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Abstract. In this work, vortex convection is simulated using a dynamic mesh adap-
tation procedure. In each adaptation period, the mesh is refined in the regions where
the phenomena evolve and is coarsened in the regions where the phenomena deviate
since the last adaptation. A simple indicator of mesh adaptation that accounts for the
solution progression is defined. The generation of dynamic adaptive meshes is based
on multilevel refinement/coarsening. The efficiency and accuracy of the present pro-
cedure are validated by simulating vortex convection in a uniform flow. Two unsteady
compressible turbulent flows involving blade-vortex interactions are investigated to
demonstrate further the applicability of the procedure. Computed results agree well
with the published experimental data or numerical results.
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1 Introduction

Theoretically, a Navier-Stokes solver can capture vortex convection correctly. However,
in the practical simulation of a flowfield including vortex convection, the predicted vor-
tex structure may be dissipated quickly because of the inherent numerical dissipation
and the insufficient mesh resolution in the region of vortex. Vortex convection appears
inevitably in a rotor flowfield. This problem limited the full utilization of Navier-Stokes
analysis in the rotary wing aerodynamics.

There are several approaches to address this issue in the simulation of vortex con-
vection. Many researches focused on coupling Navier-Stokes solutions with a separate
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wake model [1–3]. Among them, the prescribed vortex method [1] (also called perturba-
tion method) is frequently used in the aerodynamic design of a helicopter, the essence of
which is to split each dependent variable into a prescribed part (vortex disturbance) and
a remaining part. The nonlinearity can not be simulated correctly in this approach, so
the perturbation method is not suitable to simulate strong blade-vortex or shock-vortex
interactions. Using high-order schemes that have less numerical dissipation is also an
attempt to simulate blade-vortex interactions [4,5]. But, compared to low-order schemes,
the convergence of high-order schemes is poor for a transonic flow with shock waves
present [5].

Mesh adaptation can be an effective approach to reduce the numerical dissipation
and preserve the intensity of a convected vortex. Till now, a large number of papers
about mesh adaptation for the time-independent problems have been published, while
the number of papers addressing unsteady flows is relatively small. For unsteady flows,
most of the existing methods for dynamic mesh adaptation adjust the mesh per n time-
steps (one adaptation period) using the adaptation indicators based on the initial solution
in the current period, and the adapted mesh always lags behind the computed unsteady
solution. In order to reduce the phase shift in time between the adapted mesh and the
computed solution, the mesh was adapted very frequently [6,7]. However, an important
source of error due to solution transferring (by interpolation) from the old mesh to the
new one is introduced in this case.

Zhou and Ai developed an approach of mesh adaptation for unsteady flows in [8].
In that approach, there exists no lag between mesh and solution and the adaptation fre-
quency can be controlled to reduce the errors due to solution transferring. In this work,
we modify the adaptation indicator and the method of adaptive-mesh generation and
apply the approach to the simulation of vortex convection in a compressible turbulent
flow around an airfoil.

The outline of this article is as follows. In Section 2, the governing equations and the
basic numerical schemes are described in brief. In Section 3, the approach for dynamic
mesh adaptation is given. In Section 4, results and discussions for numerical experiments
are presented. Finally, in Section 5, this work is summarized and concluded.

2 Governing equations and numerical methods

In this work, a compressible turbulent flow is governed by the following two-dimensional
Favre-averaged Navier-Stokes equations

∂w
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where Re∞ and M∞ are the Reynolds number and Mach number of free stream respec-
tively, κ is the ratio of specific heats of a gas, and w, fi and gi are the vectors of conserva-
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tive variables, the inviscid flux and the viscous flux respectively
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In the above expressions, ui represents the Cartesian component of fluid velocity, ρ the
density, E the total energy, p the pressure which can be calculated from the equation of
state

p=ρ(κ−1)
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)

, (2.3)

τij and qi are the components of the stress tensor and the heat flux vector, respectively
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In (2.4), k is the turbulent kinetic energy, Prl the laminar Prandtl number, Prt the turbulent
Prandtl number, µl the molecular viscosity, and µt the turbulent eddy viscosity which
must be calculated from a turbulence model.

The governing equations are discretized using the Galerkin finite element approach
proposed by Mavriplis and Jameson [9]. The procedure begins by storing flow variables
at the vertices of triangle, and the flow variables are approximated by piecewise linear
functions. Artificial dissipation terms are adopted to ensure the stability, which are con-
structed as a bend of undivided Laplacian and biharmonic operators in the conserved
variables. For unsteady flows, the discrete equations are integrated in time via a dual-
time-stepping scheme [10].

For a turbulence closure, the two-equation SST (Shear-Stress Transport) model pro-
posed by Menter [11] is employed. This model combines different elements of the orig-
inal k−ω model and the standard k−ε model, and accounts for the effect of the trans-
port of the principle turbulent stress in boundary-layers with adverse pressure gradi-
ent. It is superior to its alternatives. The turbulence equations are solved separately
from the Navier-Stokes equations. The diffusive terms are similarly discretized by the
finite element approach, while the convective terms are discretized using a first-order
upwind scheme to ensure stability and positivity of the conserved variables of turbu-
lence throughout the integration procedure. In [12], such a strategy for discretization of
the turbulence equations has been analyzed in detail and validated by many test cases.

3 Dynamic mesh adaptation for unsteady flows

In the simulation of a flow involving vortex convection, the physical solution evolves
with time. The solution-adaptive mesh should follow the phenomena progression. There-
fore, mesh adaptation must be performed dynamically.
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3.1 Procedure of mesh adaptation

In the present work, the scheme of dynamic mesh adaptation for unsteady flows pro-
posed in [8] is employed. In this scheme, mesh adaptation is performed per n time-steps
(one adaptation period). Staring from the initial solution at t0 in each adaptation period,
the instantaneous solution at each time-step t = t0+∆t,t0+2∆t,··· ,t0+n∆t is predicted
firstly. Then, an adaptation indicator that takes into account the solution progression is
calculated for each triangle, and a new adaptive mesh is generated for this period. After
that, the initial solution at t0 on the previous old mesh is transferred by a linear conserva-
tive interpolation [13] onto the new adapted mesh. Finally, the computation is restarted
on the new mesh to obtain the time-dependent solution for this time period. For each
adaptation period, the mesh is refined in the regions where the solution evolves and is
coarsened in the regions where the phenomena deviate since the last adaptation.

In this adaptation procedure, the mesh is adaptive to the solution progression, so
there is no phase shift in time between the adapted mesh and the computed solution.
Also, there is no need to adapt the mesh frequently and the errors due to solution-
transferring can be controlled.

Of course, when transferring the solution on the old mesh to the new adapted mesh,
a higher-order interpolation is more accurate than the linear interpolation. However, for
long-time simulations, the conservative interpolation seems to be mandatory as it is less
sensitive to the increase of the number of interpolations whereas the standard one will
dissipate the solution more and more [13]. The previous numerical experiments in [8]
have shown that the P1-conservative interpolation is better than the standard quadratic
interpolation in the long-time simulation of unsteady flows.

3.2 Criteria for mesh adaptation

It is necessary to define an indicator of mesh adaptation which can determine automat-
ically the zones of mesh where some refinement or coarsening are required. In the pro-
ceeding numerical simulations, the flow fields involve convection of vortex, vortex-shock
interaction, vortex-body interaction, and so on. The gradient of density is employed to
capture shock waves, and the vorticity is used to capture boundary layers and vortices.
For each element K at each time-step j, the magnitude of vorticity and the magnitude of
gradient of density are defined respectively as

|∇×u|jK =
∫

K
|∇×u|dΩ, |∇ρ|jK =

∫

K
|∇ρ|dΩ. (3.1)

For the piecewise linear solution, we have
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where ΩK is the area of element K.
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To identify the region the physical phenomena are passing through in an unsteady
flow field, the indicator of mesh adaptation for each triangle K in each adaptation period
[(j0+1)∆t,(j0+n)∆t] is defined as

Ei(K)= max
j0+1≤j≤j0+n

{

|∇×u|jK+|∇ρ|jK
}

, (3.3)

where i is the index of mesh adaptation period.
Two values of Emax and Emin are specified for the ith mesh adaptation period. The

element K is refined if Ei(K)>Emax and K is coarsened if Ei(K)<Emin.
As it will be shown in Section 4, the indicator of mesh adaptation based on the direct

sum of vorticity and density gradient works well at least in the present numerical exper-
iments. The weighted sum can also be used to define an indicator. However, it is difficult
to find a general weighted average between vorticity and density gradient. When the
simulated flow involves different physical phenomena, the user-specified parameter in
combination of different gradients is the inherent drawback of the adaptation indicators
based on the gradients of flow variables.

3.3 Refinement and coarsening

In the mesh adaptation for simulation of unsteady flows, the density of discretiza-
tion points would vary with the evolving solution of flow. A multi-level refine-
ment/coarsening strategy is employed to adjust the mesh dynamically.

The mesh is regularly refined by dividing a triangle into four similar triangles (by
connecting the midpoints of the three edges). This creates a tree structure of triangles,
in which a leaf is called a triangle son and a root is called a triangle father. To prevent
extremely large gradient of mesh density and keep the geometric integrity of the domain
as a whole, the original mesh will not be coarsened in the adaptation procedure. So only
a refined triangle will possibly be coarsened by deleting its four sons. As illustrated in
Fig. 1, in order to eliminate the ”hanging point” generated in the regular refinement and
coarsening, the triangle with one hanging point is irregularly refined into two triangles
by connecting the hanging point to the opposite vortex of the triangle.

The generation of a new adapted mesh begins by removing all triangles generated
by irregular refinement in the last mesh adaptation. Then, the regular refinement is per-
formed for the marked triangles from the top level to the bottom level (the original mesh).

Figure 1: Eliminate the hanging point (•) by irregular refinement.
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In the refinement process, any triangle not marked for refinement will be refined if any
of its sides has more than one hanging point or it has more than one neighbor that has
been regularly refined [14]. The coarsening is performed for the marked triangles from
the top level to the second level. In the coarsening process, any triangle marked for coars-
ening will not be coarsened if it has more than one neighbor that will not be coarsened.
If a triangle is not marked for coarsening, the neighbors of its farther triangle will not be
coarsened. After the regular refinement and coarsening as described above, each triangle
has at most one edge with any hanging point on it and the number of hanging points on
the edge is at most one (as shown in Fig. 1). Finally, the triangle with hanging point is
irregularly refined into two triangles and a conforming mesh is obtained.

The present approach for generation of an adaptive mesh is quite different from
that proposed in [8]. In the previous work, the refinement procedure is based on the
longest edge bisection algorithm of Rivara [15], and the coarsening of mesh is carried
out by deleting vertices of triangle. Employing the present strategy of multi-level re-
finement/coarsening, all the triangles on the adapted mesh except those obtained from
irregular refinement are similar to the triangles on the original mesh, and any triangle is
irregularly refined at most one time. So, after mesh adjusting, the detriment of the ge-
ometrical quality of triangles can be controlled. The disadvantage of multi-level refine-
ment/coarsening is the record of some history information, and extra storage is required.

4 Results and discussions

In this section, numerical experiments are performed to show the availability and effi-
ciency of the present dynamic mesh adaptation method in the simulation of vortex con-
vection. Complex blade-vortex and shock-vortex interactions are involved in the simu-
lated flow-fields. These interactions have been investigated widely by numerical simu-
lations [1, 6] and experiments [16–20]. The upper and lower bounds of the adaptation
indicator control the extent of refined regions and the density of adapted mesh. As done
usually in the conventional mesh adaptation techniques for steady flows, the bounds are
determined empirically. On the other hand, to prevent the mesh to be too dense, the
minimal size of an adapted mesh hmin is set in advance.

4.1 Vortex model

In this work, the vortex model proposed by Sculley [21] is employed, which is expressed
as

vθ

U∞

=
Γ

2πr

( r2

r2+r2
0

)

, (4.1)

where vθ represents tangential velocity, r the distance from the vortex center, r0 the core
radius, and Γ the non-dimensional strength of the vortex. Counter-clockwise vortex is
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defined as positive. From the constant enthalpy relation, the density field induced by
vortex ρv can be obtained

ρv =
2κρ∞ pv

2κp∞−(κ−1)ρ∞v2
θ

. (4.2)

In the above formulation, pv is the induced pressure field which can be determined from
the radial momentum equation as follows

dpv

dr
=ρv

v2
θ

r
. (4.3)

The above differential equation is integrated in conjunction with (4.2) from a large value
of r where the density and pressure are known, along an inward direction toward the
vortex center.

4.2 Vortex convection in uniform flows

In the two test cases of this subsection, the vortex model has a core radius of r0 = 0.05
and a non-dimensional strength of Γ =−0.2. The vortex convects in an uniform flow
at Mach number of M∞ = 0.5. The size of computation domain is 20×2 and the initial
mesh has 301×31 nodes. The non-dimensional time-step size is taken to be 1×10−3. Two
thresholds for mesh adaptation are set to be Emax=2.0×10−5 and Emin=5.0×10−6.

At first, the vortex convection in an inviscid flow is considered. In this case, any dif-
fusion of the vortex is due to the numerical discretization. The decay of peak values of
the vertical induced velocity is used to measure the numerical dissipation. Fig. 2 shows
the decay of the normalized peak-to-peak vertical velocity ∆v/∆v0 with respect to the
number of core radii travelled. Three results predicted by the present mesh adaptation
approach are presented. In this figure, fine mesh and coarse mesh mean that the minimal
mesh size hmin are set to be 2×10−3 and 4×10−3 respectively, and n represents the num-
ber of time-steps in each mesh adaptation period. The averaged numbers of mesh nodes
are about 25000 and 22500 for the fine meshes with n=200 and n=100, respectively. The
averaged number of mesh nodes is about 14000 for the coarse mesh. We can see that both
fine meshes with n= 100 and n= 200 produced almost the same results and the numer-
ical dissipation of calculations on the finer meshes can be reduced greatly. The results
of Tang and Baeder [4] are also plotted in Fig. 2 to make a comparison. The reference
results are predicted on a uniform 481×81 mesh by Godunov schemes based on piece-
wise quadratic reconstruction with slope and curvature computed by sixth order central
divided difference (Q6d) or sixth order central compact difference (Q6c). The comparison
shows that the present second-order accurate mesh-adapted methodology can produce a
better result for the problems involving vortex convection.

The travelling vortex and the adapted mesh in one adaptation period (n = 100,
hmin = 4×10−3) are shown in Fig. 3, where the red vorticity contours represent the vor-
tex position at the beginning of the period and the blue contours represent the vortex
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Figure 2: Numerical decay of vortex with respect to convection distance (inviscid flow).

Figure 3: Travelling vortex and adapted mesh in one adaptation period (n=100, hmin =4×10−3).

position at the end. With the present mesh adaptation approach, the vortex is always
travelling within the region where the mesh is refined.

Secondly, the vortex convection in a laminar flow at Reynolds number of Re∞=3.6×
106 is simulated. At this flow condition, the physical dissipation is very small. Mesh
adaptation is performed per n = 100 time-steps with hmin = 2×10−3. The decay of the
peak-to-peak vertical velocity is plotted in Fig. 4, together with the result obtained by
Oh et al. also on solution-adaptive meshes [6]. The averaged node number of adapted
meshes in the present calculation and that in the calculation of Oh et al. are very close to
each other. It can be seen obviously that the present mesh adaptation strategy produces
a better result. In the procedure of the conventional dynamic mesh adaptation of Oh et
al., the mesh is adjusted frequently (n=10) and the error due to solution transferring by
interpolation may be larger. The conservation of interpolation is also important, but it
was not mentioned in [6].
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Figure 4: Numerical decay of vortex with respect to convection distance (viscous flow).

4.3 Shock-blade-vortex interaction

The case considered in this subsection is the interaction of vortex with a NACA0012 air-
foil in a flow of freestream Mach number M∞=0.8 and Reynolds number Re∞=3.6×106.
The airfoil is at zero angle of attack. The vortex is initialized far upstream at a distance of
5 chord lengths from the leading edge of the airfoil and at 0.26 chord length beneath the
airfoil. The non-dimensional strength of the vortex Γ, based on the freestream velocity
and the chord length, is −0.2. The vortex model has a core radius of r0 =0.05. To simu-
late accurately the boundary layers near the body surface, high aspect-ratio triangles are
generated around the surface in the original mesh.

The Navier-Stokes equations are first solved to obtain steady solutions, and then the
vortex is released at the initial position. In the calculation, the non-dimensional time-step
size is taken to be 5×10−4, and the mesh adaptation is performed for every 100 time steps.
The minimal mesh size hmin is set to be 4×10−3. Two thresholds for mesh adaptation are
set to be Emax=4.0×10−5 and Emin=1.0×10−5.

When the vortex convects downstream beneath the airfoil, the flowfield will evolve
and the mesh will be adapted dynamically to follow the evolving of physical phenomena.
The progression of adapted meshes and pressure iso-lines at four instantaneous times is
shown in Fig. 5. We can see that the intensity of vorticity has been preserved, and the
wake and the shocks on the upper and lower surfaces of the airfoil have also been cap-
tured well. The shock on the lower surface distorted (t=5.5) and then bifurcated (t=6.0)
due to the strong vortex-shock interaction. The bifurcation dissolved away as the vortex
convects downstream (t=6.5). The phenomena described above can also be observed in
the adaptive-mesh calculation of Oh et al. [6]. In Fig. 6, variations of lift coefficient and
moment coefficient (about the quarter chord point) with the instantaneous vortex posi-
tion are presented. To make a comparison, results of Oh et al. [6] and Srinivasan et al. [1]
are also plotted in this figure. The results of the present work are close to those of Oh
et al. obtained by a conventional dynamic mesh adaptation, but differ a little from those
in [1] where a vortex-prescribed approach was used to alleviate the numerical dissipation
but the nonlinearity of vortex-shock interaction could not be simulated well.
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t=5.0 t=5.5

t=6.0 t=6.5

Figure 5: Instantaneous adapted meshes (left) and pressure contours (right).

(a) (b)

Figure 6: Variations of lift (a) and moment (b) coefficients with instantaneous vortex position.

4.4 Head-on blade-vortex interaction

In this subsection, simulation of the blade-vortex interaction under the experimental con-
dition of Lee and Bershader [16] is performed. The head-on collision of a vortex and a
NACA0012 airfoil was investigated in the experiment. The Mach number of freestream
M∞ is 0.5 and the Reynolds number Re∞ is 1.29×106. The airfoil is also at zero angle of
attack. The initial vortex has a core size of r0=0.018 and the non-dimensional strength of
Γ=−0.283. It is released at a distance of 5 chord lengths ahead of the airfoil nose. In this
simulation, the non-dimensional time-step size is set to be 2×10−4, and the mesh adap-
tation is performed for every 300 time steps. The minimal mesh size and the thresholds
for mesh adaptation are the same as taken in the subsection 4.3.

Fig. 7 displays the time sequence of adapted meshes, computational density contours
and experimental holograms [16] as the vortex approaches and collides with the leading
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t=4.86 t=4.95

t=5.04 t=5.13

Figure 7: Close-up view of the head-on collision (Left: adapted mesh; Middle: computational density contours;
Right: experimental holograms [16]).

edge of the airfoil. The current calculation predicts well the most pertinent features of the
flow observed in the experiment, such as oscillation of stagnation point, flow separation
and bubble growth on the lower surface. In the experiment of Lee and Bershader, time
histories of pressure on the upper and lower surface for three locations near the airfoil
nose were measured. In Fig. 8, the results of the current calculation, experiment dada
and the Navier-Stokes results of Oh et al. [6] and Lee and Bershader [16] are plotted to-
gether to make a quantitative comparison. First of all, the results of the present work
are in fair agreement with those of Oh et al. in whose work mesh adaptation was also
performed. For the upper surface, the magnitude of pressure peak and the slopes of the
pressure traces match the experimental data better than the results of Lee and Bershader
due to the utilization of adaptive meshes. The predicted pressure peaks appear to occur
slightly earlier than the measured ones. For the lower surface, the pressure peaks and os-
cillations due to flow separation and bubble moving have been captured. The differences
of amplitude are apparent. In the opinion of the author, this is likely due to the different
turbulence models used in calculations, or the larger time interval of data collecting in the
experiment. The adapted meshes and pressure contours at later time-levels are shown in
Fig. 9. The generation and propagation of a compressive wave have been captured as in
the work of Oh et al. [6].

5 Summary and conclusions

A mesh adaptation procedure is applied to simulate unsteady flow-fields containing vor-
tex convection. In each adaptation period, the mesh is adjusted dynamically to follow
the evolving phenomena. There is no lag between the adapted mesh and the computed
solution, and the errors due to solution-transferring from the old mesh to the new one
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x/c=0.02 x/c=0.05 x/c=0.10

Figure 8: Time history of pressure coefficients at surface locations near leading edge (Top row: upper surface;
Bottom row: lower surface).

t=6.00 t=6.50

Figure 9: Instantaneous adapted meshes and pressure contours.

can be reduced by controlling the frequency of mesh adaptation.
By comparing the numerical dissipation in the simulation of vortex convection in

a uniform flow with those of the referenced high-order or mesh-adapted simulations,
the efficiency and accuracy of the present procedure are validated. The applicability of
the procedure is further demonstrated by the numerical experiments on two unsteady
flows involving blade-vortex or shock-vortex interactions. Computed results agree well
with the experimental data or numerical results available in literature. It is shown that
the unsteady flow structure can be captured well and the numerical dissipation can be
reduced effectively by using the present dynamic mesh adaptation.
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