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NUMERICAL SHOOTING METHODS FOR OPTIMAL

BOUNDARY CONTROL AND EXACT BOUNDARY CONTROL

OF 1-D WAVE EQUATIONS

L. STEVEN HOU, JU MING, AND SUNG-DAE YANG∗

(Communicated by Max Gunzburger)

Abstract. Numerical solutions of optimal Dirichlet boundary control problems for linear and
semilinear wave equations are studied. The optimal control problem is reformulated as a system

of equations (an optimality system) that consists of an initial value problem for the underlying
(linear or semilinear) wave equation and a terminal value problem for the adjoint wave equation.
The discretized optimality system is solved by a shooting method. The convergence properties
of the numerical shooting method in the context of exact controllability are illustrated through

computational experiments. In particular, in the case of the linear wave equation, convergent
approximations are obtained for both smooth minimum L2-norm Dirichlet control and generic,
non-smooth minimum L2-norm Dirichlet controls.

Key words. Controllability, optimal control, wave equation, shooting method, finite difference

method.

1. Introduction

In this chapter we consider an optimal boundary control approach for solving
the exact boundary control problem for one-dimensional linear or semilinear wave
equations defined on a time interval (0, T ) and spatial interval (0, X). The exact
boundary control problem we consider is to seek a boundary control g = (gL, gR) ∈
L2(0,T) ⊂ [L2(0, T )]2 and a corresponding state u such that the following system
of equations hold:

(1)


utt − uxx + f(u) = V in Q ≡ (0, T )× (0, X) ,

u|t=0 = u0 and ut|t=0 = u1 in (0, X) ,

u|t=T =W and ut|t=T = Z in (0, X) ,

u|x=0 = gL and u|x=1 = gR in (0, T ) ,

where u0 and u1 are given initial conditions defined on (0, X), W ∈ L2(0, X) and
Z ∈ H−1(0, X) are prescribed terminal conditions, V is a given function defined on
(0, T ) × (0, X), f is a given function defined on R, and g = (gL, gR) ∈ [L2(0, T )]2

is the boundary control.
It is well known (see, e.g., [15, 16, 18, 19]) that when f = 0 (i.e., the equation

is linear) and T is sufficiently large, the exact controllability problem (1) admits
at least one state-control solution pair (u,g); furthermore, the exact controller g
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having minimum boundary L2 norm is unique. Exact boundary controllability for
semilinear wave equations have also been established for certain asymptotically
linear or superlinear f ; see, e.g., [4, 23, 24].

For the exact boundary controllability problem associated with the linear wave
equation there are basically two classes of computational methods in the literature.
The first class is HUM-based methods; see, e.g., [6, 9, 15, 17, 22]. The approximate
solutions obtained by the HUM-based methods in general do not seem to converge
(even in a weak sense) to the exact solutions as the temporal and spatial grid sizes
tend to zero. Methods of regularization including Tychonoff regularization and fil-
tering that result in convergent approximations were introduced in those papers on
HUM-based methods. The second class of computational methods for boundary
controllability of the linear wave equation was those based on the method proposed
in [8]. One solves a discrete optimization problem that involves the minimization of
the discrete boundary L2 norm subject to the undetermined linear system of equa-
tions formed by the discretization of the wave equation and the initial and terminal
conditions. This approach was implemented in [12]. The computational results
demonstrated the convergence of the discrete solutions when the exact minimum
boundary L2 norm solution is smooth. In the generic case of a non-smooth exact
minimum boundary L2 norm solution the computational results of [12] exhibited
at least a weak L2 convergence of the discrete solutions.

Although there are well-known theoretical results concerning boundary control-
lability of semilinear wave equations (see, e.g., [4, 23, 24]), little seems to exist in
the literature about computational methods for such problems.

In this chapter we attempt to solve the exact controllability problems by an
optimal control approach. Precisely, we consider the following optimal control
problem: minimize the cost functional

J0(u,g) =
σ

2

∫ 1

0

|u(T, x)−W (x)|2 dx+
τ

2

∫ 1

0

|ut(T, x)− Z(x)|2 dx

+
1

2

∫ 1

0

(|gL|2 + |gR|2) dt
(2)

subject to

(3)


utt − uxx + f(u) = V in Q ≡ (0, T )× (0, 1)

u|t=0 = u0 and ut|t=0 = u1 in (0, 1)

u|x=0 = gL and u|x=1 = gR in (0, T ) .

The optimal control problem is converted into an optimality system of equations
and this optimality system of equations will be solved by a shooting method.

The optimal control approach of this chapter provides an alternative method to
the two classes of methods mentioned in the foregoing for solving the exact control-
lability problem for the linear wave equations; it also offers a systematic procedure
for solving exact controllability problems for the semilinear wave equations. The
computational solutions of this chapter obtained by an optimal control approach
exhibit behaviors similar to those of the solutions obtained in [12]. Note that an
optimal solution exists even when the equation is not exactly controllable. Note
also that the solution methods in the literature for optimal control of PDEs can be
utilized. and that there are certain intrinsic parallelisms to the algorithms studied
in this chapter.
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The shooting algorithms for solving the optimal control problem will be described
for the slightly more general functional

J (u,g) =
α

2

∫ T

0

∫ 1

0

|u− U |2 dx dt+ σ

2

∫ 1

0

|u(T, x)−W (x)|2 dx

+
τ

2

∫ 1

0

|ut(T, x)− Z(x)|2 dx+
1

2

∫ 1

0

(|gL|2 + |gR|2) dt
(4)

where the term involving (u − U) reflects our desire to match the candidate state
u with a given U in the entire domain Q. Our computational experiments of the
proposed numerical methods will be performed exclusively for the case of α = 0.

The rest of this chapter is organized as follows. In Section 2 we establish the
equivalence between the limit of optimal solutions and the minimum boundary L2

norm exact controller; this justifies the use of the optimal control approach for
solving the exact control problem. In Section 3 we formally derive the optimality
system of equations for the optimal control problem and discuss the shooting algo-
rithm for solving the optimality system. In Section 4 We state the discrete version
of the shooting algorithm for solving the discrete optimality system. Finally in Sec-
tions 5 and 6 we present computations of certain concrete controllability problems
by the shooting method for solving optimal control problems.

2. The solution of the exact controllability problem as the limit of opti-
mal control solutions

In this section we establish the equivalence between the limit of optimal solu-
tions and the minimum boundary L2 norm exact controller. We will show that if
α = 0, σ → ∞ and τ → ∞, then the corresponding optimal solution (ûστ , ĝστ ) con-
verges weakly to the minimum boundary L2 norm solution of the exact boundary
controllability problem (1). The same is also true in the discrete case.

Theorem 2.1. Assume that the exact boundary controllability problem (1) admits
a unique minimum boundary L2 norm solution (uex,gex). Assume that for every
(α, σ, τ) ∈ {0} × R+ × R+ (where R+ is the set of all positive real numbers,) there
exists a solution (uστ ,gστ ) to the optimal control problem (17). Then

(5) ∥gστ∥L2(Σ) ≤ ∥gex∥L2(Σ) ∀ (α, σ, τ) ∈ {0} × R+ × R+ .

Assume, in addition, that for a sequence {(σn, τn)} satisfying σn → ∞ and τn → ∞,

(6) uσnτn ⇀ u in L2(Q) and f(uσnτn)⇀ f(u) in L2(0, T ; [H2(Ω) ∩H1
0 (Ω)]

∗) .

Then

(7) gσnτn ⇀ gex in [L2(0, T )]2 and uσnτn ⇀ uex in L2(Q) as n→ ∞ .

Furthermore, if (6) holds for every sequence {(σn, τn)} satisfying σn → ∞ and
τn → ∞, then

(8) gστ ⇀ gex in [L2(0, T )]2 and uστ ⇀ uex in L2(Q) as σ, τ → ∞ .

Proof. Since (uστ ,gστ ) is an optimal solution, we have that

σ

2
∥uστ (T )−W∥2L2(0,1) +

τ

2
∥∂tuστ (T )− Z∥2H−1(0,1) +

1

2
∥gστ∥2L2(Σ)

= J (uστ ,gστ ) ≤ J (uex,gex) =
1

2
∥gex∥2L2(Σ)

so that (5) holds,

(9) uστ |t=T →W in L2(0, X) and (∂tuστ )|t=T → Z in H−1(0, X) as σ, τ → ∞ .



OPTIMAL AND EXACT BOUNDARY CONTROL OF 1-D WAVE EQUATIONS 125

Let {(σn, τn)} be the sequence in (6). Estimate (5) implies that a subsequence of
{(σn, τn)}, denoted by the same, satisfies

(10) gσnτn ⇀ g in [L2(0, T )]2 and ∥g∥L2(0,T ) ≤ ∥gex∥L2(0,T ) .

(uστ ,gστ ) satisfies the initial value problem in the weak form:∫ T

0

∫ X

0

uστ (vtt − vxx) dx dt+

∫ T

0

∫ X

0

[f(uστ )− V ]v dx dt

+

∫ T

0

gστ |x=X(∂xv)|x=X dt−
∫ T

0

gστ |x=0(∂xv)|x=0 dt

+

∫ X

0

(v∂tuστ )|t=T dx−
∫ X

0

v|t=0u1 dx−
∫ X

0

(uστ∂tv)|t=T dx

+

∫ X

0

(u0∂tv)|t=0 dx = 0 ∀ v ∈ C2([0, T ];H2 ∩H1
0 (0, X))

(11)

where gστ |x=0 denotes the first component of gστ and gστ |x=X the second compo-
nent of gστ . Passing to the limit in (11) as σ, τ → ∞ and using relations (9) and
(10) we obtain:∫ T

0

∫ X

0

u(vtt − vxx) dx dt+

∫ T

0

∫ X

0

[f(u)− V ]v dx dt+

∫ T

0

gR(∂xv)|x=X dt

−
∫ T

0

gL(∂xv)|x=0 dt+

∫ X

0

v|t=TZ(x) dx−
∫ X

0

v|t=0u1 dx−
∫ X

0

W (x)(∂tv)|t=T dx

+

∫ X

0

(u0∂tv)|t=0 dx = 0 ∀ v ∈ C2([0, T ];H2 ∩H1
0 (0, X)) .

The last relation and (10) imply that (u,g) is a minimum boundary L2 norm
solution to the exact control problem (1). Hence, u = uex and g = gex so that (7)
and (8) follows from (6) and (10). �

Remark 2.2. If the wave equation is linear, i.e., f = 0, then assumption (6) is
redundant and (8) is guaranteed to hold. Indeed, (11) implies the boundedness of
{∥uστ∥L2(Q)} which in turn yields (6). The uniqueness of a solution for the linear
wave equation implies (6) holds for an arbitrary sequence {(σn, τn)}.

Theorem 2.3. Assume that

: i) for every (α, σ, τ) ∈ {0} × R+ × R+ there exists a solution (uστ ,gστ ) to
the optimal control problem (17);

: ii) the limit terminal conditions hold:
(12)
uστ |t=T →W in L2(0, X) and (∂tuστ )|t=T → Z in H−1(0, X) as σ, τ → ∞ ;

: iii) the optimal solution (uστ ,gστ ) satisfies the weak limit conditions as
σ, τ → ∞:

(13) gστ ⇀ g in L2(0, T ) , uστ ⇀ u in L2(Q) ,

and

(14) f(uστ )⇀ f(u) in L2(0, T ; [H2(Ω) ∩H1
0 (Ω)]

∗)

for some g ∈ L2(0, T ) and u ∈ L2(Q).
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Then (u,g) is a solution to the exact boundary controllability problem (1) with g
satisfying the minimum boundary L2 norm property. Furthermore, if the solution
to (1) admits a unique solution (uex,gex), then

(15) gστ ⇀ gex in [L2(0, T )]2 and uστ ⇀ uex in L2(Q) as σ, τ → ∞ .

Proof. (uστ ,gστ ) satisfies (11). Passing to the limit in that equation as σ, τ → ∞
and using relations (12), (13) and (14) we obtain:∫ T

0

∫ X

0

u(vtt − vxx) dx dt+

∫ T

0

∫ X

0

[f(u)− V ]v dx dt+

∫ T

0

gR(∂xv)|x=X dt

−
∫ T

0

gL(∂xv)|x=0 dt+

∫ X

0

v|t=TZ(x) dx−
∫ X

0

v|t=0u1 dx−
∫ X

0

W (x)(∂tv)|t=T dx

+

∫ X

0

(u0∂tv)|t=0 dx = 0 ∀ v ∈ C2([0, T ];H2 ∩H1
0 (0, X)) .

This implies that (u,g) is a solution to the exact boundary controllability problem
(1).

To prove that g satisfies the minimum boundary L2 norm property, we proceeds
as follows. Let (uex,g) denotes a exact minimum boundary L2 norm solution to
the controllability problem (1). Since (uστ ,gστ ) is an optimal solution, we have
that

σ

2
∥uστ −W∥2L2(0,X) +

τ

2
∥∂tuστ − Z∥2H−1(0,X) +

1

2
∥gστ∥2L2(0,T )

= J (uστ ,gστ ) ≤ J (uex,gex) =
1

2
∥gex∥2L2(0,T )

so that

∥gστ∥L2(0,T ) ≤ ∥gex∥L2(0,T ) .

Passing to the limit in the last estimate we obtain

(16) ∥g∥L2(0,T ) ≤ ∥gex∥L2(0,T ) .

Hence we conclude that (u,g) is a minimum boundary L2 norm solution to the
exact boundary controllability problem (1).

Furthermore, if the exact controllability problem (1) admits a unique minimum
boundary L2 norm solution (uex,gex), then (u,g) = (uex,gex) and (15) follows from
assumption (13). �

Remark 2.4. If the wave equation is linear, i.e., f = 0, then assumptions i) and
(14) are redundant.

Remark 2.5. Assumptions ii) and iii) hold if gστ and uστ converges pointwise as
σ, τ → ∞.

Remark 2.6. A practical implication of Theorem 2.3 is that one can prove the
exact controllability for semilinear wave equations by examining the behavior of a
sequence of optimal solutions (recall that exact controllability was proved only for
some special classes of semilinear wave equations.) If we have found a sequence
of optimal control solutions {(uσnτn ,gσnτn)} where σn, τn → ∞ and this sequence
appears to satisfy the convergence assumptions ii) and iii), then we can confidently
conclude that the underlying semilinear wave equation is exactly controllable and
the optimal solution (uσnτn ,gσnτn) when n is large provides a good approximation
to the minimum boundary L2 norm exact controller (uex,gex).
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3. An optimality system of equations and a continuous shooting method

Under suitable assumptions on f and through the use of Lagrange multiplier
rules, the optimal control problem

(17) minimize (4) with respect to the control g subject to (3)

may be converted into the following system of equations from which an optimal
solution may be determined:

utt − uxx + f(u) = V in (0, T )× (0, X) ,

u|x=0 = gL , u|x=1 = gR , u(0, x) = u0(x), ut(0, x) = u1(x) ,

ξtt − ξxx + f ′(u)ξ = −α(u− U) in (0, T )× (0, X) ,

ξ|x=0 = 0, ξ|x=1 = 0 ,

ξ(T, x) = −τA−1(ut(T, x)− Z(x)) ξt(T, x) = −σ(u(T, x)−W (x)) ,

gL = −ξx|x=0 , and gR = ξx|x=1 ,

where the elliptic operator A : H1
0 (0, X) → H−1(0, X) is defined by Av = vxx for all

v ∈ H1
0 (0, X). By eliminating gL and gR in the system we arrive at the optimality

system

utt − uxx + f(u) = V in (0, T )× (0, X) ,

u|x=0 = −ξx|x=0 , u|x=1 = ξx|x=1 ,

u(0, x) = u0(x), ut(0, x) = u1(x) ,

ξtt − ξxx + f ′(u)ξ = −α(u− U) in (0, T )× (0, X) ,

ξ|x=0 = 0, ξ|x=1 = 0 ,

ξ(T, x) = −τA−1(ut(T, x)− Z(x)) , ξt(T, x) = −σ(u(T, x)−W (x)) .

(18)

Derivations and justifications of optimality systems are discussed in [13] for the
linear case and in [14] for the semilinear case.

The computational algorithm we propose in this chapter is a shooting method for
solving the optimality system of equations. The basic idea for a shooting method
is to convert the solution of a initial-terminal value problem into that of a purely
initial value problem (IVP); see, e.g., [2] for a discussion of shooting methods for
systems of ordinary differential equations. The IVP corresponding to the optimality
system (18) is described by

utt − uxx + f(u) = V in (0, T )× (0, X) ,

u|∂Ω =
∂ξ

∂ν

∣∣∣
∂Ω
, u(0, x) = u0(x), ut(0, x) = u1(x) ;

ξtt − ξxx + f ′(u)ξ = −α(u− U) in (0, T )× (0, X) ,

ξ|∂Ω = 0, ξ(0, x) = ω(x), ξt(0, x) = θ(x) ,

(19)

with unknown initial values ω and θ. Then the goal is to choose ω and θ such that
the solution (u, ξ) of the IVP (19) satisfies the terminal conditions

F1(ω, θ) ≡ ∂xxξ(T, x) + τ(ut(T, x)− Z(x)) = 0 ,

F2(ω, θ) ≡ ξt(T, x) + σ(u(T, x)−W (x)) = 0 .
(20)

A shooting method for solving (18) can be described by the following iterations:

choose initial guesses ω and θ;
for iter = 1, 2, · · · ,maxiter
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solve for (u, ξ) from the IVP (19)
update ω and θ.

A criterion for updating (ω, θ) can be derived from the terminal conditions (20).
A method for solving the nonlinear system (20) (as a system for the unknowns
ω and θ) will yield an updating formula; for instance, the well-known Newton’s
method may be invoked.

choose initial guesses ω and θ;
for iter = 1, 2, · · · ,maxiter

solve for (u, ξ) from the IVP (19)
update ω and θ:
(ωnew, θnew) = (ω, θ)− [F ′(ω, θ)]−1F (ω, θ);
if F (ωnew, θnew) = 0, stop; otherwise, set (ω, θ) = (ωnew, θnew).

A discussion of Newton’s method for an infinite dimensional nonlinear system
can be found in many functional analysis textbooks, and for the suitable assumption
convergence of Newton iteration for the optimality system is guaranteed.

4. The discrete shooting method

The shooting method described in Section (3) must be implemented discretely.
We discretize the spatial interval [0, 1] into 0 = x0 < x1 < x2 < · · · < xI < xI+1 = 1
with a uniform spacing h = 1/(I + 1) and we divide the time horizon [0, T ] into
0 = t1 < t2 < t3 < · · · < tN = T with a uniform time stepping δ = T/(N − 1). We
use the explicit, central difference scheme to approximate the initial value problem
(19):

u1i = (u0)i, u
2
i = (u0)i + δ(u1)i , ξ

1
i = ωi, ξ

2
i = ξ1i + δθi , i = 1, 2, · · · , I ;

un+1
i = −un−1

i + λuni−1 + 2(1− λ)uni + λuni+1

− δ2f(uni ) + δ2V (tn, xi), i = 1, 2, · · · , I ,
ξn+1
i = −ξn−1

i + λξni−1 + 2(1− λ)ξni + λξni+1

− δ2f ′(uni )ξ
n
i + δ2α(uni − U(tn, xi)), i = 1, 2, · · · , I

un+1
0 = −ξ

n+1
1 − ξn+1

0

h
, un+1

I+1 = −
ξn+1
I+1 − ξn+1

I

h
.

(21)

where λ = (δ/h)2 (we also use the convention that ξn0 = ξnI+1 = 0.) The gist of a
discrete shooting method is to regard the discrete terminal conditions

F2i−1 ≡ ξNi − ξN−1
i

δ
+ σ(uNi −Wi) = 0 ,

F2i ≡
ξNi−1 − 2ξNi + ξNi+1

h2
+ τ(

uNi − uN−1
i

δ
− Zi) = 0 , i = 1, 2, · · · , I

(22)

as a system of equations for the unknown initial condition ω1, θ1, ω2, θ2, · · · , ωm, θm.
Similar to the continuous case, the discrete shooting method consists of the

following iterations:

choose discrete initial guesses {ωi}Ii=1 and {θ}Ii=1;
for iter = 1, 2, · · · ,maxiter

solve for {(uni , ξni )}
i=I,n=N
i=1,n=1 from the discrete IVP (21)

update {ωi}Ii=1 and {θi}Ii=1.

The initial conditions {ωi}Ii=1 and {θi}Ii=1 are updated by Newton’s method
applied to the discrete nonlinear system (22). This requires the calculations of
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Figure 1. left - u0 , right - u1 given in (24). h = 1/256.
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Figure 2. left - exact control , right - exact u. with initial data
(24). h = 1/32.

Table 1. Results of computational experiments for the minimum
L2(Σ)-norm case for the examples with initial data (24).

h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

∥gh∥L2(Σ) λ = 1 5.9339 6.0294 6.0825 6.1103 6.1244 6.1316 6.1352

∥gh∥L2(Σ) λ = 7/8 5.9682 6.0468 6.0917 6.1454 6.1262 6.1325 6.1356

∥gh−g∥L2(Σ)

∥g∥L2(Σ)
λ = 1 6.93% 3.35% 1.63% 0.79% 0.37% 0.18% 0.09%

∥gh−g∥L2(Σ)

∥g∥L2(Σ)
λ = 7/8 7.53% 4.26% 2.88% 10.15% 0.35% 0.17% 0.08%
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Figure 3. left - approximate control uh , right - exact u with
initial data (24). h = 1/256. λ = 1.

partial derivatives. By denoting

qnij = qnij(ω1, θ1, ω2, θ2, · · · , ωI , θI) =
∂uni
∂ωj

, rnij = rnij(ω1, θ1, ω2, θ2, · · · , ωI , θI) =
∂uni
∂θj

,

ρnij = ρnij(ω1, θ1, ω2, θ2, · · · , ωI , θI) =
∂ξni
∂ωj

, τnij = τnij(ω1, θ1, ω2, θ2, · · · , ωI , θI) =
∂ξni
∂θj

,
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Figure 4. left - approximate control gh and g, middle - approx-
imate uh and target W , right - approximate uht and target Z with
initial data (24). h = 1/16, 1/32, 1/64, 1/1024 from top to bottom
respectively. λ = 1.

we obtain the following Newton’s iteration formula:

(ωnew
1 , θnew1 , ωnew

2 , θnew2 , · · · , ωnew
I , θnewI )T

=(ω1, θ1, ω2, θ2, · · · , ωI , θI)
T

− [F ′(ω1, θ1, ω2, θ2, · · · , ωI , θI)]
−1F (ω1, θ1, ω2, θ2, · · · , ωI , θI)

where the vector F and Jacobian matrix J = F ′ are defined by

F2i−1 =
ξNi − ξN−1

i

δ
+σ(uNi −Wi) , F2i =

ξNi−1 − 2ξNi + ξNi+1

h2
+τ(

uNi − uN−1
i

δ
−Zi) ,

J2i−1,2j−1 =
ρNij − ρN−1

ij

δ
+ σqNij , J2i−1,2j =

τNij − τN−1
ij

δ
+ σrNij ,

J2i,2j−1 =
ρN(i−1)j − 2ρNij + ρN(i+1)j

h2
+
τ

δ
(qNij − qN−1

ij ) ,

J2i,2j =
τN(i−1)j − 2τNij + τN(i+1)j

h2
+
τ

δ
(rNij − rN−1

ij ) .
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Moreover, by differentiating (21) with respect to ωj and θj we obtain the equations
for determining qij , rij , ρij and τij :

q1ij = 0, q2ij = 0 , r1ij = 0 , r2ij = 0 ,
ρ1ij = δij , ρ2ij = δij , τ1ij = 0 , τ2ij = δδij ,

i, j = 1, 2, · · · , I ;

qn+1
ij = −qn−1

ij + λqni−1,j + 2(1− λ)qnij + λqni+1,j

− δ2f ′(uni )q
n
ij , i, j = 1, 2, · · · , I ,

rn+1
ij = −rn−1

ij + λrni−1,j + 2(1− λ)rnij + λrni+1,j

− δ2f ′(uni )r
n
ij , i, j = 1, 2, · · · , I ,

ρn+1
ij = −ρn−1

ij + λρni−1,j + 2(1− λ)ρnij + λρni+1,j

+ δ2αqNij − δ2[f ′(uni )]ρ
n
i − δ2[f ′′(uni )q

N
i ]ξni , i, j = 1, 2, · · · , I ;

τn+1
ij = −τn−1

ij + λτni−1,j + 2(1− λ)τnij + λτni+1,j

+ δ2αrNij − δ2[f ′(uni )]ρ
n
i − δ2[f ′′(uni )r

N
i ]ξni , i, j = 1, 2, · · · , I ;

(23)

where δij is the Chronecker delta. Thus, we have the following Newton’s-method-
based shooting algorithm:

Algorithm – Newton method based shooting algorithm with central finite differ-
ence approximations of the optimality system

choose initial guesses ωi and θi, i = 1, 2, · · · , I;
% set initial conditions for u and ξ
for i = 0, 2, · · · , I + 1

u1i = (u0)i, u2i = (u0)i + δ(u1)i,
for i = 1, 2, · · · , I

ξ1i = ωi, ξ2i = ξ1i + δθi;
% set initial conditions for qij , rij , ρij , τij

for j = 1, 2, · · · , I
for i = 1, 2, · · · , I

q1ij = 0, q2ij = 0, r1ij = 0, r2ij = 0,

ρ1ij = 0, ρ2ij = 0, τ1ij = 0, τ2ij = 0;

ρ1jj = 1, ρ2jj = 1, τ2jj = δ,

% Newton iterations

for m = 1, 2, · · · ,M
% solve for (u, ξ)
for n = 2, 3, · · · , N − 1

un+1
i = −un−1

i + λuni−1 + 2(1− λ)uni + λuni+1 − δ2f(uni ) +

δ2V (tn, xi),
ξn+1
i = −ξn−1

i + λξni−1 + 2(1− λ)ξni + λξni+1 − δ2f ′(uni )ξ
n
i

+δ2α(uni − U(tn, xi));
% solve for q, r, ρ, τ
for j = 1, 2, · · · , I

for n = 2, 3, · · · , N − 1
for i = 2, · · · , N − 1

qn+1
ij = −qn−1

ij + λqni−1,j + 2(1− λ)qnij + λqni+1,j

−δ2f ′(uni )qnij ,
rn+1
ij = −rn−1

ij + λrni−1,j + 2(1− λ)rnij + λrni+1,j

−δ2f ′(uni )rnij ,
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ρn+1
ij = −ρn−1

ij + λρni−1,j + 2(1− λ)ρnij + λρni+1,j

+δ2αqnij−δ2[f ′(uni )]ρnij−δ2[f ′′(uni )qnij ]ξni ,
τn+1
ij = −τn−1

ij + λτni−1,j + 2(1− λ)τnij + λτni+1,j

+δ2αrnij−δ2[f ′(uni )]ρnij−δ2[f ′′(uni )rnij ]ξni ;
% (we need to build into the algorithm the fol-

lowing:

qn+1
0j = −ρn+1

1j

h , rn0j = − τn+1
1j

h , rnI+1,j = − τn+1
Ij

h

qnI+1,j = −ρn+1
Ij

h , ρn0j = τn0j = ρnI+1,j =

τnI+1,j = 0.)

% evaluate F and F ′

for i = 1, 2, · · · , I
F2i−1 =

ξNi −ξN−1
i

δ + σ(uNi −Wi),

F2i =
ξNi−1−2ξNi +ξNi+1

h2 + τ(
uN
i −uN−1

i

δ − Zi);
for j = 1, 2, · · · , I

J2i−1,2j−1 =
ρN
ij−ρN−1

ij

δ +σqNij , J2i−1,2j =
τN
ij −τN−1

ij

δ +

σrNij

J2i,2j−1 =
ρN
(i−1)j−2ρN

ij+ρN
(i+1)j

h2 + τ
δ (q

N
ij − qN−1

ij ),

J2i,2j =
τN
(i−1)j−2τN

ij +τN
(i+1)j

h2 + τ
δ (r

N
ij − rN−1

ij );
solve Jc = −F by Gaussian eliminations;

for i = 1, 2, · · · , I
ωnew
i = ωi + c2i−1, θnewi = θi + c2i;

if maxi |ωnew
i − ωi|+maxi |θnewi − θi| < tol, stop;

otherwise, reset ωi = ωnew
i and θi = θnewi , i = 1, 2, · · · , I;

As in the continuous case, we have the following convergence result for the shoot-
ing algorithm which follows from standard convergence results for Newton’s method
applied to finite dimensional systems of nonlinear equations.

Remark 4.1. The algorithms we propose are well suited for implementations on a
parallel computing platform such as a massive cluster of processors. The shooting
algorithms of this chapter can be regarded as a generalization of their counterpart
for systems of ODE (see, e.g., [2].) There has been a substantial literature on the
parallelization of shooting methods for ODEs [3, 10, 11]; these results will be helpful
in parallelizing the shooting algorithms of this chapter.

Table 2. Results of computational experiments for the minimum
L2(Σ)-norm case for Examples I with initial data (26) and for
λ = 1, 4/5.

h 1/32 1/64 1/128 1/256 1/512 1/1024

∥gh∥L2(Σ) λ = 1 0.12934 0.12908 0.12906 0.12907 0.12908 0.12909
∥gh∥L2(Σ) λ = 4/5 0.15941 0.15269 0.14522 0.14216 0.13907 0.13622

5. Computational experiments for controllability of the linear wave equa-
tion

We will apply Algorithm 1 to the special case of f = 0, V = 0, W = 0, Z = 0,
α = 0 and σ, τ >> 1. In other words, we will approximate the null controllability
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Figure 5. left - approximate control gh and g, middle - approx-
imate uh and target W , right - approximate uht and target Z
with initial data (24). h = 1/16, 1/32, 1/64, 1/1024 from top to
bottom respectively. λ = 7/8.

Table 3. Results of computational experiments for the minimum
L2(Σ)-norm case for Examples II with initial data (26) and for
λ = 1, 7/8.

h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

∥gh∥L2(Σ) λ = 1 0.6838 0.6388 0.6162 0.6049 0.5992 0.5963 0.5949
∥gh∥L2(Σ) λ = 7/8 0.6734 0.6348 0.6138 0.6039 0.5988 0.5963 0.5949

Table 4. Results of computational experiments for the minimum
L2(Σ)-norm case for for Examples III with initial data (26) and
for λ = 1, 7/8.

h 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

∥gh∥L2(Σ) λ = 1 1.4277 1.3187 1.2605 1.2303 1.2149 1.2071 1.2032
∥gh∥L2(Σ) λ = 7/8 1.3932 1.3007 1.2493 1.2252 1.2124 1.2065 1.2028
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Figure 6. left - approximate control gh , middle - approximate
uh and target W , right - approximate uht and target Z with ini-
tial data (26-I). h = 1/16, 1/32, 1/64, 1/1024 from top to bottom
respectively. λ = 1.

Table 5. Results of computational experiments for the minimum
L2(Σ)-norm case for Examples I, II, III in (27) with initial data I
in (26) and for λ = 1.

h 1/16 1/32 1/64 1/128

I ∥gh∥L2(Σ) 0.08084810765 0.08038960736 0.08021218880 0.08013073451
count 17 16 16 17

II ∥gh∥L2(Σ) 0.07346047350 0.07314351955 0.07307515741 0.07306230119
count 8 8 10 12

III ∥gh∥L2(Σ) 0.07438729446 0.07404916115 0.07397863882 0.07396393744
count 6 5 5 5

problem for the linear wave equation by optimal control problems. We will test
our algorithm with a smooth example (i.e., the continuous minimum boundary
L2 norm controller g and the corresponding state u are smooth) and with three
generic examples. It was reported in [12] that the discrete minimum boundary L2

norm controllers converge strongly to the continuous minimum boundary L2 norm
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Figure 7. left - approximate control gh , middle - approximate
uh and target W , right - approximate uht and target Z with ini-
tial data (26-I). h = 1/16, 1/32, 1/64, 1/1024 from top to bottom
respectively. λ = 4/5.

Table 6. Results of computational experiments for the minimum
L2(Σ)-norm case for Examples I, II, III in (27) with initial data II
in (26) and for λ = 1.

h 1/16 1/32 1/64 1/128

I ∥gh∥L2(Σ) 0.45499490909 0.43856890841 0.43072624972 0.42688986194
count 12 15 16 14

II ∥gh∥L2(Σ) 0.45794379129 0.43786262977 0.42823496745 0.42350319979
count 12 12 12 17

III ∥gh∥L2(Σ) 0.45251184147 0.43223256110 0.42248163895 0.41769256787
count 6 6 6 6

controller for the smooth example and converge weakly in the generic case. The
discrete optimal solutions found by Algorithm 1 will exhibit similar behaviors.

5.1. An example with known smooth exact solution. A smooth exact solu-
tion to the minimum boundary L2-norm controllability problem was constructed in
[12] by using Fourier series in a way similar to that used in [6]. Suppose that Q =
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Figure 8. left - approximate control gh , middle - approximate
uh and target W , right - approximate uht and target Z with ini-
tial data (26-II). h = 1/16, 1/32, 1/64, 1/1024 from top to bottom
respectively. λ = 1.

Table 7. Results of computational experiments for the minimum
L2(Σ)-norm case for Examples I, II, III in (27) with initial data
III in (26) and for λ = 1.

h 1/16 1/32 1/64 1/128

I ∥gh∥L2(Σ) 0.94846408635 0.86623499117 0.82305989083 0.80084943961
count 11 11 11 11

II ∥gh∥L2(Σ) 0.99946692390 0.90706619363 0.85837779589 0.83325287647
count 13 16 18 20

III ∥gh∥L2(Σ) 0.95205362894 0.86225101645 0.81393537311 0.78872084130
count 6 6 6 6

(0, 7/4)× (0, 1) and Σ = (0, 7/4)×{0, 1}. Let ψ0(t, x) = −
√
2π cosπ(t− 1

4 ) cos 2πx
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Figure 9. left - approximate control gh , middle - approximate
uh and target W , right - approximate uht and target Z with ini-
tial data (26-II). h = 1/64, 1/128, 1/256, 1/512, 1/1024 from top to
bottom respectively. λ = 7/8.

and

ψ1(t, x) =

[
2
√
2π(T − t) sinπ(t− 1

4
)− 10

3

√
2 sinπ(t− T )

]
sinπx

+
∑

p≥3 and p odd

4
√
2

p2 − 1

[
3p

p2 − 4
cosπ(t− 1

4
) + sin pπ(t− T )

]
sin pπx .

Then, set the initial conditions

(24) u0(x) = ψ0(0, x) + ψ1(0, x) and u1(x) =
∂ψ0

∂t
(0, x) +

∂ψ1

∂t
(0, x) .
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Figure 10. gL, gR, u
h(x, T ), and uht (x, T ) from left to right with

initial data (26-III). h = 1/16, 1/32, 1/64, 1/1024 from top to bot-
tom respectively. λ = 1.

The computation of u0 and u1 involve the summation of infinite trigonometric
series. Figure 1 and Figure 2 provides plots of u0 and u1, and the exact control and
exact solution respectively. Note that initial conditions vanish at the boundary, and
due to symmetry, we have gL(t) = u(t, 0) = u(t, 1) = gR(t). i.e the controls at two
sides of Q are the same. It is worth noting that u0 is a Lipschitz continuous function
but does not belong to C1[0, 1] and u1 is a bounded function but does not belong to
C0[0, 1]. For the initial data (24), it can be shown that u(t, x) = ψ0(t, x) +ψ1(t, x)
is the exact solution having minimum boundary L2-norm of the controllability
problem given by the first three equations in (1) provided f = 0, V = 0. Let g be
the corresponding exact Dirichlet control given by restricting u(t, x) to the lateral
sides Σ. i.e g(t) = (gL(t), gR(t)) = (u(t, 0), u(t, 1)), and

(25) gL(t) = gR(t) = −
√
2π cosπ

(
t− 1

4

)
.

For future reference, note that ∥g∥L2(Σ) =
√
2π2( 74 + 1

2π ) ≈ 6.13882.

We apply our numerical method to this example. Computational experiments
were carried out for h = 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and 1/1024 with
λ = 1 and λ = 7/8 respectively, so that the stability condition is satisfied.
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Figure 11. gL, gR, u
h(x, T ), and uht (x, T ) from left to right with

initial data (26-III). h = 1/64, 1/128, 1/256, 1/512, 1/1024 from
top to bottom respectively. λ = 7/8.

The results of our computational experiments are summarized in Table 1, where
gh are the computed approximations of the exact solutions g. All norms were
calculated by linearly interpolating the nodal values of gh. From this table, it seems
that gh converges to g in the L2(Σ)-norm at a rate of roughly 1. In order to visualize
the convergence of our method as h becomes smaller, in Figure 3 we provide plots
of the exact solution u and the corresponding computed discrete solutions uh for
h = 1/256 with λ = 1. Figure 4 and 5 are plots of the exact solution g and the
corresponding computed discrete solutions gh, a given functionW and approximate
solutions uh, and a given function Z and approximate solutions uht for h = 1/16,
h = 1/32, h = 1/64, and h = 1/1024.

It seems that our method produces (pointwise) convergent approximations for
both λ = 1 and λ = 7/8 without the need for regularization. This should be
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Figure 12. gL, gR, u
h(x, T ), and uht (x, T ) from left to right with

f(u) = sinu and initial data (26-III). h = 1/16, 1/32, 1/64, 1/128
from top to bottom respectively. λ = 1.

contrasted with other methods, e.g., that of [6], for which when λ < 1, regularization
was needed in order to obtain convergence. Also, the results obtained by our method
behave very similarly to those obtained in [12].

5.2. Generic examples with minimum L2(Σ)-norm boundary control. In
the example discussed in Section 5.1, the minimum L2(Σ)-norm control is very
smooth. Using our methods, we obtained good approximations for this example
without the need for regularization. However, this is not the generic case. In
general, even for smooth initial data, the minimum L2(Σ)-norm Dirichlet control
for the controllability problem (1) will not be smooth. In this section, we illustrate
this point and also examine the performance of our method for the generic case.

We choose Q = (0, 1)× (0, 1) in example I and Q = (0, 7/4)× (0, 1) in example
II, III, and consider three sets of C∞(Ω) initial data:

(26)
I. u0(x) = x(x− 1) and u1(x) = 0
II. u0(x) = sin(πx) and u1(x) = π sin(πx)
III. u0(x) = ex and u1(x) = xex.
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Figure 13. gL, gR, u
h(x, T ), and uht (x, T ) from left to right with

f(u) = u3/2 and initial data (26-III). h = 1/16, 1/32, 1/64, 1/128
from top to bottom respectively. λ = 1.

Note that the initial conditions (I), (II) vanish at the boundary and, that due to
symmetry, we have that u(t, 0) = u(t, 1), i.e., the control at the two sides of Q are
the same. For the initial conditions (III), we have that u(t, 0) ̸= u(t, 1).

First We examine the case λ = 1. In Figure 6, 8 and 10, we show the results
for the control for several grid sizes ranging from h = 1/16 to h = 1/1024. The
(pointwise) convergence of the approximations is evident. Note that for the initial
conditions given in (26), the minimum L2(Σ)-norm controls are seemingly piecewise
smooth, i.e., they contain jump discontinuities. The pointwise convergence of the
approximate control for the case of λ = 1 is probably a one-dimensional artifact; it
is likely due to the fact that both the space and time variables in the wave equation
in one dimension can act as time-like variables.

Further details about the computational results for the examples with initial
conditions (I) given in (26) with λ = 4/5 are given in Table 2 and Figure 7. The
convergence in L2(Σ) of the approximate minimum L2(Σ)-norm controls gh is ev-
ident as is the convergence in L2(Q) of the approximate solution uh; the rates of
convergence are seemingly first order.

Computational experiments were also carried out for λ = 7/8 for several values
of the grid size ranging from h = 1/16 to h = 1/1024. The results are summarized
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Figure 14. gL, gR, u
h(x, T ), and uht (x, T ) from left to right

with f(u) = ln(u2 + 1) and initial data (26-III). h =
1/16, 1/32, 1/64, 1/128 from top to bottom respectively. λ = 1.

in Table 3 and 4. In Figures 9 and 11, we respectively provide, for the two sets of
initial conditions (II) and (III), plots of the computed discrete solution gh, uh, uht
for the two different values of λ and for different values of the grid size.

From Figures 9 and 11, we see that the approximate minimum L2(Σ)-norm
Dirichlet controls obtained with values of λ < 1 are highly oscillatory. In fact, the
frequencies of the oscillations increase with decreasing grid size. However, it seems
that the amplitudes of the oscillations do not increase as the grid size decreases.
Furthermore, from the results in Table 3 and 4, it seems that for λ < 1, the
approximate controls gh, although oscillatory in nature and nonconvergent in a
pointwise sense, converge in an L2(Σ) sense.

The results of Table 2, 3, 4 and Figures 6, 7, 8, 9, 10, 11 indicate that for
the generic case of non-smooth minimum L2(Σ) controls and for general λ < 1,
our method produces convergent (in L2(Q) and L2(Σ)) approximations without the
need of regulatization but the approximations are not in general convergent in a
pointwise sense. Of course, approximations that do not converge in a pointwise
sense may be of little practical use, even if they converge in a root mean square
sense.
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6. Computational experiments for controllability of semilinear wave equa-
tions

We will again apply Algorithm 1 to the special case of V = 0, W = 0, Z = 0,
α = 0 and σ, τ >> 1. We will test our algorithm with generic examples. If nonlinear
term f satisfies a certain property such as asymptotically linear or superlinear, then
the exact control problem of the system 1 can be solvable;see, e.g., [4, 23, 24]. In
this section, we examine the performance of our method for the asymptotically
linear and superlinear cases.

We choose Q = (0, 3) × (0, 1) in example I, II, III, and consider three sets of
nonlinear term f :

(27)
I. f(u) = sinu
II. f(u) = u3/2

III. f(u) = ln(u2 + 1).

Note that we choose T = 3 for existence of control; see, e.g., [23, 24]. (I) is an
example of the asymptotically linear case and (II) is one of the superlinear case.
(III) can be considered as either case. In general, we can not expect gL = gR due
to the nonlinear terms. We test the case λ = 1. The numerical approximations
by Algorithm 1 is convergent in L2 sense, that is, they have jump discontinuities
as well. We will illustrate those through the figures 12, 13, and 14. For the linear
cases, the number of iterations of the shooting methods is about 2 or 3, according
to the tolerance and the accuracy of the machines we used. However the nonlinear
cases are different and we need more iterations than the linear cases. We denote
the number of iterations as count. It is contained in the tables 5, 6 and 7 with
L2(Σ)-norm of controls gh.
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