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Abstract. In this paper we introduce a generalization of Bernstein polynomials based

on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A−statistical

approximation properties of these operators. Also, by using the Modulus of continuity and

Lipschitz class, the statistical rate of convergence is established. We also gives the rate of

A−statistical convergence by means of Peetre’s type K−functional. At last, approximation

properties of a rth order generalization of these operators is discussed.
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1 Introduction

Phillips[7] in 1997 proposed q−Bernstein polynomials based on q calculus as

Bn,q( f ;x) =
n

∑
k=0

f

(

[k]

[n]

)





n

k



xk(1− x)n−k−1
q .

Very recently Heping[12] obtained Voronovaskaya type asymptotic formula for q-Bernstein op-

erator. In 2002 Ostrovska S.[9], studied the convergence of generalized Bernstein Polynomials.

Study of A−statistical approximation by positive linear operators is attempted by O.Duman,

C.Orhan in [8].

First, we recall the concept of A-statistical convergence.
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Let A = (a jn) j,n be a non-negative infinite summability matrix. For a sequence x := (xn)n,

A−transform of the sequence x, denoted by Ax := (Ax) j, is given by

(Ax) j :=
∞

∑
n=1

a jnxn,

provided that the series on the right hand side converges for each j. We say that A is regular

(see [8]) if limAx = L whenever limx = L. Let A be a non-negative summability matrix. The

sequence x := (xn)n is said to be A−statistically convergent to a number L, if for any given ε > 0,

lim
j

∑
n:|xn−L|≥ε

a jn = 0,

and we denote this limit by stA − lim
n

xn = L.

We also know that

1. (see [1],[4]) For A := C1, the Cesàro matrix of order one defined as

c jn :=











1

j
, 1 ≤ n ≤ j,

0, n > j,

then A-statistical convergence coincides with statistical convergence.

2. Taking A as the identity matrix, A-statistical convergence coincides with ordinary conver-

gence, i.e.

stA − lim
n

xn = limxn = L.

2 Construction of Operator

Here we introduce a general family of q−Bernstein polynomials and compute the rate of

convergence with help of modulus of continuity and Lipschitz class. Before introducing the

operators, we mention certain definitions based on q-integers, for the DETAILS, see [10] and

[11]. For each nonnegative integer k, the q−integer [k] and the q−factorial [k]! are respectively

defined by

[k] :=







(1−qk)
/

(1−q), q 6= 1,

k, q = 1
.

and

[k]! :=







[k] [k−1] · · · [1], k ≥ 1,

1, k = 0.
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For the integers n, k satisfying n ≥ k ≥ 0, the q−binomial coefficients are defined by





n

k



 :=
[n]!

[k]![n− k]!
.

We use the following notations:

(a+ b)n
q :=

n−1

∏
s=0

(a+ qsb), n ∈ N, a,b ∈ R, (2.1)

(1+ a)∞
q :=

∞

∏
s=0

(1+ qsa), a ∈ R, (2.2)

(1+ a)t
q :=

(1+ a)∞
q

(1+ qta)∞
q

, a, t ∈ R. (2.3)

Note that the infinite product (2.2) is convergent if q ∈ (0,1) and

(t;q)0 := 1,(t;q)n :=
n−1

∏
j=0

(1−q jt),(t;q)∞ :=
∞

∏
j=0

(1−q jt).

Also it can be seen that

(a;q)n =
(a;q)∞

(aqn;q)∞
.

Let an(t) be a sequence of functions defined on the interval [0,1] s.t. an(t) ∈ (0,1] for all n ∈ N

and t ∈ [0,1].

For f ∈C[0,1] and q ∈ (0,1], we define the q−Bernstein polynomial with help of an(t) as:

Ψn,q( f ;x) =
n

∑
k=0

f

(

an(q)[k]

[n]

)

pn,k(q;x), (2.4)

here

pn,k(q;x) =





n

k



xk(1− x)n−k−1
q .

Obviously for an(q) = 1 in (2.4), we get the classic q−Bernstein polynomial introduced by

Phillips[7]. M.A. Ozarslan, O. Duman[6] also introduced similar type of generalization for Meyer-

Konig Zeller type operators.

Lemma 1. For all x ∈ [0,1], n ∈ N and q ∈ (0,1), we have

Ψn,q (e0;x) = 1, (2.5)

Ψn,q (e1;x) = xan(q), (2.6)
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Ψn,q (e2;x) = a2
n(q)

(

x2 − x2

[n]
+

x

[n]

)

. (2.7)

Proof. Clearly (2.5) exists. A direct calculation yields that

Ψn,q (e1;x) = an(q)
n

∑
k=1

[n−1]!

[k−1]![n− k]!
xk(1− x)n−k

q

= an(q)x
n−1

∑
k=0





n−1

k



xk(1− x)
(n−1)−k
q

= an(q)x.

Also

Ψn,q (e2;x) = a2
n(q)

n

∑
k=0





n

k





[k]2

[n]2
xk(1− x)n−k

q

= a2
n(q)

n−1

∑
k=0





n−1

k





(q[k]+ 1)

[n]
xk+1(1− x)n−k−1

q

= a2
n(q)



q
n−2

∑
k=0

[n−1]

[n]





n−2

k



xk+2(1− x)n−k−2
q

+
n−1

∑
k=0

1

[n]





n−1

k



xk+1(1− x)n−k−1
q





= a2
n(q)

(

[n−1]q

[n]
x2 +

x

[n]

)

= a2
n(q)

(

x2 − x2

[n]
+

x

[n]

)

.

Hence the result folows.

Remark 1. One can observe that the central moments of Ψn,q( f ; .) are given by

Ψn,q(c1;x) = x(an(q)−1),

Ψn,q(c2;x) = x2(an(q)−1)2 +
a2

n(q)

[n]
(x− x2),

where c1 = t − x and c2 = (t − x)2.

Bohman-Korovkin type theorem [3] may be read as follows:

Theorem A. Let A = (a jn) j,n be a non-negative regular summability matrix and let (Ln)n

be a sequence of positive linear operators from C[a,b] into C[a,b], then for all f ∈ C[a,b], we



44 H. Sharma : Approximation Properties of rth Order Generalized Bernstein Polynomials

have

stA − lim
n
‖Ln f − f‖ = 0

if and only if

stA − lim
n
‖Ln fv − fv‖ = 0, for all v = 0,1,2,

where

fv(t) = tv for all v = 0,1,2.

Now, in the above definition of the operator (2.4), we replace the fixed q with a sequence

(qn)n∈N, such that qn ∈ (0,1] and satisfying the conditions

stA − lim
n

an(qn) = 1 and stA − lim
n

qn = 1. (2.8)

Theorem 1. Let (qn)n∈N be a sequence satisfying (2.8). Then for all f ∈C[0,a], 0 < a < 1,

we have

stA − lim
n

∥

∥Ψn,q ( f ; ·)− f
∥

∥= 0.

Proof. It is clear that

stA − lim
n

∥

∥Ψn,q (e0;x)− e0

∥

∥= 0. (2.9)

Based on the equation (2.6), we get

‖Ψn,qn
(e1,x)− e1(x)‖ = x(an(qn)−1) ≤ an(qn)−1. (2.10)

For every ε > 0, we define two sets as follows:

T0 := {n : ‖Ψn,qn
(e1,x)− e1(x)‖ ≥ ε} and T1 = {n : an(qn)−1 ≥ ε}.

Then by (2.10), one can observe that T0 ⊆ T1, hence for all j ∈ N, we get

0 ≤ ∑
n∈T0

a jn ≤ ∑
n∈T1

a jn;

since stA − lim
n

an(qn) = 1, we get

∑
n∈T0

a jn = 0. (2.11)

Taking the limit j → ∞ gives

stA − lim
n

∥

∥Ψn,q (e0;x)− e0

∥

∥= 0. (2.12)

By the equation (2.7), we have

‖Ψn,qn
(e2,x)− e2(x)‖ ≤ (a2

n(qn)−1)+
1

[n]
. (2.13)



Anal. Theory Appl., Vol. 27, No.1 (2011) 45

For every ε > 0, we define the sets as follows:

S0 = {n : ‖Ψn,qn
(e2,x)− e2(x)‖ ≥ ε},

S1 = {n : a2
n(qn)−1 ≥ ε},

S2 = {n :
1

[n]
≥ ε}.

Then by (2.13), one can observe that S0 ⊆ S1 ⊆ S2, hence for all j ∈ N, we get

0 ≤ ∑
n∈S0

a jn ≤ ∑
n∈S1

a jn + ∑
n∈S2

a jn.

Since stA − lim
n

a2
n(qn) = 1, stA − lim

n

1

[n]
= 0, consequently

∑
n∈S0

a jn = 0. (2.14)

Taking the limit j → ∞ gives

stA − lim
n

∥

∥Ψn,q (e2;x)− e2

∥

∥= 0. (2.15)

Finally, using (2.9), (2.12) and (2.15) the proof follows from theorem A.

Remark 2. By replacing A with Cesàro matrix of order one (C1), we get the statistical con-

vergence of the operator and replacing A with the identity matrix we get the simple convergence.

Recall the concept of modulus of continuity of f (x) ∈ [0,a], denoted by ω( f ,δ ), is defined

by

ω( f ,δ ) = sup
|x−y|≤δ ,x,y∈[0,a]

| f (x)− f (y)|. (2.16)

The modulus of continuity possesses the following property (see [5])

ω( f ,λδ ) ≤ (1+ λ )ω( f ,δ ). (2.17)

Corollary 2. Let (qn)n be a sequence satisfying (2.8) . Then

|Ψn,q( f ;x)− f | ≤ 2ω( f ,
√

δn) (2.18)

for all f ∈C[0,1], where

δn = Ψn,q

(

(t − x)2;x
)

. (2.19)

Proof. By the linearity and monotonicity of Ψn,q, we get

|Ψn,q( f ;x)− f | ≤ Ψn,q(| f (t)− f (x)|;x)
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also

| f (t)− f (x)| ≤ ω( f ,δ )

(

1+
1

δ
(t − x)2

)

.

Therefore, we obtain

|Ψn,q( f ;x)− f | ≤ ω( f ,δ )

(

1+
1

δ
Ψn,q((t − x)2;x)

)

.

By Remark 1, we get

Ψn,q

(

(t − x)2;x
)

≤ (an(qn)−1)2
x2 +

(a2
n(qn))

[n]
.

Since an(qn) satisfies (2.8), we get

lim
n→∞

Ψn,q

(

(t − x)2;x
)

= 0. (2.20)

So, letting δn = Ψn,q

(

(t − x)2;x
)

and taking δ =
√

δn, we finally get

|Ψn,q( f ;x)− f | ≤ 2ω( f ,
√

δn).

As usual, a function f ∈ LipM(α), (M > 0 and 0 < α ≤ 1), if the inequality

| f (t)− f (x)| ≤ M|t − x|α (2.21)

holds for all t,x ∈ [0,1].

In the following theorem, we will compute the rate of convergence by mean of Lipschitz

class.

Corollary 3. For all f ∈ LipM(α) and x ∈ [0,1], we have

|Ψn,q( f ;x)− f | ≤ Mδ
α/2
n (2.22)

where δn = Ψn,q(|t − x|2;x).

Proof. Using inequality (2.13) and Hölder inequality with p =
2

α
,q =

2

2−α
, we get

|Ψn,q( f ;x)− f | ≤ Ψn,q(| f (t)− f (x)|;x)

≤ MΨn,q(|t − x|α ;x)

≤ MΨn,q(|t − x|2;x)α/2.

Taking δn = Ψn,q(|t − x|2;x), we get

|Mn,q( f ;x)− f | ≤ Mδ
α/2
n .
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Remark 3. By Corollary 2 or Corollary 3, we find that Ψn,q( f ; .) converges to f uniformly

on [0,1].

Let us recall concept of Peetre’s type K−functional (see [2]). Define

C2[0,a] := { f ∈C[0,a] : f
′
, f

′′ ∈C[0,a]},

then C2[0,a] is a normed linear space with the norm defined as

‖ f‖C2 [0,a] := ‖ f‖+‖ f
′‖+‖ f

′′‖.

Peetre’s type K−functional is defined as (see[9])

K( f ,δ ) := inf
g∈C2[0,a]

{‖ f −g‖+ δ‖g‖C2[0,a]}.

In the following theorem we estimate the rate of A-statistical convergence by means of Peetre’s

type K-functional.

Theorem 4. Let (qn)n∈N be a sequence satisfying (2.8). Then for all f ∈C[0,a], 0 < a < 1,

we have

stA − lim
n

∥

∥Ψn,q ( f ; ·)− f
∥

∥≤ 2K( f ;δn),

where

δn =
1

2
{(an(qn)−1)+

1

4
{(an(qn)−1)2 +

an(qn)
2

[n]
}}.

Proof. Let g ∈C2[0,a], then

g(t)−g(x) = g
′
(x)(t − x)+

∫ t

x
g
′′
(s)(t − s)ds.

Therefore

|Ψn,q(g;x)−g(x)| ≤ ‖g
′‖Ψn,q(c1;x)+

‖g
′′‖

2
Ψn,q(c2;x),

where Ψn,q(c1;x) and Ψn,q(c2;x) are first and second central moments, we get

|Ψn,q(g;x)−g(x)| ≤ x(an(qn)−1)‖g
′‖+

1

2
{x2(an(qn)−1)2 +

an(qn)
2

[n]
(x− x2)}‖g

′′‖

≤ {x(an(qn)−1)+
1

2
{x2(an(qn)−1)2 +

an(qn)
2

[n]
(x− x2)}}‖g‖C2 [0,a].

As |Ψn,q( f ;x)| ≤ ‖ f (x)‖, we can write

|Ψn,q( f ;x)− f (x)| ≤ |Ψn,q( f −g;x)− f (x)|+ |Ψn,q(g;x)−g(x)|+ | f (x)−g(x)|
≤ 2‖g− f‖C2 [0,a] + |Ψn,q(g;x)−g(x)|

≤ 2

[

‖g− f‖C2[0,a] +{x

2
(an(qn)−1)+

1

4
{x2(an(qn)−1)2 +

an(qn)
2

[n]
(x− x2)}}‖g‖C2 [0,a]

]

≤ 2

[

‖g− f‖C2[0,a] +{1

2
(an(qn)−1)+

1

4
{(an(qn)−1)2 +

an(qn)
2

[n]
}}‖g‖C2 [0,a]

]

.
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By letting δn as that given in the statement of Theorem and on taking infimum over g ∈C2[0,a]

on the right hand side of the above inequality we get

|Ψn,q( f ;x)− f (x)| ≤ 2K( f ,δn).

Remark 4. Since stA− lim
n

a2
n(qn) = 1, stA− lim

n

1

[n]
= 0, one can observe that stA− lim

n
δn =

0, the above theorem gives the rate of A-satatistical convergence of Ψn,q( f ;x) to f .

3 A rth Order Generalization of Operator

In this section, we introduce a generalization of the positive linear operator Ψn,q, by using

the method introduced by Popova and Kirov[3]. Let us consider the space C(r, f )[0,1] of all

continuous functions for which the rth order derivative exists and continuous on [0,1]. The rth

order generalization of Ψn,qis as follows:

Ψn,r,q( f ;x) =
n

∑
k=0

r

∑
i=0

pn,k(q;x) f (i)(ϕn,k(q))
(x−ϕn,k(q))i

i!
, (3.1)

where f ∈C(r, f )[0,1], x∈ [0,1) and ϕn,k(q) =
an(q)[k]

[n]
. For x = 1, we define Ψn,r,q( f ;x) = f (1).

Clearly for r = 0, Ψn,r,q( f ;x) = Ψn,q( f ;x).

We prove some approximation theorems for Ψn,r,q( f ;x) as follows.

Theorem 5. For f ∈ C(r, f )[0,1] s.t. f (r) ∈ LipM(α) and for any n ∈ N, x ∈ [0,1] and

r ∈ N, we have
∣

∣Ψn,r,q( f ;x)− f (x)
∣

∣ ≤ MαB(α ,r)

(r−1)!(α + r)
|Ψn,q(g;x)|, (3.2)

where g(y) = |y− x|α+rfor each x ∈ [0,1] and B(α ,r) denotes the beta function.

Proof. Take x ∈ [0,1), as for x = 1 the result is trivial. Consider

f (x)−Ψn,r,q( f ;x) =
n

∑
k=0

pn,k(q;x) f (x)−Ψn,r,q( f ;x).

From the definition of Ψn,r,q( f ;x) (see (3.1)), we get

f (x)−Ψn,r,q( f ;x) =
n

∑
k=0

pn,k(q;x)

(

f (x)−
r

∑
i=0

f (i)(ϕn,k(q))
(x−ϕn,k(q))i

i!

)

. (3.3)

By Taylor’s formula, we can write

f (x)−
r

∑
i=0

f (i)(ϕn,k(q))
(x−ϕn,k(q))i

i!

=
(x−ϕn,k(q))r

(r−1)!

∫ 1

0
(1− t)r−1

(

f (r)(ϕn,k(q)+ t(x−ϕn,k(q)))− f (r)(ϕn,k(q))
)

dt.

(3.4)
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As f (r) ∈ LipM(α), we obtain

∣

∣

∣
f (r)(ϕn,k(q)+ t(x−ϕn,k(q)))− f (r)(ϕn,k(q))

∣

∣

∣
≤ Mtα |x−ϕn,k(q)|α . (3.5)

Using the equations (3.4) and (3.5), we get

∣

∣

∣

∣

∣

f (x)−
r

∑
i=0

f (i)(ϕn,k(q))
(x−ϕn,k(q))i

i!

∣

∣

∣

∣

∣

≤ |x−ϕn,k(q)|α+r

(r−1)!

∫ 1

0
(1− t)r−1tα dt.

Also
∫ 1

0
(1− t)r−1tα dt =

αB(α ,r)

α + r
.

Using the above facts we get

∣

∣

∣

∣

∣

f (x)−
r

∑
i=0

f (i)(ϕn,k(q))
(x−ϕn,k(q))i

i!

∣

∣

∣

∣

∣

≤ MαB(α ,r)

(r−1)!(α + r)
|x−ϕn,k(q)|α+r . (3.6)

Finally by the equations (3.3) and (3.6), we get the desired result.

Remark 5. In the above theorem we observe the following:

1. g ∈C[0,1] and g(x) = 0.

2. g ∈ Lip1(α) as |g(y)−g(x)| ≤ |y− x|α for x,y ∈ [0,1].

Corollary 6. Let x ∈ [0,1] and r ∈ N, then for f ∈C(r, f )[0,1] s.t. f (r) ∈ LipM(α) and for

any n ∈ N, we have

∣

∣Ψn,r,q( f ;x)− f (x)
∣

∣ ≤ 2MαB(α ,r)

(r−1)!(α + r)
ω(g;

√
δn). (3.7)

Using Remark 5, Theorem 3 and Corollary 2 we get the result immediately.

Corollary 7. Let x ∈ [0,1] and r ∈ N, then for f ∈C(r, f )[0,1] s.t. f (r) ∈ LipM(α) and for

any n ∈ N, we have
∣

∣Ψn,r,q( f ;x)− f (x)
∣

∣ ≤ MαB(α ,r)

(r−1)!(α + r)
δ

α/2
n . (3.8)

Again by using Remark 5, Theorem 5 and Corollary 3 we get the results immediately.

Corollary 8. Let x ∈ [0,1] and r ∈ N, then for f ∈C(r, f )[0,1] s.t. f (r) ∈ LipM(α) and for

any n ∈ N, we have

∣

∣Ψn,r,q( f ;x)− f (x)
∣

∣ ≤ 2MαB(α ,r)

(r−1)!(α + r)
K(g;δn). (3.9)

Theorem 9. Let q in (3.1) be replaced by the sequence (qn)n∈N satisfying (2.8), then

Ψn,r,qn
( f ; ·) converges to f uniformly on [0,1].

Proof. The result is directly obtained by using Corollary 6 or 7.
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