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Abstract. In this paper, the authors prove that the multilinear fractional integral operator

Tg 1(;\2 and the relevant maximal operator Mgl (’f 2 with rough kernel are both bounded from

LP(1 < p < eo) to L9 and from L? to L/ ("= with power weight, respectively, where

ALA R, (A1:%,Y) R, (A3 x,y)
TR0 = [ T =) )y

and

1 2
ALA
Mo (f)(x) = sup S —— ‘xﬂ_KrHRm; (Aisx,y)Qx —y) fy)|dy,

>0 7 i=1
and 0 < a < n, Q € L*(§" V(s > 1) is a homogeneous function of degree zero in R”, A;
is a function defined on R" and Ry, (A;;x,y) denotes the m; — th remainder of Taylor series

1
of A; at x about y. More precisely, Ry, (Ai:x,y) = Ai(x) — ) —'DyAi(y)(x —y)", where
Ir<m; ©°
DY(A;) € BMO(R?) for |y| = mi — 1(m; > 1), i = 1,2.
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1 Introduction

As two of the most important operators in harmonic analysis, the fractional integral operator

To, o and the corresponding maximal operator Mg o are defined by

Toof(x) ::/ Qx—y)

R [x—y[r

JO)dy, (1.1)
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Moo/ =swp [ |Q=y) 70y (12)
h>0 x—y|<h

where 0 < a <n, 1/g=1/p—oa/nand Q € L*(S"" V(s > n/(n— a)) is homogeneous of degree
zero in R”. In 1993 and 1998, Chanillo !l and Ding [l proved that Tg ¢ and Mg ¢ are bounded
from LP(1 < p < o) to L respectively. In 1997, Ding 1 gave that if —1 < B <0 and f €
L' (Jx|P(n=@)/m) then Tq ¢ and Mg ¢ are both bounded from L' (|x|P(=%)/n) to /(=)=

It is well known that the study of multilinear fractional integral operators are received in-
creasing attentions. Let Y= (v1,%, -+, %), and %;(i = 1,2, - -+ ,n) be nonnegtive integers. Denote
VS ifln, V=n!pl bl xl =x]'xp - xlf

ol

D" = .
aylxlaVZxZ .. .aYnxn

Suppose that A is a function defined on R”. Denote by R,,(A;x,y) the m-th order remainder of
1
the Taylor series of A at x about y, that is, R,,(A:x,y) = A(x) — —'D"A(y)(x—y)’, m > 1.

[Yl<m
Then the multilinear fractional integral operator Té_y o 18 defined by
Qx —y)Rm(A:x,y)

Taf ()= [ S ) (13)

and the relevant maximal operator Mé, o 18 given by

1

M, of (x) := sup Y / |Q(x — y)Rin(Asx,) f(v)|dy. (1.4)

>0 [x—y|<r

In 2001, DingP! proved that if DYA € L'(R")(1 < r < oo,|y| = m — 1), then T4 o M?La are
both weighted bounded operators from L”(w?) to L4(w?) with the weight w € A( p; g) and from
LP(1 < p < n/a) to L'/ ("=®)= with the power weight. Obviously, when m = 1, T4  reduces to
the commutator generated by the fractional integral Tq o and the function A. In 2002, Yang and
Wu ) proved that if DYA € BMO(R”"), then Té_’a and MSA),a are bounded from L”(1 < p < o)

to L4. In 2003, Lu and Zhang® proved that if DYA € Ag, s> ——— 0<B <1,1/q=
g p Ry Yy B /q

1/p—(ot+B)/n, then T4 , and M4 , are bounded from LP(1 < p < ) to L9 and from L!

o+p
to L"/"=%=B=_1n 2001, Lu and Ding/* showed that if DYA; € BMO(R"), than the operator
ApAs, - Ap Q(x—y) k
TQ,]oc 2 Ak £ (x) 1= /R" 7’)6_)}’”_““\/ I—[lij(Aj;x,y)f(y)dy (1.5)
J:

k
with N = Y (m; — 1)(m; > 2) and the relevant maximal operator
=1

Ay 1 k
M?;,;fz’ A f(x) = Supm/x_y<r\Q(X—Y)I—[lRm,(Aj;X,Y)f(y)\dy (1.6)
]:

0T
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are both weighted bounded operators from L” (w?) to LY(w?) with w € A(p,q).
In 2006, Lan'®! proved that if DA € Ag, then the operator

Q
A17A2f( )= /Rn |x(;|7”i‘}+1v HR’”J (Ajix,y) f(y)dy 1.7)

2
with N = Z (mj—1)(mj > 2) and the relevant maximal operator
=1

1 2
AlAzf( ) :Squ/xyq I:I m; (Aj3x,9) f(y)]|dy (1.8)

>0 7

oc+2ﬁ

are bounded from L' (R") to L @B @) “(R") and from L! (|x| ) to L7@r2p)" “(Jx[M).

Our aim in the paper is to establish the boundedness for the multilinear fractional integral
operators TA"A2 and Mg](’fz, and obtain the following theorems:

Theorem 1.1. Let 0 < a < n, A; is a function defined on R", DY(A;) € BMO(R")(]y| =
m; —1), i = 1,2 and Q is homogeneous of degree zero on R" with zero mean value on S"',
QelLs(s
C, independent of A and f, such that

[Ersasal? <CH Y, DA lIsmoll f Iz, (1.9)
i=1|y|=mi—1
2

IMafll<C[T X I D"4; llsmoll £ Il - (1.10)
i=1[yl=m—1

Theorem 1.2. Let 0 < a < n, A; a function defined on R", DY(A;) € BMO(R")(|y| =
1),i=12and Q€ LS(S”_1 ), s > 1. Then if —1 < B <0, there exists a constant C, independent
of A and f, such that for any A > 0 and any f € L' (|x|P"=®/"), the following conclusions hold:

/(n—a)
/{x.| A2f )‘>A} |x|ﬁdx S C ( H Z H DYAI HBMOH f ||Ll(x|[3(noc)/n)> 5 (111)

=1yl=m;—1

/(n—a)
B .
/MAIAZ M}!x\dx§0< H )y HDVA,HBMonHmWam) . (112

=1 |y|=m;—1

2 Proof of Theorems

Lemma 2.1,  Let A be a function on R" and DYA € L, (R") for |y| = m and some | > n.
Then

1

1 7

[Rn(Asx,y)] < Cle—y|" ) <~ /~ \DVA(Z)!le> ,
yimm \|10(x, )] /0(xy)
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where é(x, y) is the cube centered at x with edges parallel to the axes and having diameter

16y/nlx —y.

Lemma 2.2, Let 0 < a < n, Q be homogeneous of degree zero on R", Q € L¥(§"1),
5> La, 1<p,g<oandl/q=1/p—o/n, then

n—

| Maaf lLa<C| f |z 2.1

Lemma 2.3%.  Suppose that0 < o <n, —1 <B <0, Q€ L (" 1),s > —
A > 0and any f € L' (|x|P=®)/") there exists a constant C, independent of f, such that

1 n/n—a
/{XIITQaf(x)|>)L} \x]ﬁdx S C (I H f HLl(lxﬁ(na)/n)> , (2'2)

1 n/n—a
fo o P2 <C (1 g 3

Lemma 244,  Suppose that 0 < o0 < n, Q is homogeneous of degree zero on R, Q €
L5(S" 1) (s > 1), and define the operator Mgf(’fz by

1 2
A A
o f() = Om//2<|xy|<r I__I mi (A3, 7) f(v)[dy.

Let |y| =m; — 1 fori = 1,2, and D(A;) € BMO(R?"), then for any 1 <t < oo, we have
AW <CTT L 1% lawo [Maaf )+ (ara(F))™]. ()
i=1]yl=m;—1

where C is a constant independent of f and t.

Proof of Theorem 1.1. By Lemma 2.4 and noting thatt/q =t/p — at/n, we obtain

A 1
| o ”me<CH Y 10 Ibvo (1| Mo.af lis + Il Morar (1) 111
l yl m;—1

P
<Cc[I X D" lsmoll £l -

i=1]yl=mi—1
Since M, 'Azf( )<CA7Iglfzf(x) for all x € R”, we have
M5 f oo <[l Mo/ f Il < CH Y | D"A;[lemoll £ e -
=1 |y|=m;—1

This finishes the proof of (1.10).
Before showing (1.9), we give a proposition.
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Proposition 2.5. Forany € > 0with0 < a—¢€ < o+ € < n, we have

T4 f(0)] < CelMy 22 FOMY 22 f (]2,

Proof. The basic idea of the proof is taken from [7]. Given x € R” and € > 0 with 0 <

o — €& < a+ €& <n, wechoose § > 0 such that §%¢ = gl(’fjs flx )/Mgl(fzs f(x). Now we put

“ A Rm (A 3 X )Rm (A 3 X )
' 2 \A1X, Y , (A23X,Y
— — —o+m — Q(x d
f( ) /x y|<é ‘X y‘” 1+my—2 ( )’)f()’) y

le (Al ;x7y)Rm2 (AZ;xay)
/|x ¥|>6 |x_y|n7(x+m1+m272 Q(x_y)f(y)dy
=0 +5.

Thus

3 ’le (Al;xvy)Rmz(AZ;x7y)‘
|Il| S Z /2j6<|xy|<2j+15 ’x_y’n7a+m1+m272 |Q()C—y)||f(y)|dy

Z 2 ]5 (n—a+my+my— 2)/ 4 ’le (Al;x,y)Rmz(Ag;x,y)\]Q(x_y)Hf(y)‘dy

j=1 [x—y|<2-7*18

<C, 2(2 ]+15) n—Ot+€-+m)+my— 2)/ » /+15’Rm' (A132,Y) Ry (A2s x, ) [|Q(x — y)[| fy) |dy
x—y

j=1
< Ce8Mg/y” o (x).
Similarly,
|| < Ce *Mg'52 £ ().
Therefore, we get
Al,A A ArL,A
TR ()] < Ce[8°Mg'y2  f(x) + 8 Mg/ . f ()]
ApA A
S CS [MQfaJ,z-gf(x)]l/z[ Qla zgf(x)]l/z’

The proposition is proved.

Take 0 < € < « satisfying o +€/n < 1/p <1, 1< qy,q2 < oo satisfying 1/q; = 1/p—
(a+¢€)/nand 1/g» =1/p— (o —€)/n. Noting that 1 /g = 1/2g; + 1/2q», by Proposition 2.5.
Holder's inequality and (1.10), we obtain

A A A
| Tgf“”me<C||[ oraref 1 l2q, || MQ!a2 o £1'2 l12gs

SCH Y. DA |Imoll £ llr -

i=1 |y|=m;—1

This finishes the proof of (1.9).
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Proof of Theorem 1.2. At first we show (1.12). By Lemma 2.4, we get

. 2
M@ <C[] X 1104 lsvo [Ma.af (x) + (Mar.aa (1) ()]

i=1|yl=mi—1

2
For any A > 0, if CH Z || DYA; ||Bmo= Co, we get
i=1 y|=m;—1

Par< [ P
{x:CoMa o f(x)>A/2}

/{x:MQTfme}

+/ x|Pdx:=J,+ /.
{x:CoMor o (IF1) () V1> /2}

Using Lemma 2.3, we have

| =
Ji < (COI | f HL](|xﬁ(ﬂO¢)/")>

2 /(n—a)
<C (IH Z | DYA; |[Bmol| f HLl(x|ﬁ<"0‘>/")> )

i=1 |’)/‘:m[—1

Now let us give the estimation of J,. Note that

2C n/(n— n/(n—
S0yl [ (s (1)) P

2Co ., /(n oy ]/ e) O\ e
< By ([ (a1 o) )

Co o n/(n—a)
< (52 1 0t al 1P )

Jr <(

1 n
By -1<B<0and0< o <n, ———— = 1— % applying (L', L=« ) boundedness of Mg o
n/(n—a) n '
I3 ot
with power weights [1”, and that ———— = — —, we have
n/(n—a) n
| (Mo 1) PO |, <C (Mol 1P |

<C || flelPlr=m
=CIlf g (qpo-arm) -
So

| Jin—a)
S < (COI If HL1(|xﬁ<na>/n)>

IN

2 n/(n—a)
C(IH Y, IID7A; HBMonHLl(x|ﬁ<na>/n>> :

i=1 |’)/‘:m[—1
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Combining the estimates for J; and J, we get

12 n/(n—a)
/{X'|M?zl e oy I SC I-Hu - N DAl s gopo-ae
M0 o i=1|y|l=m;—
We finish the proof of (1.12).
From the proof of Proposition 2.5, we have
A Ar,A —eq A
Tole* f0)] < Ce[8°Mg' 52 f(x) + 8 Mg 2 . f ())-
For any A > 0, by (1.12) we get
| oPar < [ [x[dx
{x| T2 f(x0)[>A} {x:Ce 6 EMq qre f(x)>A )2}
+ / x|Pdx
{(xCe8eMpL2 F(x)>2/2} o
n/(n—a)

1 2
<c| I X 1D Aillsvoll f llzsupo-arm)
=

We finish the proof of (1.11). The proof of the theorems are complete.
Remark 1. Theorem 1.1 also holds for the operators Tg 1(;4 2 A and Mgl(’fz’"' A keN.
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