error terms the iteration scheme studied by Yao and

Chen [9] for common fixed points of two mappings:

x1=x€eC,
(14)

Xna1 = Oy + BuT" X + 18", n € N,
where {a, } and {f,} are in [0, 1] and o, + B, + 7, = 1. They did not show the rate of convergence
of this scheme.
We introduce the following iteration scheme to compute the common fixed points of two
mappings.
x1=x€eC,
X1 = (1= 06,)T"x + 04, 8™yy, (1.5)
Yo = (1= Bn) x4+ BuT"x,,n €N,
where {a, } and {f3,} are in (0,1).
It is to be noted that (1.5) reduces to
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e (1.3) when S =T.

e (1.2)ywhenT =1.

Moreover, when 7' = I, (1.4) reduces to Mann iteration scheme.

Having noted that both (1.5) and (1.4) reduce to Mann iteration scheme, we will show that
(1.5) is better than (1.4) . Actually, we will see that the rate of convergence of (1.5) is the same as
that of Picard iteration while that of (1.4) is the same as Mann iteration thus establishing that our
iteration scheme (1.5) converges faster than (1.4). We will then use it to prove that a common
fixed point exists for nearly asymptotically nonexpansive self mappings. In this way, we will
generalize corresponding theorems of [1] to the case of two nearly asymptotically nonexpansive
mappings and those of [9] not only for a larger class of mappings but also with better rate of
convergence.

Let S ={x € E: ||x|| = 1} and let E* be the dual of E, that is, the space of all continuous
linear functionals f on E. The space E has : (i) Gateaux differentiable norm if

lm IIthtH — Il
exists for each x and y in S; (ii) Fréchet differentiable norm (see e.g. [8]) if for each x in §, the

above limit exists and is attained uniformly for y in S and in this case, it is also well-known that
o2 1 2 L2
{h,J () + 5 [l < 5 e +All" < (h I (G)) + 5 el "+ b([|1]) (1.6)

for all x,h in E, where J is the Fréchet derivative of the functional %HHZ atx € E, (.,.) is
the pairing between E and E*, and b is an increasing function defined on [0,e0) such that
lim, lo@ = 0; (iii) Opial property [6] if for any sequence {x,} in E,x, — x implies that
limsup,,_,., |[x, — x|| <limsup,_.., |[x, —y|| forall y € E with y # x and (iv) Kadec-Klee property
if for every sequence {x,} in E, x, — x and ||x,|| — ||x|| together imply x,, — x as n — oo.

Let 8 be the modulus of uniform convexity. Recall that if E is a uniformly convex Banach

space then (see e.g. [3])
[tx+(1=1)y[| < 1T=21(1=1)8 [|x—y|| (1.7)

for all # € [0, 1] and for all x,y € E such that ||x|| < 1,||y|| < L.

A mapping T : C — E is demiclosed at y € E if for each sequence {x,} in C and each
x€E, x, —~xand Tx, — yimply that x € C and Tx = y.

First we state the following lemmas to be used later on.

Lemma 17, Suppose that E is a uniformly convex Banach space and 0 < p <t, < g < 1
foralln € N. Let {x,, } and {y, } be two sequences of E such that limsup ||x,|| < r,limsup ||y,|| <r

n—oo n—oo

and lim ||t,x, + (1 —t,)yn|| = r hold for some r > 0. Then lim ||x, — y,|| = 0.
n—o0 n—o0
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Lemma 2. If {r,}, {t.} and {s,} are sequences of nonnegative real numbers such that

Fnil < (1 410) rn+Sny, Yo 1tn <ooand Y, | s, < o, then lim r, exists.

n—o0

Lemma 3. Ler E be a uniformly convex Banach space satisfying Opial’s condition and
let C be a nonempty closed convex subset of E. Let T be a uniformly continuous nearly asymp-

totically nonexpansive mapping of C into itself. Then I — T is demiclosed with respect to zero.

Lemma 4°. Let E be a reflexive Banach space such that E* has the Kadec-Klee property.
Let {x,} be a bounded sequence in E and x*,y* € W = @,,(x,) (weak limit set of {x,}). Suppose
lim ||#x, + (1 —#)x* — y*|| exists for all t € [0,1]. Then x* = y*.

n—oo

2 Convergence Theorems

Follwing the method of Agarwal et al. [1], first we calculate the rate of convergence of
both (1.4) and (1.5). Recall that if x, — ¢, y, — ¢, then we say that {x,} is better than {y,} if
lXn — gl < |lyn — ¢ for all n. See [2].

Proposition 1. Let C be a nonempty closed convex subset of a normed space E. Let S and
T be two self contractions of C. If {x,} defined by both (1.4) and (1.5) converge to a common
fixed point p of S and T, then {x,} in (1.4) converges at a rate same as that of Mann while {x, }

in (1.5) converges at a rate same as that of Picard.

Proof. Let p be a common fixed point of S and 7. For Picard iteration scheme,
Xt =pll = NTx0 = pll < kllxa —pl|-
For Mann iteration scheme,

[t 1 = pll = (1= 06) (%0 = p) + 0 (Tx = p) || < (1= 04) [lxn = p| + 0tk |20 — p|
= (1= (1 =k)0w) [lxa = pll < e = Pl -

For the scheme (1.4) studied by Yao and Chen,

X011 — Pl = |0 (X — p) + Bu(T X0 — p) + (S — )|
< (& + Buk + k) |1xn — pll = (04 + (1 — @) k) [|x, — P
= (0 (1 = k) + k) [lx2 — pl| < [lx — Pl

because k < (04, (1 —k)+k) <1 forall k € (0,1).
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Finally, for our iteration scheme (1.5),

%041 = pll = [[(1 = ) (T, — p) + Qu(Syn — p)|
< (1= aw)k||xn = pll + auk ||y — p||
= k[(1 = 0ty) [lxn — Il 4+ o (| (1 = Ba) (3w — P) + Bu(Txa — p)|)]
< K[(1 = 04 + (1= By) + 0Buk] [, — p|
= k[(1 = (1 =k)auBa] [|x. — p||
<k, = pll-

Clearly, (1.4) converges at the rate equal to Mann iteration while (1.5) at that equal to Picard.
Hence our scheme has a better rate of convergence.
Our next theorem is the key for our later results. From here onwards, F' denotes the set of
common fixed points of the mappings 7" and S.
Theorem 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space

E.LetT and S be two nearly asymptotically nonexpansive self mappings of C with a sequence
{an} such that Z a, < ooand Z (ky—1) < oo. Let {x,} be defined by the iteration scheme (1.5),

n=1

where {a, }, {[3,,} are in [€,1 — €] for all n € N and for some € in (0,1). If F # &, then

lim ||x, — Tx,|| = 0= lim ||x, — Sx,|| .
n—oo n—oo

Proof. Let g € F. Then

a1 =gl = [[(1 =) T"x0 + uS"yn — 4|

< (=) IT"x — qll + 06 [|S"yn — |
< (1= 0u)kn ([0 — gl +a@n) + Gk ([lyn — gl +an)
= ka[(1— ) [|xn — gl + & ||yn — gl + ay]
_— (L= 0t) [[x2 — gl + 04 (1 = Bu) [lxn — 4|

+0 B | T" %0 — ql| + an
< (1= 04 [|xn — gl + @ (1 = Bn) [lxn — 4l

+knanﬁn Hxn - QH + knanﬁnan +ay
- (1= 0+ 0 (1= Bp) + kn @ Bn) [ — 4|
- n
+k}’l anﬂnan + al’l
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< kﬂ[(1+(kn_1))”xn_qu+(kn+l)an]
= (14 (ky = 1)) [l — gl + kn(kn + D)y
(14 (kg = 1)) [ben — gll + K (K + Day,

IN

where K = sup,,.nk,. Thus by Lemma 1, lim ||x, — ¢|| exists. Call it c.
n—o0

Now

lyn—=qll = BT "xu+ (1= Bu)xn — gl

= [IBu(T"x0 — @) + (1 = Bu) (xa — q) |

< BullT"xn =gl + (1= Bu) % — 4l

< Bika(llxn — gl +an) + (1= By) [ — 4
(14 Balkn — 1)) llxa — qll + Buknan

implies that
limsup ||y, — ¢ <c.

n—

Also
IT"x0 = gl < kn (||x2 — gl +an)
foralln=1,2,...,s0
limsup ||T"x, — q|| < c.
Next, '

15"yn — qll < kn (|[yn — gl +an)

gives by (2.1) that
limsup ||S"y, —q|| <c.

n—oo

81

2.1

(2.2)

Moreover, ¢ = lim ||x,+1 —g|| = lim || (1 — o) (T"x, — q) + &, (S"y, — q) || gives by Lemma 1,
n—oo n—oo

lim || 7"x, — S"yn|| = 0.
n—o0

Now
%1 —qll = [ (1= 06) T"xn + 0uS"yn — 4|
= [[(T"% — q) + 0 (S"yn — T"x,) |
< NT"xn = gl + 0 [| T, = S"yu|
yields that

¢ < liminf||T"x, — q||
n—o0

(2.3)
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so that (2.2) gives lim || T"x, —g|| = c.
n—oo

In turn,
1T —qll < [1T"x0 = S"yull + [[S"yn — 4|
< NT"x0 = S"yull +kn ([yn — gl + an)
implies
¢ <liminf |y, —q||. (2.4)
n—o0
By (2.1) and (2.4), we obtain
lim [, —gl| = c. 2.5)

Moreover, ||T"x, — q|| < k, (|[x» — g|| + a,) implies that

limsup ||T"x, — q|| < c.

n—oo

Thus ¢ = lim |y, —¢|| = lim || (1 = B,) (x, —q) + B. (T"x, — q) || gives by Lemma 1 that
n—soo n—oo
lim || 7"x, — x,]| = 0. (2.6)
n—oo
Now
[y =Xl = B 17" — x| -

Hence by (2.6),
lim [y, — x| = 0. @2.7)

Also note that

1 =2l = ([(1 = 00) T"xn 4 008"y — x|
< | T"x0 — x| + 0 || T 5 — S"yn || — O as  n-— oo,
so that
IXne1 = yall < %1 = Xull + [[yn — x| — O as n— oo,
Furthermore, from
e = S™yull < e = T || + | T" %0 — S"yu|| — O as  n-— oo,

we find

[t 1 = S"Ynl| < (i1 =l 4 [0 = Syl
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so that
Aijrgo\\xn+1 —S"y|| = 0. (2.8)
We shall now make use of the fact that every nearly asymptotically nonexpansive mapping is
nearly uniformly L-Lipschitzian. Then
Pener = Tonsn | < [Peaen = T oo ||+ |77 ey = 77 x|
T T |
< o = T | Lo — ] +a)
FL(IT"%0 = X1 [+ an)
= [ = T || + L (Pt = xall + @)

FL (04 | T"xp — S"yu || + an)

yields
lim ||x,, — Tx,|| = 0. 2.9)
n—oo
Now
[ = S"xnll < llon = Xt | 4 P = "yl 4 115"y — "
< o = Xt |+ a1 = S"yall +L([[yn — Xl +a@n) — 0 as  n-—oo.
and
Pt =St < [t = S | |5 s = S |
< Hxn+1 —S"+1Xn+1 H +L([[S" %011 — Xnt1 || + an)
(8" Xn 11— S"ynl|
< [t =S | 4L
118"y = Xn1[| + an
< Hxn-‘rl _Sn+]xn+l H +L2 Hxn-i-l _ynH +LHS")’n — Xn+1 H + (L+ l)an
give us

lim ||x,, — Sx,|| = 0.
n—o0
Lemma 5. Forany p; ps € F, lim ||tx, + (1 —t)py — pa|| exists for all t € [0, 1] under the
n—oo
condition of Theorem 1.
Proof. By Theorem 1 lim ||x, — p|| exists for all p € F and therefore {x,} is bounded.
n—o0

Thus there exists a real number r > 0 such that {x,} C D = B,(0) NC, so that D is a closed

convex nonempty subset of C. Put

gn(t) = l|txy + (1 =1)p1 — p2|
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forallz € [0,1]. Then lim g,(0) = ||p; — p2|| and lim g,(1) = lim ||x,, — p2|| exist. Let? € (0,1).
n—oo n—o0 n—o0
Define B,, : D — D by:

Bix = (1—0)T"x+ 0, S"Apx
Apx = (1—=PBy)x+ BT x.

Then B,x,, = x,+1, Byp = p for all p € F. Also

[[Apx — Any||
and
[Bux—Buyll =
<
<
<

(1= Bu)x+ BuT"x) — (1= Bu)y+ BaT"y)||

< (1 =B) (x=y) + Ba(T"x = T"y) ||

= (1= B) llx =yl + Bukn (llx = yl[ + an)

= (1= Ba) llx=yll+ Buknl[x = y[| + Buctnkn
< (1= Ba)kallx =yl 4 Bk llx = yI| + Bratnkn
< kallx =l + Buanky

[(1— 04)T"x+ 04" Apx] — [(1 — ) T"y + 04,8"Ay)] |
(1= 04) (T"x = T"y) + 04, (S"Apx — S"Ayy) |

(1= o)k ([]x =yl + an) + ki ([[Anx — Apy|| + an)
(1= 0t )k ||x — Y| + Qukin ||Anx — Any|| + knatn

(1= 0k llx =y + Okin (ki X = Y| + Buinkn) + knctn
( 1—a,) kz—i-ankz) llox = y|| + O Brank? + K2ay,

ke b = Y+ 0 Bacankiy + K = ki (x =yl + ba),

where b, = o, B,a, + a,. Note that b, — 0 as n — .

Set

Rn,m = BnerlenqufZ---Bn7 m2> 1.

Then R,, ;,X,;, = Xp4m and Ry, ,,p = p for all p € F. Also

HRn,mx - Rn,myH

VAR VAN

IN

HBnerlenerfZ---an_Bn+mlen+m72--~BnyH
k2+m 1 (IBitm—2---Bux = Buim—2..Buy|| + batm—1)

kﬁerfl HBn-‘rm—Z---an - Bn-‘rm—Z---BnYH + kn+m71bn+m—1
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< koomtknim 2 (IBusm—3--Bux — Buim—3...BpY|| + bpsm—2)
st b1

< Kt tKam | Butm3e-BaX = Buym 3. Boy|
s 1Ky aPnsm—2 + Koy b

< k1Ko ||Bustm—3---BuX — Bugm—3... B ||
1K (Busm—2+ buym—1)
e ntm—1

< (1) (=8 )

j=n j=n

= Kum([lx=yl+1m),

where
n+m—1 5
Kn,m: H k]
j=n
and
n+m—1
nn,m: Z bj.
j=n

For the sake of simplicity, set

n+m—1

nmm: Z ij nn:ij7
j=n j=n

n+m—1 5 ) 5
Kn,m: H kj , Ky = ij )
j=n J=n

th = tx, + (1 —1)p1,

P = t|[Xn — p1ll + N

Ongn = (1=1) ||xu = p1[l + Nms

enm =1p1+ (1 —=2t) Ry mty — (1 —1)Ryy X,
Unm = [Rumtn — tRymXn — (L =) p1] X0 — p1],
Vim = [P1+ RumXn — 2R mtn] Mms

Wam = (P1 — Rumtn) | KnnPnms

Znm = (Rumtn — RumXn) | KnmOnm,

ln,m = Kn,mpmm On,m.

85



86 S. H. Khanetal: Approximating Common Fixed Points of Nonexpansive Mappings

Then

Rn,mtn — D1
Kn,m (t Hxn — D1 H + nmm)

Ko ([[tn = p1ll + Nam) _
T Ko (X0 — p1ll -+ Nam)

onll = |
and similarly ||z,,,|| < 1. Note that

pn,m+6n,m =t ||xn —PIH +Tln,m+ (1 _t) ||)Cn _PIH +nn,m = H)Cn _p1|| +2nn,m

Moreover,
P1— Rmm[n Rn,mtn - Rn,mxn
Hwn,m_meH = -
Kmmpn,m Kmm On,m
_ Gn,mpl - GmmRn,mtn - pn,mRmmtn + pn7mRn,mxn
)me
_ Gn,mpl - (Hxn — D1 H + znmm)Rn,mtn + pn,mRmmxn
)me
_ Un.m — Vnm
B )me 7
because

[|Xn _PIHRn,mtn — |lxe — p1l| IRy mXn — (1=1)p1 [|x: — p1|

thngn = Vamll =

—P1Nnm — Rn,mxnnmm + 2Rn7mtnnn7m

- ((1 _[) Hxn — D1 H +nn,m)p1 + (Hxn — D1 H +2nn,m)Rn,m[n

= (10 = pill + Nnm) R

and

t(pl - Rn,mtn) (1 - t) (Rn,mtn - Rn,mxn)

[tWnm+ (1 =)znml =

Kn,mpn,m Kn,mGn,m
— ' Gmmt (Pl - Rn,mtn) + pn,m(1 - t) (Rn,mtn - Rn,mxn)
)Ln,m
1 (X=1) [lxn = p1ll + NMwm)  (P1 — Rumtn)
)Ln,m

+ (t Hxn — D1 H + nn,m) (1 - t) (Rmmtn _Rmmxn)
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t(l _t)pl Hxn_pIH +1P1Mnym

1 —t (1 - t)Rn,mtn ||xn —P1 H - tRn,mtnnn,m

’ +t(1 - Z)Rmmtﬂ Hxﬂ — D1 H + (1 - I)Rmmtnnmm

_t(l _[)Rn,mxn Hxn — D1 H - (1 - Z)Rmmxnnn,m

. 1 t(l_t)Hxn_le(pl_Rn,mxn)
A
M epr A+ (1= 20) Ryt — (1= 1) Ry nXn ] T
1
- 2 Ht(l —Z)Hxn—PIH(Pl _Rmmxn)"i_emmnmmu
n,m
1

= ot =) b = pill (P1 = Xatm) + enmMm -
n,m

)

From (1.7), we get

Hun.m - Van
2t (1— e
t(1—1)Apm0 ( o

IN

A = [t (L =2) [l = il (P1 = Xtm) + €nm M

IN

But

§
3
I

Ky m (t Hxn — D1 H +Tln,m) ((1 —t) Hxn — D1 H +nn,m)
< Ka[1(=0) = pilP+ (b= pall + 1) ]
< K, |:t(1 _t) ||xn_p1H2+M1nn} >

where M| = sup(Hxn — D1 H + nn)'

Therefore

Hunm_vn.mH 2 Mlnn
2M0m -7 = < K, Y —
o (17 o= il

(4
= D1 1Pt = s+ Nenmlln

t(l—1) "

lmm —t(1=1) ||x0 = 1| ||Xnsm — P11 + Hen,mH Nn,m-

87

Let A = sup{A,K, : n € N}. Since E is uniformly convex, §(s)/s is nondecreasing. Therefore

||unm_vnm|| 2 Mn,
n7nm _ “nmil < _
215( > < K|l nl+ s

llen.ml| T

t(1—1)

Moreover, 6(0) =0, lim 1, =0, lim K,, = 1 and § is continuous, therefore
n—oo Nn—o0

=l = prll [Py = Xl +

im ||ty — V| = 0.
m,n—oo
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By the triangle inequality,

[t | < Nt = Vil + Vil = [[tn.m = Vil + MM

for some M, > 0. This gives

lim |t ]| = 0.
,I—>00

m
Since

lim [lv, — pi | >0,
we have

lim ||Ryty — tRymxn — (1 —1)p1|| = 0.

m,n—oo

Finally, from

gnim(t) = |txXnim+(1=1)p1—pal
< |Rumtn = P2l + [Ruutn — tRymxn — (1 =) p1 |
< Ko ([[ta = p2ll + Nagn) + [[Runtn — tRynxn — (1 = 1) p1 |
< Ku(llta = p2l 4+ 1) + [[Rnmtn — tRymxn — (1 — 1) p1 |

we get

limsupgpim(t) < lirgriglfK,, (IItn = p2|| + M) +limsup ||Ry ity — 1Ry mXn — (1 — 1) p1]|

m—oo m—oo
= liminfg,(z).
n—o0
Thus
limsupg,(¢) < liminfg,(r)
n—oo

Hi—so0
so that lim ||tx, + (1 — ) p; — p2|| exists for all 7 € [0, 1].
Lerrll;:a 6. Assume that the condition of Theorem 1 is satisfied. Then, for any pi p> €
F, lim (x,,J(p1 — p2)) exists; in particular, (p —q,J(p1 — p2)) =0 for all p,q € ®,(xy).
n;;:)of. Take x = p; — pp with p; # ps and h = t(x, — p;) in the inequality (1.7) to get:

1 1
1 =pall* + 1 (o = pr.J (1= p2)) < S e+ (1=1)p1 = ol
1
< S NPy =p2l® 1 (x = pr. T (p1 = p2)) + bt xa = pi |-
As sup ||x, — pi1|| < M’ for some M" > 0, it follows that
n>1

1 . 1
B | p1 —Pz”2+fhmsup (X —p1,J(p1 —p2)) <

n—oo 2

lim 23, + (1 =1)p1 — p2®

1 ..
< 2 |1 — pa)> +b(eM') +f11}g{}3f(xn —p1.J(p1—p2))-
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That is,

_ . baM') s
limsup (x, — p1,J (p1 = p2)) S Timinf (v, — p1,J(p1 = p2)) + =75
n—o0

If t — 0, then ’}grolo (xn — p1,J(p1 — p2)) exists for all py, py € F; in particular, we have
(p—q,J(p1—p2)) =0forall p,g € Wy(x,).

We now give our weak convergence theorem.

Theorem 2. Let E be a uniformly convex Banach space and let C,T,S and {x,} be taken as
in Theorem 1. Assume that (a) E satisfies Opial’s condition or (b)E has a Fréchet differentiable
norm or (c)dual E* of E satisfies Kadec-Klee property. If F # ¢ then {x,} converges weakly to
a point of F.

Proof.  Let p € F. Then lim |lx, — p|| exists as proved in Theorem 1. We prove that {x, } has
a unique weak subsequential nl;nit in F. For, let u and v be weak limits of the subsequences {x,, }
and {x,,} of {x,}, respectively. By Theorem 1, r}gr; ||, — Tx,|| =0 and I — T is demiclosed
with respect to zero by Lemma 3, therefore we obtain Tu = u. Similarly, Su = u. Again in the
same fashion, we can prove that v € F. Next, we prove the uniqueness. To this end, first assume

(a) is true. If u and v are distinct then by Opial’s condition,
lim ||x, —u|| = lim |jx,, —u| < lim |jx,, — ||
Nn—o0 nj—oo nj—oo
= lim [jx, —v|| = lim [jx,, —v|| < lim |]x,, —u|| = lim |Jx, —u|.

This is a contradiction so u = v. Next assume (b). By Lemma 6, (p — ¢,J(p1 — p2)) = 0 for all
P,q € @,(x,). Therefore

u—v||> = (u—v,J(u—v)) =0
implies u = v. Finally, say (c) is true. Since lim ||ltx, 4+ (1 —1)u —v|| exists for all # € [0, 1] by
Lemma 5, therefore u = v by Lemma 4. Conggquently, {x,} converges weakly to a point of F
and this completes the proof.

Two mappings S,7 : C — C, where C is a subset of a normed space E, are said to satisfy
the condition (A’) [4] if there exists a nondecreasing function f : [0,00) — [0,00) with f(0) =
0, f(r) > 0 for all r € (0,e0) such that either ||x—Sx|| > f(d(x,F)) or ||x—Tx|| > f(d(x,F))
for all x € C, where

d(x,F) =inf{||x—p||: p€ F = F(S)NF(T)}.

Theorem 3. Let E be a real Banach space and let C,S,T,F,{x,} be taken as in Theorem
1. Then {x,} converges to a point of F if and only if lim inf, .. d(x,,F) = 0 where
n—oo

d(x,F) =inf{|x— p| : p € F}.
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Proof. Necessity is obvious. Suppose that

lim inf d(x,,F) = 0.

n—00 n—00
As proved in Theorem 1, lim ||x, — w|| exists for all w € F, therefore lim d(x,, F) exists. But by
hypothesis, liminfd (x,l,Fn)_: 0, therefore we have lim d (xn, F) =0. n(;: the lines similar to [4],
it can be provnf;l that lii{}od(xn,F) = 0. This gives tﬁ;t d(q,F)=0and g € F.

Applying Theore’;n 3, we obtain a strong convergence of the scheme (1.5) under the condi-
tion (A’) as follows.

Theorem 4. Let E be a real Banach space and let C,S,T,F,{x,} be taken as in Theorem
1. Let S,T satisfy the condition (A") and F # &, then {x,} converges strongly to a common
fixed point of S and T.

Proof. As is proved in Theorem 1 that
lim ||x, — Sx,|| = 0 = lim ||x, — Tx,||. (2.10)
n—oo n—oo
From the condition (A") and (2.10), we get

lim £(d(xp, F)) < lim ||, — T, = 0
Nn—oo

n—00
or
lim f(d(x,,F)) < lim ||x, — Sx,|| = 0.
n—00

n—oo

In both cases,
lim £(d(x,, F)) = 0.
n—oo
Since f : [0,00) — [0,0) is a nondecreasing function satisfying f(0) =0, f(r) > 0 for all r €
(0,00), therefore we have
lim d(x,,F) = 0.

n—oo

Now all the conditions of Theorem 2 are satisfied, therefore by its conclusion {x,} converges
strongly to a point of F.

Remark 1. (1) Theorem 3 generalizes Theorems 3.9,3.10 and 3.11 of [1] to the case of
common fixed points of two mappings. In fact, choose S = T to get the said results. More-
over, this theorem generalizes the corresponding results in the literature proved by using Mann
iteration scheme by choosing 7' = I.

(2) Theorem 2 improves Theorem 3.1 of Yao and Chen [9] in two ways: (i) our result is true
for a larger class of mappings (ii) the rate of convergence is better.

(3) Theorems of this paper can also be proved with error terms. Thus we have also general-

ized Theorem 3.2 of Yao and Chen®! in the aforementioned two ways.
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