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Abstract. In this article we introduce the difference sequence spaces W0[ f ,∆m], W1[ f ,∆m],

W∞[ f ,∆m] and S[ f ,∆m], defined by a modulus function f . We obtain a relation between

W1[ f ,∆m]∩ ℓ∞[ f ,∆m] and S[ f ,∆m]∩ ℓ∞[ f ,∆m] and prove some inclusion results.
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1 Introduction

Throughout the article w, ℓ∞, c, c0 denote the spaces of all, bounded, convergent and null

sequences respectively. The zero sequence is denoted by θ = (0,0,0, · · · ).

The notion of difference sequence was introduced by Kizmaz[4] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z = ℓ∞, c and c0, where ∆xk = xk − xk+1, for all k ∈ N.

For further investigation see the work [1],[11-15], [17-21].

The notion of modulus function was introduced by Nakano[6] and further investigated by

Ruckle[8], Maddox[5], Tripathy and Chandra[16] and many others.

Definition 1.1. A function f : [0,∞) → [0,∞) is called a modulus if

(i) f (x) = o if and only if x = 0;
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(ii) f (x+ y) ≤ f (x)+ f (y);

(iii) f is increasing;

(iv) f is continuous from the right at 0.

It is immediate from (ii) and (iv)that f is continuous everywhere on [0,∞).

The notion of statistical convergence was introduced by Fast[2] and Schoenberg[9] indepen-

dently. Later on it was further investigated by Fridy [3], Rath and Tripathy[7], Tripathy[10],[11] ,

Tripathy and Sarma[21], Tripathy and Sen[22] and many others from sequence space point of view

and linked with the summability theory. The notion depends on certain density of subsets of N,

the set of natural numbers.

Definition 1.2. A subset E of N is said to have density δ (E) if

δ (E) =
lim

n → ∞

1

n

n

∑
k=1

χE(k) exists,

where χE is the characteristic function of E .

Definition 1.3. A sequence (xn) is said to be statistically convergent to L if for every ε > 0,

δ ({k ∈ N : |xk −L| ≥ ε}) = 0. We write stat − limxk = L.

2 Definitions and Preliminaries

Definition 2.1. A sequence space E is said to be solid (or normal) if (xk) ∈ E implies

(αkxk) ∈ E , for all sequences of scalars (αk) with |αk| ≤ 1, for all k ∈ N.

Definition 2.2. A sequence space E is said to be monotone if it contains the canonical

preimages of all its step spaces.

Remark 2.1. It is clear from the above two definitions that “if a sequence space E is solid,

then it is monotone".

Definition 2.3. A sequence space E is said to be convergence free if (yk) ∈ E whenever

(xk) ∈ E and yk = 0 whenever xk = 0.

Definition 2.4. A sequence space E is said to be symmetric if (xπ(n))∈ E , whenever (xn) ∈

E , where π is a permutation of N.

Definition 2.5. A sequence space E is said to be convergence free if (yn) ∈ E , whenever

(xn) ∈ E and xn = 0 implies yn = 0.

Let m∈N be fixed, then the following new type of difference sequence spaces are introduced

and studied by Tripathy and Esi[19].

Z(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ Z} ,
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for Z = ℓ∞, c and c0, where ∆mx = (∆mxk) = (xk − xk+m).

The above notion of difference sequence spaces generalize that of difference sequence spaces

studied by Kizmaz[4].

Let m ∈ N be fixed and f be a modulus function. Then we introduce the following sequence

spaces in this article.

W0[ f ,∆m] =

{

(xk) ∈ w : lim
n→∞

1
n

n

∑
k=1

f (|∆mxk|) = 0

}

.

W1[ f ,∆m] =

{

(xk) ∈ w : lim
n→∞

1
n

n

∑
k=1

f (|∆mxk −L|) = 0, for some L ∈C

}

.

W∞[ f ,∆m] =

{

(xk) ∈ w : sup
n

1
n

n

∑
k=1

f (|∆mxk|) < ∞

}

.

S[ f ,∆m] =

{

(xk) ∈ w : stat−lim
n→∞

1
n

n

∑
k=1

f (|∆mxk|) = 0

}

.

ℓ∞[ f ,∆m] =
{

(xk) ∈ w : sup
k

f (|∆mxk|) < ∞
}

.

3 Main Results

In this section we prove the results involving the classes of sequences W0[ f ,∆m], W1[ f ,∆m],

W∞[ f ,∆m] and S[ f ,∆m]. The proof of the following result is routine verification.

Proposition 3.1. The classes of sequences W0[ f ,∆m], W1[ f ,∆m],W∞[ f ,∆m] and S[ f ,∆m] are

linear spaces over C the field of complex numbers.

Theorem 3.2. For any modulus function f , we have

W0[ f ,∆m] ⊂W1[ f ,∆m] ⊂W∞[ f ,∆m].

Proof. The first inclusion is obvious. Now we prove the second inclusion i.e. W1[ f ,∆m] ⊂

W∞[ f ,∆m]. Let (xk) ∈W1[ f ,∆m], then there exists L ∈C such that

1

n

n

∑
k=1

f (|∆mxk −L|) → 0, as n → ∞.

The proof follows from the following inequality

1

n

n

∑
k=1

f (|∆mxk|) ≤
1

n

n

∑
k=1

f (|∆mxk −L|)+ f (|L|).

Theorem 3.3. The spaces W0[ f ,∆m], W1[ f ,∆m] and W∞[ f ,∆m] are linear topological spaces

paranormed by

G(x) =
sup

r
2−r ∑

k∈Ir

f (|∆mxk|),

where the summation is over 2r ≤ k < 2r+1, for r = 0,1,2, · · · .
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Proof. We prove it for W∞[ f ,∆m] and for the other cases it will follow on applying similar

technique. Let x, y ∈W∞[ f ,∆m]. Then clearly G(x) ≥ 0, for all x, G(θ) = 0, G(−x) = G(x) and

G(x+ y) ≤ G(x)+ G(y). We have for λ ∈C,

G(λx) ≤ {1+[|λ |]}G(x).

Hence x → θ and λ fixed implies G(λx) → 0..

Next let λ → 0 and (xk) be fixed. Without loss of generality, let |λ | < 1. Then

G(x) =
sup

r
2−r ∑

k∈Ir

f (|∆mxk|) < ∞.

If the supremum is attained by a finite value of r, then it is clear that G(x) → 0, as λ → 0.

Next let the supremum be attained for larger values of r. Then

2−r ∑
k∈Ir

f (|∆mxk|) < ∞.

implies that for a given ε > 0, there exists n0 such that

2−r ∑
k∈Ir ,k≥n0

f (|∆mxk|) <
ε

2
. (1)

Next we have 2−r ∑
k∈Ir ,k≤n0

f (|∆mxk|) is finite. Since f is continuous and λ → 0, we can choose

λ such that

2−r ∑
k∈Ir ,k≤n0

f (|λ∆mxk|) <
ε

2
. (2)

Since f is increasing, we have from (1) that

2−r ∑
k∈Ir ,k≥n0

f (|λ∆mxk|) <
ε

2
. (3)

Thus we have from (2) and (3) that G(λx) < ε .

Hence the spaces are paranormed by G.

Theorem 3.4. The spaces W0[ f ,∆m], W1[ f ,∆m], W∞[ f ,∆m] and S[ f ,∆m] are not monotone

and as such are not solid.

Proof. The proof follows from the following examples.

Example 3.1. Consider the space W∞[ f ,∆m]. Let f (x) = x for all x ∈ [0,∞) and let m = 2.

Then the sequence (xk) defined by xk = k for all k ∈ N belongs to W∞[ f ,∆m].

Consider its canonical preimage space [W∞[ f ,∆m]]J defined by (yk) ∈ [W∞[ f ,∆m]]J implies

yk = xk for k = 4i+1 and k = 4i+2, for all i ∈ N and yk = 0, otherwise. Then (yk) /∈W∞[ f ,∆m].

Hence the space W∞[ f ,∆m] is not monotone and as such is not solid.
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Example 3.2. Let f (x) = x for all x ∈ [0,∞) and let m = 2. If one considers the sequence

(xk) defined by xk = 1 for all k ∈ N, then the sequence (xk) belongs to the spaces W0[ f ,∆m],

W1[ f ,∆m] and S[ f ,∆m]. Consider the canonical preimage spaces of these spaces defined as in

Example 3.1. Then (xk) neither belongs to W0[ f ,∆m] nor to W1[ f ,∆m] nor to S[ f ,∆m]. Hence the

spaces W0[ f ,∆m], W1[ f ,∆m] and S[ f ,∆m] are not monotone and hence are not solid.

Theorem 3.5. The spaces W0[ f ,∆m], W1[ f ,∆m], W∞[ f ,∆m] and S[ f ,∆m] are not conver-

gence free.

Proof. The result follows from the following example.

Example 3.3. Let f (x) = x for all x ∈ [0,∞) and let m = 3. Then the sequence (xk) defined

by xk = 2 for all k ∈ N belongs to the spaces W0[ f ,∆m], W1[ f ,∆m], W∞[ f ,∆m]. Consider the

sequence (yk) defined by yk = k2 for all k ∈ N. Then (yk) neither belongs neither to W0[ f ,∆m]

nor to W1[ f ,∆m] nor to W∞[ f ,∆m].

Hence the spaces are not convergence free.

Theorem 3.6. The spaces W0[ f ,∆m], W1[ f ,∆m], W∞[ f ,∆m] and S[ f ,∆m] are not symmetric.

Proof. The result follows from the following example.

Example 3.4. Let f (x) = x, for all x∈ [0,∞) and m = 2. Consider the sequence (xn) defined

by xn = k, for all n = k4, k ∈ N and xn = 0, otherwise. Then (xn) belongs to W0[ f ,∆m], W1[ f ,∆m],

W∞[ f ,∆m] and S[ f ,∆m]. Consider its rearrangement defined by

(yn) = (1,0,0,2,0,0,3,0,0,4,0,0,5,0,0, · · · ).

Then (yn) neither belongs to W0[ f ,∆m], W1[ f ,∆m]nor to W∞[ f ,∆m] and nor to S[ f ,∆m]. Hence

the spaces are not symmetric.

Theorem 3.7. Let f be a modulus, then

(i) WZ [∆m] ⊂W0[ f ,∆m], for Z = 1,0,∞.

(ii) If β = lim
i→∞

f (t)
t

> 0, then W1[∆m] = W1[ f ,∆m].

Proof. (i) It can be proved by using the techniques applied for establishing Theorem 4 of

Maddox[5].

(ii) For any modulus function f , let

β =
lim

i → ∞

f (t)

t
> 0.

Then we can find a η > 0 such that f (t) ≥ ηt, for all t > 0. Then clearly (xk) ∈W1[ f ,∆m] will

imply (xk) ∈W1[∆m]. The equality follows from (i).

The proof of the following result is a routine verification.

Theorem 3.8. Let f be a modulus function. Then
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(i) WZ [ f ,∆] ⊂WZ [ f ,∆m], for Z = 1,0,∞.

(ii) W1[ f ,∆m] ⊂W0[ f ,∆2m].

(iii) If m is even, then W1[ f ,∆] ⊂W0[ f ,∆m].

Theorem 3.9. (i) If (xk) ∈W1[ f ,∆m], then (xk) ∈ S[ f ,∆m].

(ii) W1[ f ,∆m]∩ ℓ∞[ f ,∆m] = S[ f ,∆m]∩ ℓ∞[ f ,∆m].

Proof. (i) Suppose that (xk) ∈W1[ f ,∆m] and let ε > 0 be given. Let

1

n

n

∑
k=1

f (|∆mxk −L|) = ∑
1

+∑
2

,

where ∑
1

and ∑
2

denote the sums taken over all values of k for which f (|∆mxk −L|) < ε and the

sums taken over all those values of k for which f (|∆mxk −L|)≥ ε respectively. Then we have

1

n

n

∑
k=1

f (|∆mxk −L|) ≥
1

n
Card {k ≤ n : |∆mxk −L| ≥ ε} .ε .

Since (xk) ∈W1[ f ,∆m], so we have δ ({k ≤ n : |∆mxk −L| ≥ ε}) = 0.

Hence (xk) ∈ S[ f ,∆m].

(ii) Suppose that (xk) ∈W1[ f ,∆m]∩ ℓ∞[ f ,∆m] and let ε > 0 be given. Let

1

n

n

∑
k=1

f (|∆mxk −L|) = ∑
1

+∑
2

,

where ∑
1

and ∑
2

denote the sums taken over all values of k for which f (|∆mxk −L|) < ε and the

sums taken over all those values of k for which f (|∆mxk − L|) ≥ ε respectively. Since (xk) ∈

ℓ∞[ f ,∆m], so we can find M > 0 such that

sup

k
f (|∆mxk −L|) ≤ M.

Now we have

1

n

n

∑
k=1

f (|∆mxk −L|) ≤
1

n
Card {k ≤ n : |∆mxk −L| ≥ ε}.M + ε .

Since ε is arbitrarily small, we have

1

n

n

∑
k=1

f (|∆mxk −L|) → 0, as n → ∞.

Hence we have

W1[ f ,∆m]∩ ℓ∞[ f ,∆m] ⊇ S[ f ,∆m]∩ ℓ∞[ f ,∆m].

The reverse inclusion follows from (i). Hence the equality follows.

Conclusion. In this article we have investigated different properties of the classes of se-

quences W0[ f ,∆m], W1[ f ,∆m], W∞[ f ,∆m] and S[ f ,∆m]. We have defined these spaces by using a

new type of difference operator and a modulus function. The technique used in this article can

be applied for further investigating some other classes of sequences.
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