DOI: 10.3969/j.issn.1672-4070.2012.03.002

BMO ESTIMATES FOR MULTILINEAR FRACTIONAL INTEGRALS*

Xiangxing Tao and Yunpin Wu
(Zhejiang University of Science and Technology, China)

Received July 30, 2010

Abstract. In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p(1 to <math>L^q$ and from L^p to $L^{n/(n-\alpha),\infty}$ with power weight, respectively, where

$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) = \int_{\mathbf{R}^n} \frac{R_{m_1}(A_1; x, y) R_{m_2}(A_2; x, y)}{|x - y|^{n - \alpha + m_1 + m_2 - 2}} \Omega(x - y) f(y) dy$$

and

$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x) = \sup_{r>0} \frac{1}{r^{n-\alpha+m_1+m_2-2}} \int_{|x-y|< r} \prod_{i=1}^{2} R_{m_i}(A_i;x,y) \Omega(x-y) f(y) |dy,$$

and $0 < \alpha < n$, $\Omega \in L^s(S^{n-1)}(s \ge 1)$ is a homogeneous function of degree zero in \mathbb{R}^n , A_i is a function defined on \mathbb{R}^n and $R_{m_i}(A_i;x,y)$ denotes the $m_i - th$ remainder of Taylor series of A_i at x about y. More precisely, $R_{m_i}(A_i;x,y) = A_i(x) - \sum_{|\gamma| < m_i} \frac{1}{\gamma!} D^{\gamma} A_i(y) (x-y)^r$, where $D^{\gamma}(A_i) \in \mathrm{BMO}(\mathbb{R}^n)$ for $|\gamma| = m_i - 1(m_i > 1)$, i = 1, 2.

Key words: multilinear operator, fractional integral, rough kernel, BMO

AMS (2010) subject classification: 42B20, 42B25

1 Introduction

As two of the most important operators in harmonic analysis, the fractional integral operator $T_{\Omega,\alpha}$ and the corresponding maximal operator $M_{\Omega,\alpha}$ are defined by

$$T_{\Omega,\alpha}f(x) := \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) dy, \tag{1.1}$$

^{*} Supported in part by the NNSF of China under Grant #10771110 and # 11171306 and by the ZNSF of China under Grant LY12A01024.

$$M_{\Omega,\alpha}f(x) := \sup_{h>0} \int_{|x-y|< h} |\Omega(x-y)f(y)| dy, \tag{1.2}$$

where $0 < \alpha < n$, $1/q = 1/p - \alpha/n$ and $\Omega \in L^s(S^{n-1})(s \ge n/(n-\alpha))$ is homogeneous of degree zero in \mathbb{R}^n . In 1993 and 1998, Chanillo [1] and Ding [7] proved that $T_{\Omega,\alpha}$ and $M_{\Omega,\alpha}$ are bounded from $L^p(1 to <math>L^q$ respectively. In 1997, Ding [2] gave that if $-1 < \beta < 0$ and $f \in L^1(|x|^{\beta(n-\alpha)/n})$, then $T_{\Omega,\alpha}$ and $M_{\Omega,\alpha}$ are both bounded from $L^1(|x|^{\beta(n-\alpha)/n})$ to $L^{n/(n-\alpha),\infty}$.

It is well known that the study of multilinear fractional integral operators are received increasing attentions. Let $\gamma = (\gamma_1, \gamma_2, \cdots, \gamma_n)$, and $\gamma_i (i = 1, 2, \cdots, n)$ be nonnegtive integers. Denote $|\gamma| = \sum_{i=1}^{n} \gamma_i, \gamma! = \gamma_1! \gamma_2! \cdots \gamma_n!, x^{\gamma} = x_1^{\gamma_1} x_2^{\gamma_2} \cdots x_n^{\gamma_n}$

$$D^{\gamma} = \frac{\partial^{|\gamma|}}{\partial^{\gamma_1} x_1 \partial^{\gamma_2} x_2 \cdots \partial^{\gamma_n} x_n}.$$

Suppose that A is a function defined on \mathbb{R}^n . Denote by $R_m(A; x, y)$ the m-th order remainder of the Taylor series of A at x about y, that is, $R_m(A; x, y) = A(x) - \sum_{|y| < m} \frac{1}{\gamma!} D^{\gamma} A(y) (x - y)^r$, $m \ge 1$.

Then the multilinear fractional integral operator $T_{\Omega,\alpha}^A$ is defined by

$$T_{\Omega,\alpha}^{A}f(x) := \int_{\mathbf{R}^{n}} \frac{\Omega(x-y)R_{m}(A;x,y)}{|x-y|^{n-\alpha+m-1}} f(y) dy$$

$$\tag{1.3}$$

and the relevant maximal operator $M_{\Omega,\alpha}^A$ is given by

$$M_{\Omega,\alpha}^{A}f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+m-1}} \int_{|x-y|< r} |\Omega(x-y)R_{m}(A;x,y)f(y)| dy.$$
 (1.4)

In 2001, $\operatorname{Ding}^{[3]}$ proved that if $D^{\gamma}A \in L^r(\mathbf{R}^n)(1 < r \le \infty, |\gamma| = m-1)$, then $T_{\Omega,\alpha}^A$, $M_{\Omega,\alpha}^A$ are both weighted bounded operators from $L^p(w^p)$ to $L^q(w^q)$ with the weight $w \in A(p,q)$ and from $L^p(1 \le p < n/\alpha)$ to $L^{n/(n-\alpha),\infty}$ with the power weight. Obviously, when m=1, $T_{\Omega,\alpha}^A$ reduces to the commutator generated by the fractional integral $T_{\Omega,\alpha}$ and the function A. In 2002, Yang and Wu $^{[9]}$ proved that if $D^{\gamma}A \in \operatorname{BMO}(\mathbf{R}^n)$, then $T_{\Omega,\alpha}^A$ and $M_{\Omega,\alpha}^A$ are bounded from $L^p(1 to <math>L^q$. In 2003, Lu and Zhang $^{[5]}$ proved that if $D^{\gamma}A \in \wedge_{\beta}$, $s > \frac{n}{n-(\alpha+2\beta)}$, $0 < \beta < 1$, $1/q = 1/p-(\alpha+\beta)/n$, then $T_{\Omega,\alpha}^A$ and $M_{\Omega,\alpha}^A$ are bounded from $L^p(1 to <math>L^q$ and from L^1 to $L^{n/n-\alpha-\beta,\infty}$. In 2001, Lu and $\operatorname{Ding}^{[4]}$ showed that if $D^{\gamma}A_j \in \operatorname{BMO}(\mathbf{R}^n)$, than the operator

$$T_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k} f(x) := \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha+N}} \prod_{j=1}^k R_{m_j}(A_j;x,y) f(y) dy$$
 (1.5)

with $N = \sum_{j=1}^{k} (m_j - 1)(m_j \ge 2)$ and the relevant maximal operator

$$M_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k}f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+N}} \int_{|x-y|< r} |\Omega(x-y) \prod_{i=1}^k R_{m_i}(A_i;x,y) f(y)| dy$$
 (1.6)

are both weighted bounded operators from $L^p(w^p)$ to $L^q(w^q)$ with $w \in A(p,q)$.

In 2006, Lan^[8] proved that if $D^{\gamma}A \in \dot{\wedge}_{\beta}$, then the operator

$$T_{\Omega,\alpha}^{A_1,A_2}f(x) := \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha+N}} \prod_{j=1}^2 R_{m_j}(A_j;x,y) f(y) dy$$
 (1.7)

with $N = \sum_{j=1}^{2} (m_j - 1)(m_j \ge 2)$ and the relevant maximal operator

$$M_{\Omega,\alpha}^{A_1,A_2}f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+N}} \int_{|x-y|< r} |\Omega(x-y) \prod_{j=1}^{2} R_{m_j}(A_j;x,y) f(y)| dy$$
 (1.8)

are bounded from $L^1(\mathbf{R}^n)$ to $L^{\frac{n}{n-(\alpha+2\beta)},\infty}(\mathbf{R}^n)$ and from $L^1(|x|^{\frac{t(n-(\alpha+2\beta))}{n}})$ to $L^{\frac{n}{n-(\alpha+2\beta)},\infty}(|x|^t)$.

Our aim in the paper is to establish the boundedness for the multilinear fractional integral operators $T_{\Omega,\alpha}^{A_1,A_2}$ and $M_{\Omega,\alpha}^{A_1,A_2}$, and obtain the following theorems:

Theorem 1.1. Let $0 < \alpha < n$, A_i is a function defined on \mathbb{R}^n , $D^{\gamma}(A_i) \in BMO(\mathbb{R}^n)(|\gamma| = m_i - 1)$, i = 1, 2 and Ω is homogeneous of degree zero on \mathbb{R}^n with zero mean value on S^{n-1} , $\Omega \in L^s(S^{n-1})$ with $s > \frac{n}{n-\alpha}$. Then if $1 < p, q < \infty$, and $1/q = 1/p - \alpha/n$, there exists a constant C, independent of A and f, such that

$$\| T_{\Omega,\alpha}^{A_1,A_2} f \|_{L^q} \le C \prod_{i=1}^2 \sum_{|\gamma|=m_i-1} \| D^{\gamma} A_i \|_{\text{BMO}} \| f \|_{L^p},$$
 (1.9)

$$\|M_{\Omega,\alpha}^{A_1,A_2}f\|_{L^q} \le C \prod_{i=1}^2 \sum_{|\gamma|=m_i-1} \|D^{\gamma}A_i\|_{BMO} \|f\|_{L^p}.$$
(1.10)

Theorem 1.2. Let $0 < \alpha < n$, A_i a function defined on \mathbb{R}^n , $D^{\gamma}(A_i) \in BMO(\mathbb{R}^n)(|\gamma| = m_i - 1)$, i = 1, 2 and $\Omega \in L^s(S^{n-1})$, $s \ge 1$. Then if $-1 < \beta < 0$, there exists a constant C, independent of A and f, such that for any $\lambda > 0$ and any $f \in L^1(|x|^{\beta(n-\alpha)/n})$, the following conclusions hold:

$$\int_{\{x:|T_{\Omega,\alpha}^{A_1,A_2}f(x)|>\lambda\}} |x|^{\beta} dx \le C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma|=m_i-1} \|D^{\gamma}A_i\|_{BMO} \|f\|_{L^1(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}, \quad (1.11)$$

$$\int_{\{x:|M_{\Omega,\alpha}^{A_1,A_2}f(x)|>\lambda\}} |x|^{\beta} dx \le C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma|=m_i-1} \|D^{\gamma}A_i\|_{BMO} \|f\|_{L^1(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}.$$
(1.12)

2 Proof of Theorems

Lemma 2.1^[6]. Let A be a function on \mathbb{R}^n and $D^{\gamma}A \in L^l_{loc}(\mathbb{R}^n)$ for $|\gamma| = m$ and some l > n. Then

$$|R_m(A;x,y)| \le C|x-y|^m \sum_{|\gamma|=m} \left(\frac{1}{|\widetilde{Q}(x,y)|} \int_{\widetilde{Q}(x,y)} |D^{\gamma}A(z)|^l dz\right)^{\frac{1}{l}},$$

where $\widetilde{Q}(x,y)$ is the cube centered at x with edges parallel to the axes and having diameter $16\sqrt{n}|x-y|$.

Lemma 2.2^[7]. Let $0 < \alpha < n$, Ω be homogeneous of degree zero on \mathbb{R}^n , $\Omega \in L^s(S^{n-1})$, $s \ge \frac{n}{n-\alpha}$, $1 < p,q < \infty$ and $1/q = 1/p - \alpha/n$, then

$$|| M_{\Omega,\alpha} f ||_{L^q} \le C || f ||_{L^p}. \tag{2.1}$$

Lemma 2.3^[2]. Suppose that $0 < \alpha < n, -1 < \beta < 0, \Omega \in L^s(S^{n-1}), s \ge \frac{n}{n-\alpha}$. Then for any $\lambda > 0$ and any $f \in L^1(|x|^{\beta(n-\alpha)/n})$, there exists a constant C, independent of f, such that

$$\int_{\left\{x:\left|T_{\Omega,\alpha}f(x)\right|>\lambda\right\}}|x|^{\beta}\mathrm{d}x \leq C\left(\frac{1}{\lambda}\parallel f\parallel_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/n-\alpha},\tag{2.2}$$

$$\int_{\{x:|M_{\Omega,\alpha}f(x)|>\lambda\}} |x|^{\beta} dx \le C \left(\frac{1}{\lambda} \| f \|_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/n-\alpha}.$$
(2.3)

Lemma 2.4^[4]. Suppose that $0 < \alpha < n$, Ω is homogeneous of degree zero on \mathbb{R}^n , $\Omega \in L^s(S^{n-1})(s \ge 1)$, and define the operator $\widetilde{M}_{\Omega,\alpha}^{A_1,A_2}$ by

$$\widetilde{M}_{\Omega,\alpha}^{A_1,A_2} f(x) := \sup_{r>0} \frac{1}{r^{n-\alpha+N}} \int_{r/2 \le |x-y| < r} |\Omega(x-y) \prod_{i=1}^2 R_{m_i}(A_i;x,y) f(y) | dy.$$

Let $|\gamma| = m_i - 1$ for i = 1, 2, and $D^{\gamma}(A_i) \in BMO(\mathbf{R}^n)$, then for any $1 < t < \infty$, we have

$$\widetilde{M}_{\Omega,\alpha}^{A_1,A_2} f(x) \le C \prod_{i=1}^{2} \sum_{|\gamma| = m_i - 1} \| D^{\gamma} A_i \|_{BMO} \left[M_{\Omega,\alpha} f(x) + (M_{\Omega^t,\alpha t}(|f|^t)(x))^{1/t} \right], \tag{2.4}$$

where C is a constant independent of f and t.

Proof of Theorem 1.1. By Lemma 2.4 and noting that $t/q = t/p - \alpha t/n$, we obtain

$$\|\widetilde{M}_{\Omega,\alpha}^{A_{1},A_{2}}f\|_{L^{q}} \leq C \prod_{i=1}^{2} \sum_{|\gamma|=m_{i}-1} \|D^{\gamma}A_{i}\|_{BMO} \left(\|M_{\Omega,\alpha}f\|_{L^{q}} + \|M_{\Omega^{t},\alpha t}(|f|^{t})\|_{q/t}^{1/t}\right)$$

$$\leq C \prod_{i=1}^{2} \sum_{|\gamma|=m_{i}-1} \|D^{\gamma}A_{i}\|_{BMO} \|f\|_{L^{p}}.$$

Since $M_{\Omega,\alpha}^{A_1,A_2} f(x) \leq C \widetilde{M}_{\Omega,\alpha}^{A_1,A_2} f(x)$ for all $x \in \mathbf{R}^n$, we have

$$\| M_{\Omega,\alpha}^{A_1,A_2} f \|_{L^q} \leq \| \widetilde{M}_{\Omega,\alpha}^{A_1,A_2} f \|_{L^q} \leq C \prod_{i=1}^2 \sum_{|\gamma|=m_i-1} \| D^{\gamma} A_i \|_{\text{BMO}} \| f \|_{L^p}.$$

This finishes the proof of (1.10).

Before showing (1.9), we give a proposition.

Proposition 2.5. For any $\varepsilon > 0$ with $0 < \alpha - \varepsilon < \alpha + \varepsilon < n$, we have

$$|T_{\Omega,\alpha}^{A_1,A_2}f(x)| \le C_{\varepsilon} [M_{\Omega,\alpha+\varepsilon}^{A_1,A_2}f(x)M_{\Omega,\alpha-\varepsilon}^{A_1,A_2}f(x)]^{1/2}.$$

Proof. The basic idea of the proof is taken from [7]. Given $x \in \mathbb{R}^n$ and $\varepsilon > 0$ with $0 < \alpha - \varepsilon < \alpha + \varepsilon < n$, we choose $\delta > 0$ such that $\delta^{2\varepsilon} = M_{\Omega,\alpha+\varepsilon}^{A_1,A_2} f(x)/M_{\Omega,\alpha-\varepsilon}^{A_1,A_2} f(x)$. Now we put

$$\begin{split} T_{\Omega,\alpha}^{A_1,A_2}f(x) &= \int_{|x-y|<\delta} \frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}} \Omega(x-y)f(y)\mathrm{d}y \\ &+ \int_{|x-y|\geq\delta} \frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}} \Omega(x-y)f(y)\mathrm{d}y \\ &= I_1 + I_2. \end{split}$$

Thus

$$\begin{split} |I_{1}| &\leq \sum_{j=1}^{\infty} \int_{2^{-j}\delta \leq |x-y| < 2^{-j+1}\delta} \frac{|R_{m_{1}}(A_{1};x,y)R_{m_{2}}(A_{2};x,y)|}{|x-y|^{n-\alpha+m_{1}+m_{2}-2}} |\Omega(x-y)| |f_{(y)}| \mathrm{d}y \\ &\leq \sum_{j=1}^{\infty} (2^{-j}\delta)^{-(n-\alpha+m_{1}+m_{2}-2)} \int_{|x-y| < 2^{-j+1}\delta} |R_{m_{1}}(A_{1};x,y)R_{m_{2}}(A_{2};x,y)| |\Omega(x-y)| |f_{(y)}| \mathrm{d}y \\ &\leq C_{\varepsilon} \sum_{j=1}^{\infty} (2^{-j+1}\delta)^{-(n-\alpha+\varepsilon+m_{1}+m_{2}-2)} \int_{|x-y| < 2^{-j+1}\delta} |R_{m_{1}}(A_{1};x,y)R_{m_{2}}(A_{2};x,y)| |\Omega(x-y)| |f_{(y)}| \mathrm{d}y \\ &\leq C_{\varepsilon} \delta^{\varepsilon} M_{\Omega,\alpha-\varepsilon}^{A_{1},A_{2}} f(x). \end{split}$$

Similarly,

$$|I_2| \leq C_{\varepsilon} \delta^{-\varepsilon} M_{\Omega,\alpha+\varepsilon}^{A_1,A_2} f(x).$$

Therefore, we get

$$|T_{\Omega,\alpha}^{A_1,A_2}f(x)| \leq C_{\varepsilon} [\delta^{\varepsilon} M_{\Omega,\alpha-\varepsilon}^{A_1,A_2} f(x) + \delta^{-\varepsilon} M_{\Omega,\alpha+\varepsilon}^{A_1,A_2} f(x)]$$

$$\leq C_{\varepsilon} [M_{\Omega,\alpha+\varepsilon}^{A_1,A_2} f(x)]^{1/2} [M_{\Omega,\alpha-\varepsilon}^{A_1,A_2} f(x)]^{1/2}.$$

The proposition is proved.

Take $0 < \varepsilon < \alpha$ satisfying $\alpha + \varepsilon/n < 1/p < 1$, $1 < q_1, q_2 < \infty$ satisfying $1/q_1 = 1/p - (\alpha + \varepsilon)/n$ and $1/q_2 = 1/p - (\alpha - \varepsilon)/n$. Noting that $1/q = 1/2q_1 + 1/2q_2$, by Proposition 2.5. Holder's inequality and (1.10), we obtain

$$\| T_{\Omega,\alpha}^{A_{1},A_{2}} f \|_{L^{q}} \leq C \| [M_{\Omega,\alpha+\varepsilon}^{A_{1},A_{2}} f]^{1/2} \|_{2q_{1}} \| [M_{\Omega,\alpha-\varepsilon}^{A_{1},A_{2}} f]^{1/2} \|_{2q_{2}}$$

$$\leq C \prod_{i=1}^{2} \sum_{|\gamma|=m_{i}-1} \| D^{\gamma} A_{i} \|_{BMO} \| f \|_{L^{p}} .$$

This finishes the proof of (1.9).

Proof of Theorem 1.2. At first we show (1.12). By Lemma 2.4, we get

$$\widetilde{M}_{\Omega,\alpha}^{A_1,A_2} f(x) \leq C \prod_{i=1}^{2} \sum_{|\gamma| = m_i - 1} \| D^{\gamma} A_i \|_{\text{BMO}} \left[M_{\Omega,\alpha} f(x) + (M_{\Omega^t,\alpha t}(|f|^t)(x))^{1/t} \right].$$

For any $\lambda > 0$, if $C \prod_{i=1}^{2} \sum_{|\gamma|=m_i-1} \|D^{\gamma}A_i\|_{\text{BMO}} \doteq C_0$, we get

$$\int_{\{x:|M_{\Omega,\alpha}^{A_1,A_2}f(x)|>\lambda\}} |x|^{\beta} dx \le \int_{\{x:C_0M_{\Omega,\alpha}f(x)>\lambda/2\}} |x|^{\beta} dx
+ \int_{\{x:C_0M_{\Omega',\alpha I}(|f|^I)(x))^{1/I}>\lambda/2\}} |x|^{\beta} dx := J_1 + J_2.$$

Using Lemma 2.3, we have

$$J_{1} \leq \left(C_{0} \frac{1}{\lambda} \| f \|_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}$$

$$\leq C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma|=m_{i}-1} \| D^{\gamma} A_{i} \|_{BMO} \| f \|_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}.$$

Now let us give the estimation of J_2 . Note that

$$J_{2} \leq \left(\frac{2C_{0}}{\lambda}\right)^{n/(n-\alpha)} \int_{\mathbf{R}^{n}} (M_{\Omega^{t},\alpha t}(|f|^{t})(x))^{1/t \cdot n/(n-\alpha)} |x|^{\beta} dx$$

$$\leq \left(\frac{2C_{0}}{\lambda}\right)^{n/(n-\alpha)} \left(\int_{\mathbf{R}^{n}} \left[(M_{\Omega^{t},\alpha t}(|f|^{t})(x))^{1/t} |x|^{\beta(n-\alpha)/n} \right]^{n/(n-\alpha)} dx \right)^{\frac{n-\alpha}{n} \frac{n}{n-\alpha}}$$

$$\leq \left(\frac{C_{0}}{\lambda} \| (M_{\Omega^{t},\alpha t}|f|^{t})^{1/t} |x|^{\beta(n-\alpha)/n} \|_{L^{\frac{n}{n-\alpha}}} \right)^{n/(n-\alpha)}.$$

By $-1 < \beta < 0$ and $0 < \alpha < n$, $\frac{1}{n/(n-\alpha)} = 1 - \frac{\alpha}{n}$, applying $(L^1, L^{\frac{n}{n-\alpha}})$ boundedness of $M_{\Omega,\alpha}$ with power weights [11], and that $\frac{t}{n/(n-\alpha)} = t - \frac{\alpha t}{n}$, we have

$$\| (M_{\Omega^{t},\alpha t}|f|^{t})^{1/t}|x|^{\beta(n-\alpha)/n} \|_{L^{\frac{n}{n-\alpha}}} \leq C \| (M_{\Omega^{t},\alpha t}|f|^{t})|x|^{\beta(n-\alpha)/n} \|_{L^{\frac{n}{(n-\alpha)t}}}^{1/t}$$

$$\leq C \| f|x|^{\beta(n-\alpha)/n} \|_{L^{1}}$$

$$= C \| f \|_{L^{1}(|x|^{\beta(n-\alpha)/n})}.$$

So

$$J_{2} \leq \left(C_{0} \frac{1}{\lambda} \parallel f \parallel_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}$$

$$\leq C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma|=m_{i}-1} \parallel D^{\gamma} A_{i} \parallel_{\text{BMO}} \parallel f \parallel_{L^{1}(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}.$$

Combining the estimates for J_1 and J_2 we get

$$\int_{\{x: |M^{A_1,A_2}_{\Omega,\alpha}f(x)| > \lambda\}} |x|^{\beta} dx \le C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma| = m_i - 1} ||D^{\gamma}A_i||_{BMO} ||f||_{L^1(|x|^{\beta(n-\alpha)/n})} \right)^{n/(n-\alpha)}.$$

We finish the proof of (1.12).

From the proof of Proposition 2.5, we have

$$|T_{\Omega,\alpha}^{A_1,A_2}f(x)| \leq C_{\varepsilon} [\delta^{\varepsilon} M_{\Omega,\alpha-\varepsilon}^{A_1,A_2}f(x) + \delta^{-\varepsilon} M_{\Omega,\alpha+\varepsilon}^{A_1,A_2}f(x)].$$

For any $\lambda > 0$, by (1.12) we get

$$\begin{split} \int_{\{x:|T_{\Omega,\alpha}^{A_1,A_2}f(x)|>\lambda\}} |x|^{\beta} \mathrm{d}x &\leq \int_{\{x:C_{\varepsilon}\delta^{-\varepsilon}M_{\Omega,\alpha+\varepsilon}f(x)>\lambda/2\}} |x|^{\beta} \mathrm{d}x \\ &+ \int_{\{x:C_{\varepsilon}\delta^{\varepsilon}M_{\Omega,\alpha-\varepsilon}^{A_1,A_2}f(x)>\lambda/2\}} |x|^{\beta} \mathrm{d}x \\ &\leq C \left(\frac{1}{\lambda} \prod_{i=1}^{2} \sum_{|\gamma|=m_i-1} \|D^{\gamma}A_i\|_{\mathrm{BMO}} \|f\|_{L^1(|x|^{\beta(n-\alpha)/n})}\right)^{n/(n-\alpha)}. \end{split}$$

We finish the proof of (1.11). The proof of the theorems are complete.

Remark 1. Theorem 1.1 also holds for the operators $T_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k}$ and $M_{\Omega,\alpha}^{A_1,A_2,\cdots,A_k}$, $k \in \mathbb{N}$. **Acknowledgment** The authors would like to thank the referees for their useful comments.

References

- [1] Chanillo, S., Watson, D. and Wheeden, R. L., Some Integral and Maximal Operators Related to Star-like, Studia. Math., 107(1993), 233-255.
- [2] Ding Y., Weak Type Bounds for a Class of Rough Operators with Power Weights, Proc. Amer. Math. Soc., 125(1997), 2939-2942.
- [3] Ding Y., A Note on Multiliner Fractional Integrals with Rough Kernel, Adv. Math. J., 30(2001), 238-246.
- [4] Ding, Y. and Lu, S. Z., Weighted Boundedness for a Class of Rough Multilinear Operators, Acta. Math. Sinica., 17(2001), 517-526.
- [5] Lu, S. Z. and Zhang P., Lipschitz Estimates for Generalized Commutators of Fractional Integrals with Rough Kernel, Nachr. Math., 252(2003), 70-85.
- [6] Cohen, J. J. and Gosselin, A BMO Estimate for Multilinear Singular Integral Operators, Illionois J. Math., 30(1986), 445-465.
- [7] Ding, Y. and Lu, S. Z., Weighted Norm Inequalities for Fractional Integral Operators with Rough Kernel, Canad. J. Math., 58(1998), 29-39.
- [8] Lan, J. C., Hardy-Littlewood-Sobolev, Theorem of Multilinear Fractional Integral Operators, Act. Math. Scientia, ser. A., 26(2006), 449-457.
- [9] Wu, Q. and Yang, D. C., On Fractional Multilinear Singular Integrals, Nachr. Math. J., 239/240(2002), 215-235.

- [10] Ding, Y. and Lu, S. Z., Multilinear Singular and Fractional Integrals, Acta. Math. Sinica, 22(2006):347-356.
- [11] Muckenhoupt, B. and Wheeden, R., Weighted Norm Inequalities for Singular and Fractional Integrals, Tran. Amer. Math. Soc., 161(1971):249-258.

Department of Mathematics Zhejiang University of Science and Technology Hangzhou, 310023 P. R. China

X. X. Tao

E-mail: xxtau@163.com

Y. P. Wu

E-mail: wyp19860917@163.com