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Abstract. In this paper we introduce a generalization of Bernstein polynomials based
on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A—statistical
approximation properties of these operators. Also, by using the Modulus of continuity and
Lipschitz class, the statistical rate of convergence is established. We also gives the rate of
A—statistical convergence by means of Peetre’s type K —functional. At last, approximation

properties of a rth order generalization of these operators is discussed.
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1 Introduction

Phillips”) in 1997 proposed g—Bernstein polynomials based on ¢ calculus as

-x:n E " _xnfkfl
Bt =% () [ |00

Very recently Heping“z]

obtained Voronovaskaya type asymptotic formula for g-Bernstein op-
erator. In 2002 Ostrovska S.1% studied the convergence of generalized Bernstein Polynomials.
Study of A—statistical approximation by positive linear operators is attempted by O.Duman,
C.Orhan in [8].

First, we recall the concept of A-statistical convergence.
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Let A = (aj,);n be a non-negative infinite summability matrix. For a sequence x := (x,),

A—transform of the sequence x, denoted by Ax := (Ax);, is given by

(Ax); == Z QA jnXp,
n=1

provided that the series on the right hand side converges for each j. We say that A is regular
(see [8]) if limAx = L whenever limx = L. Let A be a non-negative summability matrix. The

sequence x := (x,), is said to be A—statistically convergent to a number L, if for any given € > 0,

lim Y a,=0,
J n:lx,—L|>€
and we denote this limit by st4 — limx, = L.
n
We also know that
1. (see [1],[4]) For A := Cy, the Cesaro matrix of order one defined as

1
)
C jn = J
0,
then A-statistical convergence coincides with statistical convergence.
2. Taking A as the identity matrix, A-statistical convergence coincides with ordinary conver-

gence, i.e.

sty — limx, = limx, = L.
n

2 Construction of Operator

Here we introduce a general family of g—Bernstein polynomials and compute the rate of
convergence with help of modulus of continuity and Lipschitz class. Before introducing the
operators, we mention certain definitions based on g-integers, for the DETAILS, see [10] and
[11]. For each nonnegative integer k, the g—integer [k] and the g—factorial [k]! are respectively
defined by

(1-¢"/(1—q), q#1, |

and
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For the integers n, k satisfying n > k > 0, the g—binomial coefficients are defined by

n__ [nf!
k [k [n— k]!
We use the following notations:
n—1
(a+b),:= H(a+qsb), neN, abeR, (2.1)
s=0
(1+a); =[]0 +¢'a), acR, (2.2)
s=0
(1+a);
(14a) = —-"1 ateR. (2.3)
7 (1+4'a),

Note that the infinite product (2.2) is convergent if g € (0,1) and

n—1 oo
(t:q)0 :=1,(:9)n =[] (1 = ¢'1), (1:9) == [ J(1 = ¢'1).
j=0 j=0
Also it can be seen that (@)
a; =2
(a:q)n ad"q0)-

Let a,(t) be a sequence of functions defined on the interval [0, 1] s.t. a,(r) € (0,1] for all n € N
and ¢ € [0, 1].
For f € C[0,1] and ¢ € (0, 1], we define the g—Bernstein polynomial with help of a,(¢) as:

- an(q)[k]
‘Pn.q )= nk\q5X), )
here
Pri(q:x) = " (1 _X)Z_k_l-
k

Obviously for a,(g) = 1 in (2.4), we get the classic g—Bernstein polynomial introduced by
Phillips”). M.A. Ozarslan, O. Duman!® also introduced similar type of generalization for Meyer-
Konig Zeller type operators.

Lemma 1. Forallx € [0,1],n € Nand g € (0,1), we have

W4 (€0;x) =1, (2.5)

W g (e13x) = xan(q), (2.6)
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o ) = i(a) (2 -5+ 1), )
(] [n]
Proof. Clearly (2.5) exists. A direct calculation yields that
. n — 1 n—k
W, (e5x) = Z xk(l—x)q
k:I ln— k]!
nl| n—1
= algx) (1 =)y
k=0 k
= an(g)x

Also

n n 2
Wig(e2x) = a;(q) ), Uit

+ (1 — k!
=l k
_ 2 n—1g ,, x
- "(Q)< ] *[n1>
2
(et
- "(Q)< [nﬁ[n])

Hence the result folows.

Remark 1. One can observe that the central moments of ¥, ,(f;.) are given by

an,q(Cl;x) = x(an(Q)_l)’

aZ
Boglern) = Planlg) 17+ 9D (2

where ¢; =t —xand ¢; = (t —x)°.
Bohman-Korovkin type theorem [3] may be read as follows:
Theorem A. Let A = (aj,); be a non-negative regular summability matrix and let (L,),

be a sequence of positive linear operators from C[a,b] into C[a,b], then for all f € Cla,b], we



44 H. Sharma : Approximation Properties of rth Order Generalized Bernstein Polynomials

have
sty —lim L, f — ]| =0
if and only if
sta—lim||L,f, — f,]| =0, forall v=0,1,2,
n
where

fut)=1" forall v=0,1,2.

Now, in the above definition of the operator (2.4), we replace the fixed q with a sequence

(gn)nen, such that g, € (0,1] and satisfying the conditions
sta —limay,(g,) =1 and sty —limg, = 1. (2.8)
n n

Theorem 1. Let (g,)nen be a sequence satisfying (2.8). Then for all f € C[0,a], 0 <a <1,

we have
sta —lim | ¥4 (f:) — f|| =0.
Proof. Itis clear that
sty — lirgn H‘PW (ep;x) — eoH =0. (2.9)

Based on the equation (2.6), we get
W, (e1,3) — €1 (0) | = X(an(gn) — 1) < an(ga) — 1. (2.10)
For every € > 0, we define two sets as follows:
To:={n:||Wngq,(e1,x) —e1(x)|| > €} and Ty ={n:a,(g,)—1>¢€}.

Then by (2.10), one can observe that T C 77, hence for all j € N, we get

0< Y ajn< Y aju:

nely ne’
since st4 — limay,(g,) = 1, we get
n
Y aj,=0. (2.11)
nely
Taking the limit j — oo gives
sty —1im ||P,.4 (€05 x) — eo|| = 0. (2.12)
) ;
By the equation (2.7), we have
1
¥, (e2,2) = e2(0)]| < (a(gn) = 1)+ . (2.13)

1]
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For every € > 0, we define the sets as follows:

So = 0 [ (en) (o) > €,
Si = {n:ay(gn)—1>¢},
S — {n:[;—]ze}.

Then by (2.13), one can observe that Sy C S| C S5, hence for all j € N, we get

0< Zajng Zajn—l— Zajn.

nesy nes nes,

1
Since sty —lima2(g,) = 1, sty — lim — = 0, consequently
n n

[]
Y aj,=0. (2.14)
nesy
Taking the limit j — oo gives
sta —lim ||, 4 (e2:x) — e2]| = 0. (2.15)
1 :

Finally, using (2.9), (2.12) and (2.15) the proof follows from theorem A.
Remark 2. By replacing A with Cesaro matrix of order one (C}), we get the statistical con-
vergence of the operator and replacing A with the identity matrix we get the simple convergence.
Recall the concept of modulus of continuity of f(x) € [0,qa], denoted by w(f,d), is defined
by
o(f.8)= s |f&®)-fO) (2.16)

[x—y|<8.x,y€[0,4]

The modulus of continuity possesses the following property (see [5])
o(f,A0) < (1+A)o(f,d). (2.17)
Corollary 2. Let (gy,), be a sequence satisfying (2.8) . Then
Wy (f33) — 1 < 20(f, /) (2.18)

for all f € C|0,1], where
8 =Yg ((t—x)%x). (2.19)

Proof. By the linearity and monotonicity of ¥, ,, we get

[Wg(f3%) = I < Wng(I£(1) = f(¥)|5)
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also |
10~ 1] < 0(7.8) (14 5097
Therefore, we obtain
1
W q(fsx) = fl < 0(f,0) (1 + g‘yn,q((t—x)z;x)> .
By Remark 1, we get

(©(6:)

lpn’q ((t _X)Z;x) < (an(qn) - 1)2)62 + [n]

Since a,(gy) satisfies (2.8), we get

lim ¥, , ((t —x)*x) =0. (2.20)

n—oo

So, letting 8, = ¥, , ((t —x)*:x) and taking § = \/§,, we finally get

g (f3ix) = fI <20(f,/8).
As usual, a function f € Lip,,(a), (M >0 and 0 < a < 1), if the inequality
|f(t) = f(0)] < Mt —x|* (2.21)

holds for all #,x € [0, 1].
In the following theorem, we will compute the rate of convergence by mean of Lipschitz
class.

Corollary 3. Forall f € Lipy(e) and x € [0,1], we have

W, g(f3x) — f] < ME (2.22)

where 8, =¥, ,(|t — x|*;x).

2 2
Proof. Using inequality (2.13) and Holder inequality with p = 29 7 we get

(Wog(fi) = 1 < Pug(lf(1) = f(x)
MY, (|t —x|%;x)
MY, (|t — x|*;x)%/2.

;X)

IN

IN

Taking 8, = ¥, 4 (|t — x|?;x), we get

My q(f5x) — f| < M5r?/2-
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Remark 3. By Corollary 2 or Corollary 3, we find that ¥, ,(f;.) converges to f uniformly
on [0,1].
Let us recall concept of Peetre’s type K—functional (see [2]). Define
C*0,a) :={f eCl0,a]: f,f €Cl0,d]},

then C?[0, ] is a normed linear space with the norm defined as

1f o = AL+ ILF T+ 17

Peetre’s type K—functional is defined as (see[9])
K(f,8):= inf —g||l+0o .
(7.8):= _inf {If ~&ll + Sz}

In the following theorem we estimate the rate of A-statistical convergence by means of Peetre’s
type K-functional.

Theorem 4. Let (q,)qeN be a sequence satisfying (2.8). Then for all f € C[0,a], 0 <a< 1,
we have

sty —lirrlnH‘qu (f) = f|| <2K(f380),

where

8= 3 {(an(gn) — 1)+ {(an(gn) — 1) + 221

Proof. Let g € C?[0,a], then

80— ¢() =¢ (1 —2)+ [ ¢ ()t —)ds.
Therefore
[Wiq(8:) = ()] < g ¥ glers) + 75 g (€2:),
where W, ,(c1;x) and W, 4(c2;x) are first and second central moments, we get

/ 1 2 2 an(Qn)z 2 "
¥hq(g:%) =80 < x(anlgn) = Dllg |+ 5 {x"(an(ga) = 1) +T(x_x )Hig |

an(Qn)2

]

< {xlan(gn) = 1) + %{xz(an(qn) —1)°+ (x=x*)}} lgllcz o)

As [W, 4 (f:x)] < || f(x)|], we can write

[Whg (f3) = f)] < [Pug(f — 85%) = ()] + [Prg(g:%) — ()| + [ f(x) — g(x)]
<2|lg— fllezj0.q) T [¥ng (83 %) — g(x)]

X 2
<2 e lleron + (3 (@)~ 1)+ P aa) - D2+

an(qn)
[]

a 2
<28~ lleroa + {3 an(an) - D+ 3 {antan) = D+ 28 gl

@—fnmmmm4
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By letting 8, as that given in the statement of Theorem and on taking infimum over g € C2[0, 4]

on the right hand side of the above inequality we get
[Wnq(fix) = f(x)| < 2K(f,6).

1
Remark 4.  Since sty —lima2(g,) = 1, sty —lim ﬁ =0, one can observe that st4 —1lim §, =
n n |n n

0, the above theorem gives the rate of A-satatistical convergence of ¥, ,(f;x) to f.

3 A rth Order Generalization of Operator

In this section, we introduce a generalization of the positive linear operator ‘¥, 4, by using
the method introduced by Popova and Kirov®. Let us consider the space C(r, £)[0,1] of all
continuous functions for which the rth order derivative exists and continuous on [0, 1]. The rth

order generalization of ¥, 4is as follows:

nrq fX Zzpnk q;x (pnk( ))(x—q)+k(q))lv (3'1)
an(q) K]

]

where f € C(r, f)[0,1],x€[0,1) and ¢, +(q) =
Clearly for r =0, W, .4 (f;x) = Wy q(f3x).
We prove some approximation theorems for ¥, ., (f;x) as follows.
Theorem 5. For f € C(r,f)[0,1] s.t. f\") € Lipy,(a) and for any n € N, x € [0,1] and

r € N, we have

. Forx=1, wedefine ¥, ,.,(f;x) = f(1).

MoB(a,r)
(r—1)Ya+r)
where g(y) = |y — x|*""for each x € [0,1] and B(a,r) denotes the beta function.

|an rq (fix) | = |an,q(g;X)|, (3.2)

Proof. Take x € [0,1), as for x = 1 the result is trivial. Consider

f(x) nrq f X ank q;x lpnmq(f;x)-

From the definition of ¥, ,.,(f;x) (see (3.1)), we get

|
=0 1!

f@—%mm@:ZMM%@O@‘Z%WWWMQ—&iQ>- (33
By Taylor’s formula, we can write

Zf q)n (g (x - (p.n,k(Q))i

i!
:Ez%%%lAVL4V1O“ww<w4u—%ﬂwn—ﬂW%M®0m-

(3.4)
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As 1) e Lipy(a), we obtain

0 (@nala) 10~ 01x(0)) — £ (9nal@)| < M- gui(a)l. (33)

Using the equations (3.4) and (3.5), we get

3 i (x_(pn., ( ))l ‘x_(pn-, ( )‘(x+r ! r—1.o
‘f(x)—;)f()(%,k(q» l.!kq ‘S (r_qu)! /O(I—t) %dr.

Also |
/ (1—1)1t%dr = aBlar)
0

oa+r
Using the above facts we get

09— YO (e (q)) S 2rk@)

2
i=0 b

MoB(a,r)
(r=1a+r)

< = @ui(g)|*". (3.6)

Finally by the equations (3.3) and (3.6), we get the desired result.
Remark 5. In the above theorem we observe the following:
1. g €CJ0,1] and g(x) = 0.
2. g € Lip;(a) as [g(y) — g(x)| < |y —x|* for x,y € [0,1].
Corollary 6. Letx € [0,1] and r €N, then for f € C(r, £)[0,1] s.t. f) € Lip,,(c) and for

any n € N, we have

2MocB(oc r)

Wi rg (f1x) - ‘— V(o +r)

(8:1/8,)- (3.7)

Using Remark 5, Theorem 3 and Corollary 2 we get the result immediately.

Corollary 7. Letx € [0,1] and r €N, then for f € C(r, )[0,1] s.t. f) € Lip,,(«) and for
any n € N, we have
_MaB@r) sap2 (3.8)
(r—DNa+r)
Again by using Remark 5, Theorem 5 and Corollary 3 we get the results immediately.
Corollary 8. Letx € [0,1] and r €N, then for f € C(r, £)[0,1] s.t. f) € Lip,, () and for

any n € N, we have

|lpn7r7q(f;x) - f(x)| <

2MocB (a,r)

‘\Pn,qfx ‘_ MWa+r)

K(g:8,). (3.9)

Theorem 9. Ler g in (3.1) be replaced by the sequence (qn)nen satisfying (2.8), then
W g, (f3-) converges to f uniformly on [0,1].
Proof. The result is directly obtained by using Corollary 6 or 7.
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