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A NEW MULTIPLE SUB-DOMAIN RS-HDMR METHOD AND

ITS APPLICATION TO TROPOSPHERIC ALKANE

PHOTOCHEMISTRY MODEL

QIANG YUAN AND DONG LIANG

Abstract. The high dimensional model representation (HDMR) method was recently proposed
as an efficient tool to capture the input-output relationships in high-dimensional systems for many
problems in science and engineering. In this paper, we develop a new multiple sub-domain random
sampling HDMR method (MSD-RS-HDMR) for general high dimensional input-output systems.
The domain splitting technique is applied to divide the whole domain into multiple sub-domains.
The RS-HDMR method is used to generate local approximations in sub-domains and a set of
weight functions is introduced to obtain approximations near the sub-domain interfaces. Numer-
ical experiments are carried out using the MSD-RS-HDMR method for given high dimensional
functions and a real application of the Tropospheric Alkane Photochemistry model. The new
method has been demonstrated to be very effective, and numerical results confirm the excellent
performance of the method compared to the RS-HDMR and Cut-HMDR methods.
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1. Introduction

Many problems in science and engineering involve the interaction of a large num-
ber of input variables, which leads to complex high dimensional systems. For ex-
amples, when describing the condensing complex atmosphere chemistry mechanism
in environmental study, the photochemical box-model in [27] is a high dimensional
system with 58 input variables; the gas prices in a gas station normally depends on
the crude oil market, the gasoline wholesale market, and the prices of nearby gas
stations, etc ([29]); and the aerosol thermodynamic equilibrium prediction in the
atmosphere involves aerosol components including aerosol water, aqueous sulfate
ion, aerosol nitrate, (NH4)2SO4, NH4NO3, and total sulfate, ammonium, and ni-
trate, etc, and environmental variables of temperature and relative humidity, which
is a multi-phase and multi-component high dimensional system ([4]).

One important objective of high dimensional problems is to explore the relations
between input variables and output variables. In a n-dimensional variable space, the
computational complexity of a high dimensional problem scales exponentially ([19]).
Many methods have been studied to establish the relations in high dimensions such
as projection pursuit algorithms ([6, 9, 15]), multi-layer perceptions ([17]) and radial
basis functions ([18]). However, these methods are not widely accepted due to their
inefficient performance.

The high dimensional model representation (HDMR) method is a new technique
of quantitative model assessment and analysis tool to effectively obtain the rela-
tionships of inputs and outputs in high dimensional systems ([1, 12, 13, 19, 20],
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etc). The HDMR method is developed to improve the efficiency of the deducing
high dimensional behaviors. The method is formed by a particular organization of
low dimensional component functions, in which each function is the contribution
of one or more input variables to the output variables. Based on the definition
of HDMR in [19], its approximations can be constructed in two common ways:
the Cut-HDMR and the RS-HDMR ([14, 20]). The HDMR methods have a broad
range of applications including fully equivalent operational models ([26]), global
uncertainty assessments ([2, 8, 21, 28]), financial and econometrics applications,
etc ([5, 22, 23, 27]). However, for many high dimensional systems, due to the
complicated input-output relations, the standard HDMR methods, i.e. the Cut-
HDMR and the RS-HDMR methods defined in the whole domain, can not achieve
sufficient accuracy ([27]). Hence, there have been strong interests in developing ef-
ficient HDMR methods for high dimensional systems in large domains. In [13], the
Multi-cut-HDMR method is proposed by using multi-cut points but the numerical
approximations depend on the locations of the multi-cut points. More recently,
Cheng et al. [4] developed the moving cut HDMR method by combining with the
multiple local moving cut points to obtain accurate and efficient approximations for
high dimensional systems. The method has been successfully applied in the aerosol
thermodynamic equilibrium prediction in atmospheric environment ([4]).

In this paper, we develop a new multiple sub-domain random sample HDMR
Method (MSD-RS-HDMR), in which the random sample technique is used in sub-
domains instead of using the cut point technique. For high dimensional input-
output systems in large domains, the domain splitting technique is first applied to
divide the large domains into multiple sub-domains and the multiple output vari-
ables are then approximated by the random sample HDMR method in sub-domains.
The proposed MSD-RS-HDMR method is a combination of the local RS-HDMR
approximations built in sub-domains of multiple input variables. Depending on
the properties of input-output systems, the sub-domains may be overlapping or
non-overlapping. Meanwhile, a set of weight functions is presented to provide
approximations near the sub-domain interfaces. The sample points of the high
dimensional inputs are generated in a quasi-random sequence by a stochastic al-
gorithm. Numerical experiments are reported using the MSD-RS-HDMR method.
First, we consider examples of given multiple dimensional functions, and we focus
on the accuracy and efficiency of approximations. Then, the method is applied to
a real problem in Tropospheric Alkane Photochemistry model, which describes the
species concentration in troposphere ([26, 27]). The computations are based on
the reduced model using six input chemical species, i.e. O3, NO2, NO, and three
lumped alkane species. The proposed MSD-RS-HDMR method improves the ac-
curacy for high dimensional systems compared to the RS-HDMR and Cut-HDMR
methods. Numerical tests demonstrate the excellent performance, and it can be
regarded as an efficient tool for general high dimensional problems.

The paper is organized as follows. Section 2 gives an introduction of the HDMR
method and presents the multiple sub-domain RS-HDMR method. Numerical ex-
periments are reported in Section 3. Application to a real problem in the Tropo-
spheric Alkane Photochemistry model is shown in Section 4. Finally, conclusions
are presented in Section 5.

2. The Multiple Sub-domain RS-HDMR Method

In this section, we develop the multiple sub-domain RS-HDMR method for high
dimensional systems.
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2.1. HDMR method. For problems in high dimensional systems, it is very im-
portant to find the relations of the input variables and output variables. Even when
the dimensions of input variables are high, we may have only one output. Let the
input variables be x = (x1, x2, . . . , xn), where n ranges up to 102 or more, and the
output be f(x) ([14]). We call (x, f(x)) a point of the system, where x is the input
and f(x) is the output. To construct the structure of an output in an n-dimensional
input space is not a easy work for large n. “Conventional logic implies that the
computational complexity of sampling the input-output map scales exponentially as
sn where s is a parameter specific to the problem and n is the relevant dimension”
([16]). A recently developed technique to capture the inputs and outputs relations
is the high dimensional model representation (HDMR) method.

The HDMR method is developed from the analysis of variance (ANOVA), which
is a collection of statistical models and their associated procedures, in which the
observed variance is partitioned into components due to different explanatory vari-
ables. The HDMR technique is capable of approximating high dimensional systems
with low dimensional functions. The structure of the HDMR also makes it a good
tool for many fields such as the construction of observation-based models directly
from lab/field data, developing a fully equivalent operational model ([26]), global
uncertainty assessment and identification of key variables and their interrelation-
ship ([1, 19, 20, 23, 24, 28]), and efficient quantitative risk assessments, etc. The
important feature of the HDMR method is that the input variables can indepen-
dently and cooperatively contribute to the outputs. The general HDMR structure
is written as:

f(x) ≡ f0 +

n
∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) +
∑

1≤i<j<k≤n

fijk(xi, xj , xk) + · · ·

+
∑

1≤i1<···<il≤n

fi1i2···il(xi1 , xi2 , · · · , xil) + · · ·+ f12···n(x1, x2, · · · , xn)

(1)

where the 0’th order component function f0 is a constant representing the mean
response to f (x), and the first order component function fi(xi) gives the indepen-
dent contribution to f (x) by the i ’th input variable acting alone, and the second
order component function fij(xi, xj) gives the pair correlated contribution to f (x)
by the input variables xi and xj , etc. The last term f12···n(x1, x2, · · · , xn) con-
tains any residual n′th order correlated contribution of all input variables. In real
applications, we hope to find low l-order component functions which can provide
good approximations to f(x) in Eqn. (1), i.e. the significant terms in the HDMR
expansion are expected to satisfy l ≪ n for n ≫ 1.

There are two commonly used HDMR methods: the Cut-HDMR and RS-HDMR
methods. The Cut-HDMR method expresses f(x) in reference to a specified cut
point x̄ in Ω, while the RS-HDMR method depends on the average value of f (x)
over the whole domain Ω. Here we only consider the RS-HDMR method. Generally
speaking, we first re-scale variables xi such that 0 ≤ xi ≤ 1 for all i. Then by a
suitable transformation, the output function f (x) is defined in the unit hypercube
Ω = {(x1, x2, · · · , xn) | 0 ≤ xi ≤ 1, i = 1, 2, · · · , n}. The component functions of
the RS-HDMR approximation can be rewritten in the following forms ([14]):

(2) f0 =

∫

Ω

f(u)du

(3) fi(xi) =

∫

Ωn−1

f(xi, u
i)dui − f0
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(4) fij(xi, xj) =

∫

Ωn−2

f(xi, xj , u
ij)duij − fi(xi)− fj(xj)− f0

· · · · · ·
where dui is the product du1du2 · · · dun without dui, and duij is the product
du1du2 · · · dun without duiduj. The component functions can be achieved with
the Monte Carlo integral, but it requires large sample points and the computation
is expensive. In order to reduce the computing time, the component functions can
be approximated by a set of orthonormal polynomial functions. We now write the
component functions as

(5) fi(xi) ≈
oi
∑

r=1

αi
rϕr(xi),

(6) fij(xi, xj) ≈
o
′

i
∑

p=1

oj
∑

q=1

βij
pqϕpq(xi, xj),

· · · · · ·
where oi, o

′

i and oj are integers, αi
r and βij

pq are constant coefficients to be de-
termined, and ϕr(xi), ϕpq(xi, xj) are basis functions. Consequently, the sampling
effort can be greatly reduced, because only the coefficients of component functions
are unknown. With these formulas, (1) can be approximated by

(7) f(x) ≈ f0 +

n
∑

i=1

oi
∑

r=1

αi
rϕr(xi) +

∑

1≤i<j≤n

o
′

i
∑

p=1

oj
∑

q=1

βij
pqϕpq(xi, xj) + · · · .

The polynomials {ϕk(x)} in domain [a, b] are called orthonormal, where they
satisfy

(8)

∫ b

a

ϕk(x)dx = 0, k = 1, 2, · · · ,

(9)

∫ b

a

ϕ2
k(x)dx = 1, k = 1, 2, · · · ,

(10)

∫ b

a

ϕk(x)ϕl(x)dx = 0, k 6= l.

We can easily verify that the orthonormal polynomials constructed in domain [0, 1]
are:

(11) ϕ1(x) =
√
3(2x− 1),

(12) ϕ2(x) = 6
√
5(x2 − x+

1

6
),

(13) ϕ3(x) = 20
√
7(x3 − 3

2
x2 +

3

5
x− 1

20
).

Using the Monte Carlo integration, coefficients {αi
p, β

ij
pq} under orthonormal

polynomials can be further calculated by,

(14) αi
r ≈ 1

N

N
∑

s=1

f(x(s))ϕr(x
(s)
i ),
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(15) βij
pq ≈ 1

N

N
∑

s=1

f(x(s))ϕp(x
(s)
i )ϕq(x

(s)
j ).

2.2. RS-HDMR over each sub-domain. In [12, 14], the input variable space
is defined in or transferred to the n-dimensional space [0, 1]n. Now, we describe
the RS-HDMR expansion in any sub-domain K=[a1, b1]×[a2, b2]× · · ·×[an, bn] to
construct multiple sub-domain RS-HDMR expansions later.

Definition 2.1. Define an n-dimensional domain K=[a1, b1]×[a2, b2]×· · · ×[an,
bn] in Rn, where bi > ai, i = 1, 2, · · · , n.

In the multiple sub-domain RS-HDMR method, the orthonormal polynomials
are defined in interval [ai, bi]. The following proposition gives the formulas of the
orthogonal polynomials in any interval [a, b].

Proposition 2.1. Let {ϕi(x)} be the orthonormal polynomials defined in interval
[0, 1], then { 1√

b−a
ϕi(

x−a
b−a

)} is a set of orthonormal polynomials in interval [a, b].

The component functions of the RS-HDMR approximation on the sub-domain
are given in the following proposition.

Proposition 2.2. Let x=(x1, x2, · · · , xn) ∈ K, then the component functions de-
fined from (2)-(4) become

f0 =

n
∏

k=1

1

(bk − ak)

∫

Kn

f(x)dx,

fi(xi) =

n
∏

k=1,k 6=i

(
1

bk − ak
)

∫

Kn−1

f(x)dxi − f0,

fij(xi, xj) =

n
∏

k=1,k 6=i,j

(
1

bk − ak
)

∫

Kn−2

f(x)dxij − fi(xi)− fj(xj)− f0

· · · · · ·
where 1 ≤ i, j ≤ n, i 6= j, dxi = dx1dx2 · · · dxi−1dxi+1 · · · dxn, and
dxij = dx1dx2 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxn for j > i.

Proof. Integrating both sides of Eqn. (1) with respect to x1, x2, · · · , xn leads to

∫

K

f(x)dx =

∫

K

[

f0 +

n
∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj)

+
∑

1≤i<j<k≤n

fijk(xi, xj , xk) + · · ·+
∑

1≤i1<···<il≤n

fi1i2···il(xi1 , xi2 , · · · , xil)

+ · · ·+ f12···n(x1, x2, · · · , xn)
]

dx,

we have
∫

K

f(x)dx =

∫

K

f0dx,

and noting that f0 is a constant, then

f0 =
n
∏

k=1

1

(bk − ak)

∫

K

f(x)dx.
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Integrating both sides of (1) with respect to x1, x2, · · · , xi−1, xi+1, · · · , xn, and
using the fact that the integral of component function is zero, we have

∫

Kn−1

f(x)dxi =

∫

Kn−1

f0dx
i +

∫

Kn−1

fi(xi)dx
i,

thus,

fi(xi) =

n
∏

k=1,k 6=i

(
1

bk − ak
)

∫

Kn−1

f(x)dxi − f0.

Following the same way, we obtain

fij(xi, xj) =

n
∏

k=1,k 6=i,j

(
1

bk − ak
)

∫

Kn−2

f(x)dxij ,

as well as other terms. �

When a set of orthonormal polynomials is given in the sub-domain K, we have
the following proposition to determine the coefficients {αi

r, β
ij
pq, · · · } by using the

Monte Carlo integration.

Proposition 2.3. If the sampling size N is large enough and the orthonormal poly-
nomial functions are defined in K, then the coefficients {αi

r, β
ij
pq} can be determined

by the following formulas:

αi
r ≈ (bi − ai)

1

N

N
∑

s=1

f(x(s))ϕr(x
(s)
i ), 1 ≤ i ≤ n

βij
pq ≈ (bi − ai)(bj − aj)

1

N

N
∑

s=1

f(x(s))ϕp(x
(s)
i )ϕq(x

(s)
j ), 1 ≤ i, j ≤ n, i 6= j.

2.3. Multiple Sub-domain RS-HDMR. We first divide the domain Ω into
multiple sub-domains

⋃

Ω(k1k2···kn).

Definition 2.2. At the i’th direction, we divide the interval [ai, bi] into i
′

subin-

tervals [a
(1)
i , b

(1)
i ], [a

(2)
i , b

(2)
i ], · · · , [a(i

′

)
i , b

(i
′

)
i ] which satisfy the following properties

a
(1)
i = ai, b

(i
′

)
i = bi, b

(j)
i > a

(j)
i , j = 1, 2, · · · , i′ ;

a
(i

′

)
i > a

(i
′

−1)
i > · · · > a

(2)
i > a

(1)
i , b

(i
′

)
i > b

(i
′

−1)
i > · · · > b

(2)
i > b

(1)
i .

Let Ω(k1k2···kn) be one sub-domain of Ω as

Ω(k1k2···kn) = [a
(k1)
1 , b

(k1)
1 ]× [a

(k2)
2 , b

(k2)
2 ]× · · · × [a(kn)

n , b(kn)
n ](16)

where [a
(kj)
j , b

(kj)
j ]∈ [aj , bj], 1 ≤ kj ≤ j

′

, j
′

is the number of sub-intervals in [aj ,

bj].

Remark 1. There are two types of sub-domains: non-overlapping and overlap-
ping. If the sub-domains only intersect in their boundaries, they are referred as
non-overlapping. Otherwise, they are overlapping sub-domains. In [4], a domain
splitting method has been studied based on moving the multiple local cut points
and building the corresponding sub-regions (sub-domains). On the other hand, the
domain decompositions (splitting techniques) have been used in solving partial dif-
ferential equations (see, for example, [7, 25]).
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Definition 2.3. Let x(s) = (x
(s)
1 , x

(s)
2 , · · · , x(s)

n ) ∈ Ω, s = 1, 2, · · · , N , be the sam-
pling points, the domain center point of Ω is defined as

C = (
1

N

N
∑

s=1

x
(s)
1 ,

1

N

N
∑

s=1

x
(s)
2 , · · · , 1

N

N
∑

s=1

x(s)
n ).

Definition 2.4. Let x
(i), x(j) ∈ Ω, the distance of these two points is defined as

d(x(i), x(j)) = ‖x(i)−x
(j)‖2 =

√

∑n

k=1(x
(i)
k − x

(j)
k )2, where x(i) = (x

(i)
1 , x

(i)
2 , · · · , x(i)

n )

and x
(j) = (x

(j)
1 , x

(j)
2 , · · · , x(j)

n ).

To organize the local sub-domain RS-HDMR approximations near the interfaces,
we consider the weight functions with the following properties:

1. If a given point x is not in subspace Ω(k1k2···kn), then ωk1k2···kn
(x) should

be zero.
2. If a given point x belongs to more than one subspaces, then their values

ωk1k2···kn
(x) are not all zero.

3. It holds that
∑

k1,k2,··· ,kn
ωk1k2···kn

(x) = 1.

Definition 2.5. The weight function in sub-domain Ω(k1k2···kn) is defined as

ωk1k2···kn
(x)(17)

=

(
∑

i1,i2,··· ,in d(x, Ci1,i2,··· ,in)− d(x, Ck1,k2,··· ,kn
)
)

γk1,k2,··· ,kn
(x, r)

∑

j1,j2,··· ,jn
(
∑

i1,i2,··· ,in d(x, Ci1,i2,··· ,in)− d(x, Cj1,j2,··· ,jn)
)

γj1,j2,··· ,jn(x, r)

where

(18) γk1,k2,··· ,kn
(x, r) =

{

1 x ∈ Ω(k1k2···kn) ∩B(x, r)

0 else

where r ≥ 0 is a constant and B(x, r) is

(19) B(x, r) = {z | ‖z− x‖2 ≤ r}
With the above definition and propositions, we composite the local RS-HDMR

approximations in sub-domains into a global MSD-RS-HDMR approximation in
the whole domain. The multiple sub-domain RS-HDMR approximation (MSD-RS-
HDMR) is defined as

(20) f(x)(MSD) =
∑

k1,k2,··· ,kn

ωk1k2···kn
(x)f (k1k2···kn)(x), ∀x ∈ Ω,

where ωk1k2···kn
(x) are the weight functions and f (k1k2···kn) are the local RS-HDMR

approximations in sub-domains Ω(k1k2···kn).

Remark 2. The domain’s center point is the mean of the inputs among the domain
sample points. The sample points are chosen by a uniformly random method, thus
the center point is actually the dense center of the domain. Experience shows that
the accuracy is improved using the center point defined here.

Remark 3. The weight function ωk1k2···kn
(x) gives the weight of the local HDMR

prediction at x. The weight functions can automatically adjust different weight
values of the sub-domain HDMR’s contributions to the global output at x. The
function B(x, r) can extend the number of the related sub-domain HDMR functions
used to form the output at x, and resulting an improvement of the output accuracy
near the boundaries.
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2.4. Generate sample data. The Monte Carlo integration (MCI) plays an im-
portant role in the RS-HDMR technique. The traditional MCI method converges
to the integral with 1/

√
N because the pseudo-random number generator only pro-

duces uniformly distributed numbers with a large number of iterations ([3, 10]).
When the sample points are quasi-random ([3, 10]), the convergence rate can be im-
proved to (lnN)n/N , where n is the dimension of the integral function. In the sam-

ple points (x(s), f(x(s))), the sample inputs x(s) = (x
(s)
1 , x

(s)
2 , · · · , x(s)

i , · · · , x(s)
n ),

s = 1, 2, · · · , N , are randomly generated.

In computation, each x
(s)
i is generated independently, and x

(s)
1 , x

(s)
2 , · · · , x

(s)
n

are linked together to get a complete sample input x(s). The random input set X̃
in [0, 1]n is created in the following steps.

1. Input total number of records N , integer M and index j.
2. Divide the i’th directional interval [0, 1] uniformly into M sub-intervals:

D
(1)
i , D

(2)
i , · · · , D(M)

i . The initial status symbols of the sub-intervals are
set to zero, i = 1, 2, · · · , n.

3. If the status symbols of all the i’th directional sub-intervals are 1, reset the
status symbols to zero.

4. Apply the uniform random function to generate a number x
(s)
i in interval

[0, 1]. For example, x
(s)
i locates in one sub-interval D

(j)
i , 1 ≤ j ≤ M.

5. If the status symbol of this D
(j)
i is zero, set the status symbol of D

(j)
i to 1;

If the status symbol of D
(j)
i is 1, goto Step 3.

6. Loop Steps 3 - 5 for i = 1, 2, · · · , n and generate random numbers x
(s)
1 , x

(s)
2 ,

· · · , x(s)
n .

7. Store (x
(s)
1 , x

(s)
2 , · · · , x(s)

n , f(x(s))) as a record.
8. Let s = s+ 1; if s < N + 1, goto Step 3; else goto Step 9.
9. Stop.

2.5. Efficient design for MSD-RS-HDMR. To design an efficient program
for the multiple sub-domain RS-HDMR, we need to consider the key parts such
as labeling sub-domains, sample points generation and organization, storage of
frequently used values, and orthonormal polynomial dynamic generation, etc.

A. Labeling sub-domains. The domain Ω is defined in Rn. If the one-dimensional
interval n is split into ns1, ns2, · · · , nsn sub-intervals, these sub-intervals can form
ns1×ns2 × · · · ×nsn sub-domains. Thus, there will be ns1× ns2× · · · ×nsn local
RS-HDMR expansions.

We label sub-domains as follows. Let the number nl1, nl2, · · · , and nln be the
nl1’th, nl2’th, · · · , and nln’th sub-intervals, respectively, where 1 ≤ nl1 ≤ nsn,
1 ≤nl2 ≤ ns2, · · · , and 1 ≤ nln ≤ nsn. The sub-domain is then labeled by a
number as

nln + (nl(n−1) − 1)nsn + (nl(n−2) − 1)nsnns(n−1) + · · ·+ (nl1 − 1)

n
∏

j=2

nsj .

This leads to each sub-domain with a unique number from 1 to ns1×ns2× · · ·×nsn,
respectively.

B. Sample points generation and organization. The sample points (x(s), f(x(s)))
are stored in the sample file line by line. In the multiple sub-domain RS-HDMR
method, we prepare the sample points for each sub-domain, then looping every
record in the sample file according to the sub-domain and saving the sample points
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into its file named by the above defined number. The sample points stored in these
files will be used to generate the local RS-HDMR expansions in sub-domains.

C. Storage of frequently used values. For each sub-domain, we construct its
local RS-HDMR expansion in the MSD-RS-HDMR method. Some frequently used
coefficients of these local RS-HDMR expansions are stored in their coefficient files.

D. Orthonormal polynomial dynamic generation. The orthonormal polynomials
defined in [0, 1] are given clearly. The polynomials in intervals [ai, bi] will be
dynamically generated from the transformation with the formulas in Proposition
2.1.

Table 1. Splitting sub-intervals of the input variables for f(x).

Variable Sub-interval (non-overlapping) Sub-interval (overlapping)
x1 [0, 0.6]; [0.6, 1] [0, 0.61]; [0.59, 1]
x2 [0, 1] [0, 1]
x3 [0, 1] [0, 1]
x4 [0, 1] [0, 1]

3. Numerical Experiments

To validate the MSD-RS-HDMR method, we consider numerical experiments
applying to high dimensional functions. The sample input points are generated
by randomly with a uniform distribution and the output values are obtained by
substituting the sample inputs into the given functions. Numerical results using
the MSD-RS-HDMR method are compared with those based on the RS-HDMR
method.

The following test cases of four-dimensional functions are investigated:

(21) f(x) = 10(x1 − 0.2)4 + x2
1 + x2 + x3 + x4

(22) h(x) = 10sin(2πx1 − 1.2π) + x2 + x3 + x4 + x1x2 + x3x4 + x3
1 + x3

4

where x = (x1, x2, x3, x4) ∈ [0, 1]4.

The splitting sub-intervals for the function f(x) are listed in Table 1. Table 2
presents numerical results by the RS-HDMRmethod, the MSD-RS-HDMRmethods
with overlapping (MSDo) and non-overlapping (MSDno) for f(x). The parameter
r in Eqn. (18) is set to zero.

Data portion1(%): the percents of the checked sample points with prediction
errors within accuracies 5%, 10% or 20%. The number of total checked sample
data is 10, 000. Sample size2: the number of sample points chosen for building the
approximations.

From the simulations presented in Table 2, we observe that the MSD-RS-HDMR
method with non-overlapping sub-domains (MSDno) and overlapping sub-domains
(MSDo) produce comparable numerical results. However, it is note that they are
more accurate compared to those using the RS-HDMR method (RS), in particularly
for small order of polynomial order.

Another splitting sub-intervals for function f(x) is given in Table 3. The simu-
lation results are listed in Table 4. It is obvious that among the three approaches,
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Table 2. Comparisons of first-order RS-HDMR method (RS) and
MSD-RS-HDMR methods with MSDo and MSDno. The compo-
nent functions are obtained using different sample sizes N and
different orders of orthonormal polynomials.

Data portion1(%)
Polynomial Sample size2 Accuracy 5% Accuracy 10% Accuracy 20%

order (N) RS MSDno MSDo RS MSDno MSDo RS MSDno MSDo

1 1000 8.9 56.8 61.9 18.3 83.5 84.3 38.7 98.1 97.9
1 3000 8.7 61.4 58 18.8 89.5 89.5 39.8 99.1 98.8
1 5000 8.6 64.4 59.7 18.8 89.6 89.6 38.8 98.5 98.7
2 1000 30.1 61.4 63.1 57.8 87.1 87.5 85.7 97.9 97.7
2 3000 27.9 87.2 87 60.6 98.4 98.4 89.4 100 99.9
2 5000 27.3 93.3 93 60.6 98.7 98.6 89.7 99.9 99.9
3 1000 50.4 51.3 53.1 76.2 80 81.1 93.5 97.2 96.4
3 3000 75.9 85.7 85.6 95.3 96.2 97.3 99.7 99.8 99.9
3 5000 81.2 92.5 93.4 96.3 98.1 98.3 99.9 99.8 99.9

Table 3. Splitting sub-intervals of input variables for f(x).

Variable Sub-intervals (non-overlapping) Sub-intervals (overlapping)
x1 [0, 0.3]; [0.3, 1] [0, 0.6]; [0.3, 1]
x2 [0, 1] [0, 1]
x3 [0, 1] [0, 1]
x4 [0, 1] [0, 1]

Table 4. Comparisons of first-order RS-HDMR method (RS) and
the MSD-RS-HDMR methods with MSDo and MSDno. The com-
ponent functions are obtained from different sample sizes N and
different orders of orthonormal polynomials.

Data portion(%)
Polynomial Sample size Accuracy 5% Accuracy 10% Accuracy 20%

order (N) RS MSDno MSDo RS MSDno MSDo RS MSDno MSDo

1 1000 8.9 38.3 38.2 18.3 49 60.8 38.7 73.3 84.1
1 3000 8.7 39.1 40.2 18.8 49 60.7 39.8 73.4 84.9
1 5000 8.6 39.5 40.9 18.8 48.1 59.8 38.8 73.3 84.1
2 1000 30.1 59.7 63.8 57.8 85.3 92.4 85.7 95.4 99.3
2 3000 27.9 68.6 79.2 60.6 89.6 97.7 89.4 98.5 100
2 5000 27.3 75.9 87.1 60.6 92.8 98.5 89.7 99.3 99.9
3 1000 50.4 49.6 61.7 76.2 77.8 89.1 93.5 94.6 99
3 3000 75.9 75.3 90.3 95.3 93.5 99 99.7 99.6 100
3 5000 81.2 86.2 94.5 96.3 96.1 98.4 99.9 99.4 99.8

the MSDo is the best method and the RS-HDMR is the worst. Thus, the MSD-
RS-HDMR method with overlapping sub-domains is capable of producing more
accurate results if a good overlapping domain decomposition is employed.

In the definition of the global approximation by the MSD-RS-HDMR method,
the parameter r is introduced to extend the predictions on sub-domains. The effect
of r is shown in Figure 1, where the x-axis is in r-direction and the y-axis gives
the accuracy of the data portion. The test data is reported in Table 2. The figure
shows that the accuracy could be improved using a appropriate choice of the value
for r.

Moreover, for function h(x), we split the domain as shown in Table 5. Table 6
gives numerical results by various methods.
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Figure 1. Comparison of accuracy with different r by the MSD-
RS-HDMR method with non-overlapping sub-domains using 3-
order orthonormal polynomials.

Table 5. Splitting sub-intervals of input variables for h(x).

variable Sub-intervals (non-overlapping) Sub-intervals (overlapping)
x1 [0, 0.4]; [0.4, 1] [0, 0.45]; [0.4, 1]
x2 [0, 1] [0, 1]
x3 [0, 1] [0, 1]
x4 [0, 1] [0, 1]

Table 6. Comparison of second-order RS-HDMR (RS) and the
MSD-RS-HDMR methods with MSDo and MSDno.

Data portion(%)
Polynomial Sample size Accuracy 5% Accuracy 10% Accuracy 20%

order (N) RS MSDno MSDo RS MSDno MSDo RS MSDno MSDo

1 1000 4 7.1 8.3 7.4 16 16.6 13.7 33.1 30.1
1 3000 3.5 7.5 7.7 7.4 15.1 14.7 12.8 31.2 28.5
1 5000 3.4 7.5 8.4 7.4 14.6 15.3 13 30.9 28.7
1 20000 3.2 6.6 7.1 6.9 13 13.8 13.5 29.7 28
2 1000 2.6 23.1 23.9 6.1 40.7 42.2 13.2 65.8 65.6
2 3000 2.8 23.2 25.3 5.1 45.3 47.3 10.8 69.4 70.3
2 5000 3.3 24.4 26.4 5.6 50.8 50.7 10.8 73.4 73.3
2 20000 3.1 26.6 25.9 5 55 52.9 10.8 76.9 76.8
3 1000 12.8 17.6 18.5 24.8 37.9 38.5 46.3 63.1 62.8
3 3000 18.6 30.7 32.3 34.7 53.9 55.7 55.5 76.3 76.6
3 5000 18.7 36.7 38.2 35.8 62.3 63.3 56.7 83 84
3 20000 15.6 60.1 61.5 34.8 82 83.4 60.6 92 91.6

Based on the numerical simulations for the four dimensional functions, it is clear
that the MSD-RS-HDMR methods produce much more accurate results than those
of the RS-HDMR method. On each sub-domain, it may requires appropriate sample
points in order to keep the accuracy of the Monte Carlo integrations.
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4. Tropospheric Alkane Photochemistry Model

In this section, we apply the MSD-RS-HDMR method for a real problem of
the Tropospheric Alkane Photochemistry model. The model describes the species
concentration in the troposphere of the atmosphere, and the problem has been
studied in [26, 27]. Numerical simulations and comparisons with the RS-HDMR
and Cut-HDMR methods will be reported.

4.1. Introduction of the Model. The troposphere is the lowest portion of the
earth’s atmosphere. It contains approximately three quarters of the atmosphere’s
mass and almost all of its water vapor and aerosols. The problem deals with
alkane/NOx/O3 photochemistry in troposphere and involves 68 reactions and 52
species. In the tropospheric Alkane Photochemistry model, as the concentrations of
some species keep unchanged or the action of some species is one variable, a reduced
model by grouping variables for the actions of some species ([26, 27]) has been pro-
posed. The Direct Constrained Approximate Lumping (DCAL) method has been
applied to this Alkane model ([26, 27]), in which 30 nonmethane alkane species
are lumped into three lumped species and the remaining 21 inorganic species and
one methane are constrained treated as individual species. In the present study,
we apply the photochemical box-model [27] to simulate the Alkane Photochem-
istry problem. This model has the advantage that it employs the Alkane/DCAL
mechanism and the LSODE routine ([11]).

Table 7. Dynamic ranges (ppb) of the 33 input chemical species
concentrations ([26]).

No. Chemical Species Range No. Chemical Species Range
1 Ozone 1-200 18 Methylcyclopentane 4-18
2 Nitrogen dioxide 1-50 19 Heptane 60-275
3 Nitrogen oxide 1-100 20 3-Methylhexane 5-12
4 Ethane 5-24 21 2,4-Dimethylpentane 2-16
5 Propane 6-25 22 2,3-Dimethylpentane 3-17
6 Butane 7-38 23 Methylcyclohexane 2-16
7 Iso-butane 3-17 24 Octane 7-428
8 Pentane 2-20 25 4-Methylheptane 2-11
9 Iso-pentane 1-4 26 2,2,4-Trimethylpentane 2-11
10 Neo-pentane 1-3 27 Ethylcyclohexane 2-11
11 Cyclopentane 1-3 28 Nonane 3-37
12 Hexane 24-280 29 4-Ethylheptane 1-10
13 2-Methylpentane 3-11 30 Decane 1-9
14 3-Methylpentane 3-11 31 4-Propylheptane 1-8
15 2,2-Dimethylbutane 4-12 32 Undecane 1-7
16 2,3-Dimethylbutane 3-17 33 Dodecane 1-7
17 Cyclohexane 3-16

For the photochemical box-model, the initial concentrations of 14 radical species
are set to zero corresponding to the starting time at midnight, and the concen-
trations of 5 chemical species (N2, O2, H2O, CO2, and CH4) remain constant
during the simulation period. At the end, 6 chemical species (O3, NO2, NO, and



NEW MULTIPLE SUB-DOMAIN RS-HDMR METHOD 85

3 lumped alkane species) are left, that leads to a six input variables system. The
appropriate dynamic ranges of the 33 species, including 30 explicit alkane species
and 3 inorganic species (O3, NO2, and NO), are given in Table 7. The 30 explicit
alkane species combine linearly into 3 lumped alkane species through the transfor-
mation of the DCAL lumping matrix ([27]), and the ranges are determined by the
method given in [26]. The procedure is given as follows: (1) take ten thousand
random sampling points from the 30-dimensional hypercube space consisting of 30
explicit alkane species ranges in Table 7; (2) transform above sampling points from
the 30-dimensional hypercube space to the 3-dimensional lumped space through
the DCAL lumping matrix; (3) determine the maximum and minimum values for
each axis of the 3-dimensional lumped space among the ten thousand transformed
points.

In the computational experiment, we compare the numerical results based on
the MSD-RS-HDMR, RS-HDMR and Cut-HDMR methods. In the simulations,
the HDMR function f(x̄0, tj) represents one of the chemical species concentrations
after time tj . Here, we suppose that the initial time is zero. For example, f(x̄0,
120) is the concentration of one species after 120 minutes, where the x̄0 is the vector
of the initial concentrations at time zero. For one output concentration of species,
we need to generate 24 local HDMR expansions corresponding to tj = 60j minutes,
1 ≤ j ≤ 24, over high dimensional domains. Thus, there are totally 6 × 24 local
HDMR functions for 6 chemical species in 24 hour simulation.

The initial values for the input chemical species concentrations are given in Table
8. The ranges of the reduced model such as the ranges of O3, NO2, NO and three
lumped variables are listed in Table 9, where the ranges of lumped variables is
calculated by the above mentioned method. The values of the initial species of
a reduced model are obtained through the transformation of the DCAL lumping
matrix, which are shown in Table 10.

Table 8. Initial conditions (ppb) of 33 input chemical species con-
centrations ([26]).

No. Chemical Species Value No. Chemical Species Value
1 Ozone 97.4 18 Methylcyclopentane 7.3
2 Nitrogen dioxide 35.7 19 Heptane 159
3 Nitrogen oxide 35.7 20 3-Methylhexane 6.4
4 Ethane 13.6 21 2,4-Dimethylpentane 8.0
5 Propane 18.9 22 2,3-Dimethylpentane 13.8
6 Butane 20.1 23 Methylcyclohexane 7.6
7 Iso-butane 12.1 24 Octane 320
8 Pentane 9.0 25 4-Methylheptane 5.3
9 Iso-pentane 2.9 26 2,2,4-Trimethylpentane 8.4
10 Neo-pentane 1.7 27 Ethylcyclohexane 5.0
11 Cyclopentane 2.2 28 Nonane 26.2
12 Hexane 108 29 4-Ethylheptane 3.8
13 2-Methylpentane 7.4 30 Decane 6.2
14 3-Methylpentane 5.4 31 4-Propylheptane 2.9
15 2,2-Dimethylbutane 8.2 32 Undecane 4.7
16 2,3-Dimethylbutane 6.7 33 Dodecane 2.5
17 Cyclohexane 9.4
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Table 9. Dynamic ranges (ppb) of the 6 input variables in
Alkane/DCAL Mechanism ([26]).

No. Chemical Species Range
1 Ozone (1,200)
2 Nitrogen dioxide (1,50)
3 Nitrogen oxide (1,100)
4 1st Lumped alkane species (30,180)
5 2nd Lumped alkane species (-5.5,41)
6 3rd Lumped alkane species (-140,-36)

4.2. Simulation results. In this section, we compare the performance of five
methods, the Cut-HDMR, the RS-HDMR, the MSD-RS-HDMR, the full model
and the Dcal model applied to the Alkane Photochemistry model. The full model
is the general model involving 68 reactions and 52 chemical species. The Dcal is
a reduced model containing 6 species: O3, NO2, NO and 3 lumped species. The
Cut-HDMR, the RS-HDMR and the MSD-RS-HDMR methods are constructed
from data generated by the Dcal model ([27]). Simulation results of the full model,
the Dcal model and the Cut-HDMR method are based on those reported in [27].

Table 10. Initial conditions (ppb) of 6 input species concentrations.

No. Chemical Species Value
1 Ozone 97.41499
2 Nitrogen dioxide 35.74295
3 Nitrogen oxide 35.74295
4 1st Lumped alkane species 124.7278
5 2nd Lumped alkane species 22.93971
6 3rd Lumped alkane species -0.7262324

Table 11. Splitting sub-intervals (overlapping) of input variables.

Variable Sub-intervals
x1 [1, 100]; [90, 200]
x2 [1 50]
x3 [1, 50]; [50, 100]
x4 [30, 180]
x5 [-5.5, 41]
x6 [-140, -36]

The sub-domain decomposition of the whole domain for the MSD-RS-HDMR
method is given in Table 11. Results of the outputs O3, NO2 and NO by the
RS-HDMR, the Cut-HDMR and the MSD-RS-HDMR methods are shown in Table
12. In all computations, the HDMR approximations contain only the first order
component terms. The components functions are approximated by the third order
orthonormal polynomials and with parameter r = 7. The predicted concentration
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values are at time level 12 × 60 minutes. For the MSD-RS-HDMR computation,
10, 000 sample points are used in each sub-domain to construct the local HDMR ap-
proximations. To investigate the accuracy, 1, 000 checked sample points are chosen
from the total random data.

From the simulation results presented in Table 12, it is clear that the MSD-RS-
HDMR method produces the most accurate predictions compared to those using
the Cut-HDMR and the RS-HDMR methods for all three species. The accuracy
given by the Cut-HDMR and the RS-HDMR methods are almost the same.

Table 12. Comparison of RS-HDMR (RS), the MSD-RS-HDMR
(MSDo) and the Cut-HDMR (Cut) methods.

Data portion(%)
Item Polynomial Accuracy 5% Accuracy 10% Accuracy 20%

order RS Cut MSDo RS Cut MSDo RS Cut MSDo

O3 3 26.7 32.2 61.9 46.7 51.7 82.3 70.9 68.6 92.4
NO2 3 36.3 40.75 71.7 57.2 61.1 89 74.8 76.84 95.5
NO 3 15.8 18.20 51.9 29.9 30.63 73.7 49.9 52.27 88.1

Figure 2 (a)(b) display the diurnal concentrations profiles of 24× 60 minutes for
O3 and NO2 by various methods. Figure 2 shows that the MSD-RS-HDMR expan-
sion produces numerical predictions in excellent agreement with those obtained by
the full model ([27]) and the DCAL reduced model, while the Cut-HDMR ([26])
method and the RS-HDMR method produce errors after time 15× 60 minutes for
O3 and 20× 60 minutes for NO2, as well as before 5× 60 minutes for NO2.

Figure 3(a)(b) illustrate the 5% accuracy of the Cut-HDMR ([26]), the RS-
HDMR and the MSD-RS-HDMR methods for outputs O3 and NO2, respectively.
It is clearly shown in Figure 3 that the MSD-RS-HDMRmethod gives the best result
while the RS-HDMR method produces the worst prediction. For the Alkane Pho-
tochemistry model, numerical tests have verified that the MSD-RS-HDMR method
is capable of producing more accurate results than the Cut-HDMR and the RS-
HDMR methods.

5. Conclusions

In this paper, we developed the multiple sub-domain random sampling HDMR
methods (MSD-RS-HDMR) for general high dimensional input-output systems. We
first divide the whole domain into multiple sub-domains by the domain splitting
technique. Depending on the properties of systems, the sub-domains can be con-
structed as overlapping or non-overlapping. Secondly, the local RS-HDMR approx-
imations are used on the sub-domains. The sample points of the high dimensional
inputs are generated using a quasi-random sequence. The global MSD-RS-HDMR
approximation is then formed with local RS-HDMR approximations. The weight
functions are introduced to ensure good approximations near the interfaces. Nu-
merical simulations for given multiple dimensional functions and a real application
of the Tropospheric Alkane Photochemistry model confirmed that the MSD-RS-
HDMR method is capable of producing accurate results and it can be applied
efficiently for high dimensional systems in large domains.
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