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BIOMECHANICAL MODELING OF TUMOR GROWTH:

ITS RELEVANCE TO GLIOMA RESEARCH

ANTHONY J. PALOCAREN AND CORINA S. DRAPACA

Abstract. In 2009 the US National Center for Health Statistics showed that cancer is close to
becoming the deadliest disease of modern times. Recent years have seen unprecedented advance-
ments in medicine that have contributed to a substantial decrease in the death rates of some
serious diseases such as heart disease, stroke, influenza and pneumonia. However, with cancer,
equivalent scientific and technological advances have yet to be achieved. Theoretical models ca-

pable of explaining the fundamental mechanisms of tumor growth and making reliable predictions
are urgently needed. These models can contribute considerably to the design of optimal, per-
sonalized therapies that will not only maximize treatment outcomes but also reduce health care
costs. Recently [25] we have proposed a non-invasive way of classifying gliomas, primary brain
tumors, based on their stiffness. The model uses image mass spectra of proteins present in gliomas
and shows that the Young’s modulus of a high grade glioma is at least 10kPa higher than the
Young’s modulus of a low grade glioma. In this paper we will use this model to investigate the
effect of mechanics on the growth of gliomas. The proposed mechano-growth model is a non-linear
evolution differential equation which is solved analytically using the Adomian method. The time
evolution is represented in two ways: (1) using a classical first-order derivative, and (2) using
a fractional order derivative. Our results show that the fractional order model captures a very
interesting temporal multi-scale effect of tumor transition from low grade (benign) to high grade
(malignant) glioma when a certain threshold of mechanical strain is reached in the tissue. For
comparison, we also reproduce the results we presented in [25] when linearization is used to solve
the evolution equations analytically.
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1. Introduction

In the spring of 2009, the New York Times published data from the National
Center for Health Statistics showing that cancer is close to becoming the deadliest
disease of modern times [3]. Recent advancements seen in medicine have contributed
to a substantial decrease in the death rates of some serious diseases such as heart
disease, stroke, influenza and pneumonia. However, in the case of cancer, equivalent
scientific and technological advances have yet to be achieved. The annual cancer
death rate currently stands at about 200 deaths a year per 100,000 people of all
ages and about 1,000 deaths per 100,000 people over the age of 65 [4]. Although a
steady increase in diagnoses and survival has been seen over the past sixty years,
the treatment of deadly cancers has not improved and thus the cancer death rate
has hardly changed. In particular, gliomas are primary brain tumors that, at high
grades, are among the deadliest cancers. For instance, a European study published
in 2005 showed that around 65% of adults with low grade astrocytoma (a type
of glioma) lived for at least 5 years without any tumor growth during that time.
However, low grade gliomas in adults may come back or change into high grade
gliomas after some time. On the other hand, although more than 30% of brain
tumors in children are gliomas, these are usually low grade (benign) and once
removed do not recur. More than 87% of children, diagnosed with gliomas, survive
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for more than 5 years post surgery and over 83% will live for more than 10 years
[4].

In order to advance our understanding of the fundamental mechanisms under-
lying tumor growth, we need to develop appropriate mathematical models able to
predict evolutionary patterns in diseased tissues as well as recovery after treatment.
Such models can contribute considerably to the design of optimal, personalized ther-
apies that will not only maximize treatment outcomes but also reduce health care
costs. The last few decades have seen extensive progress in mathematical model-
ing of solid tumor growth that has provided insight into the understanding of some
experimental and clinical data. Most models are either discrete cell-based or contin-
uum models (see some recent reviews in [5, 6, 7, 8, 9]). For example, some models of
brain cancer are given in [10, 11, 12]. Modeling has also shown that tumor morphol-
ogy can be used as a predictor of invasiveness [5, 13, 14, 15, 16]. In [17, 18, 19], the
authors proposed cell-cell adhesion and external nutrient concentration as param-
eters controlling the stability of three-dimensional multi-cellular spheroids. While
Greenspan [24] considered necrotic tumors in the avascular stage, where growth is
regulated only by nutrient diffusion through the surrounding micro-environment,
Byrne and Chaplain [17] modeled non-necrotic tumors where nutrient is supplied
through the surrounding vascularized environment. During avascular growth, tu-
mor cells receive oxygen, nutrients and growth factors via diffusion through the
host tissue. This phase can be investigated by in vitro experiments where cancer
cells are cultured in a three dimensional geometry [20, 21, 22, 5]. These exper-
iments show that cancer cells self organize into multi-cellular spheroidal colonies
due to cell-cell adhesion in which the outer layer of cells tends to expand and grow
while the interior cells die due to lack of nutrients. All the continuum models of
tumors are based on reaction-diffusion equations describing the evolution of tumor
cell density, extracellular matrix, matrix degrading enzymes, and concentrations of
cell substrates such as glucose, oxygen, and growth factors and inhibitors. Different
constitutive laws have been employed to describe the deformation and stress fields
of tissues. For example, the Darcy model, which models fluid flow through a porous
medium, was used in [24, 13, 17, 26], while the Stokes’ law of fluids was studied in
[27]. Both models were investigated in [28, 29, 30]. Other continuum models have
used constitutive laws for (visco-) elastic solids to predict the growth of tumors
[23]. More details on such models are given in [7].

The main challenge in using these mathematical models for predicting tumor
growth in patients is finding the appropriate model parameters. The clinical eval-
uation of patients required to determine these parameters must be safe and mini-
mally invasive. An example of a non-invasive technology, that may greatly assist
in this endeavor, is imaging elastography. Imaging elastography combines informa-
tion about mechanical wave propagation through tissues together with advances
in medical imaging to diagnose tumors based on their stiffness. This palpation

through imaging process is based on the well-known fact that tumors tend to be
stiffer than the surrounding healthy tissue. In order to improve the outcomes of
this novel technology, we recently [25] proposed a non-invasive way of classifying
gliomas based on their stiffness. The model uses image mass spectra of proteins
present in gliomas and assumes that: 1) the relative intensities of proteins given by
the image mass spectroscopy are proportional to the corresponding concentrations,
and 2) the Young’s modulus of a tissue is proportional to the concentrations of pro-
teins present in that tissue. The results in [25] show that we can differentiate, for
example, between low and high grade gliomas based on their stiffness, a high grade
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Figure 1. Elastograms of high grade (left) and low grade (right) gliomas.

glioma being at least 10kPa stiffer than a low grade glioma. In Fig.1 we present
elastograms, maps of stiffness values in a tissue, of low and high grade gliomas
obtained using this model.

In this paper we use our model presented in [25] to investigate the effect of me-
chanics on the growth of gliomas. The mechano-growth model we propose here
is a non-linear evolution differential equation inspired by the growth model of cy-
toskeletal networks given in [34]. We solve this equation analytically using the
Adomian decomposition method, a robust and fast convergent method of building
approximate series solutions to differential equations (see for instance [1]). The time
evolution is represented in two ways: (1) using a classical first-order derivative as in
[34], and (2) using a fractional order derivative. While the idea of using fractional
order temporal derivatives to describe abnormal processes believed to underlie the
development of tumors has been already proposed by Jumarie in [31], the study
in this paper of the effect of the fractional derivative on the coupling between the
growth and biomechanics of tumors is, to the best of our knowledge, novel. Our
results show that, unlike the classic first order derivative, the fractional order model
captures a very interesting temporal multi-scale effect of tumor transition from low
grade (benign) to high grade (malignant) glioma when a certain threshold of me-
chanical strain is reached in the tissue. Such predictability of tumor growth could
prove essential for better treatment decision and planning. In addition we will also
reproduce here our results obtained in [25] where we used linearization to solve the
evolution equations. The linearized solution of the first order evolution equation
looks similar to the corresponding Adomian series solution, however the shapes
of the linearized and Adomian series solutions for the fractional order evolution
equation are different although the transition behavior from low to high grade is
captured by both solutions.

The paper is organized as follows. In section 2 we give a brief presentation of
the Adomian method and in section 3 we present our mechano-growth model. The
results are shown in section 4. The paper ends with a section of conclusions.

2. The Adomian Decomposition Method

Almost thirty years ago, Adomian proposed a new decomposition method to
obtain analytical solutions to a wide class of linear and non-linear deterministic
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as well as stochastic ordinary and partial differential equations [1]. The Adomian
Decomposition Method (ADM) is a robust, accurate and fast convergent method
that builds approximate series solutions without linearization, assumptions of weak
nonlinearity, or perturbation theory. For example, [32] shows that ADM is as fast
and as accurate as the finite element method (FEM) but without the complexity
of computer implementation required by FEM.

For the purposes of this paper, we will present the main steps of ADM used
in solving an equation of the form Fu(t) = g(t), where F represents a general
nonlinear ordinary differential operator involving both linear and nonlinear terms.
The linear term is decomposed into L+R, where L is an easily invertible operator
and R is the remainder of the linear operator. For simplicity, L is usually taken
to be the highest order derivative in order to avoid difficult integrations. Then the
equation can be written as [1]:

Lu+Ru+Nu = g(1)

where N stands for the non-linear operator of F . Since the linear operator L is
invertible, the intergal operator L−1 exists that applied to equation (1) could give
for example:

u = A+Bt+ L−1g − L−1Ru− L−1Nu(2)

if L is a second-order linear operator, where A, B are constants of integration.
We look for a series solution of the form:

u =

∞
∑

n=0

un(3)

Formula (3) allows for the non-linear term Nu to be decomposed into an infinite
polynomial series

Nu =

∞
∑

n=0

An(4)

where:

A0 = Nu0

A1 = u1
d

du0
Nu0

A2 = u2
d

du0
Nu0 +

u2
1

2!

d2

du2
0

Nu0

A3 = u3
d

du0
Nu0 + u1u2

d2

du2
0

Nu0 +
u3
1

3!

d3

du3
0

Nu0

· · ·(5)

Each Adomian polynomial An depends only on u0, u1, ..., un, for n = 0, 1, 2....
Other definitions of the Adomian polynomials can be found in [2].

Substituting (3) and (4) into equation (2) yields:
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Figure 2. Schematic representation of the uni-axial stretch ap-
plied on a tissue with a growing tumor.

u0 = A+Bt+ L−1g

u1 = −L−1Ru0 − L−1A0

u2 = −L−1Ru1 − L−1A1

· · ·

un+1 = −L−1Run − L−1An(6)

The convergence of the series solution (3) with its terms given by (6) to the exact

solution is usually fast, in most cases about 6 terms of the series are sufficient for
an accurate result [1]. As shown for example in [33], ADM is applied in the same
way for integer order as well as for fractional order differential equations.

3. Mechano-Growth Model of Tumors

3.1. Non-linear Evolution. For simplicity we start by modeling the one-dimensional
growth of tumors under an applied uni-axial stretch λ (Fig.2). We assume that the
tumor growth is not caused by the applied stretch, and is independent of the me-
chanical process.

In order to make some progress in this challenging research area, we also assume
that the growth is volumetric and isotropic (the growth depends only on the time
variable). As in [35], volumetric growth describes only geometric changes, the
material points are dense during growth, and the intrinsic mechanical properties of
the material do not change during growth. In addition, we assume for now that the
tissue is an isotropic, homogeneous, linear elastic solid material.

We denote by

Fd =





λ 0 0
0 1 0
0 0 1





the deformation gradient of the applied uni-axial stretch λ,

G =





g(t) 0 0
0 1 0
0 0 1
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Figure 3. Kinematics of the coupled growth-deformation of tumors.

the growth tensor with g(t) the isotropic growth function, and

F = FdG
−1(7)

the total deformation gradient (see Fig.3 for more information).
Then the Cauchy stress tensor is given by Hooke’s law:

σ = E

(

λ

g(t)
− 1

)

,(8)

where E is the Young’s modulus.
If we substitute the expression for the stress (8) into the equation of growth

proposed in [34], we obtain the following first order, nonlinear differential equation:

dg(t)

dt
= Kexp





γE
(

λ
g(t) − 1

)

kBT



 g(t)(9)

where T, kB, γ are the absolute temperature, Boltzman constant, and respec-
tively, a parameter depending on the bio-chemical reactions involved in the growth
process. The constant parameter K has units of s−1 and is found experimentally
[34]. Since we do not have experimental data, we take for now K = 1s−1 and omit
this parameter from our further calculations. In the initial undeformed state there
is no growth: g(0) = 1.

Equation (9) has been proposed in a more general form in [34] to model the
growth of viscoelastic cytoskeletal networks. Since the biochemical mechanisms
that control tumor growth are to a large extent unknown, we assume that once
the process of tumor growth has been initiated, the tumor will grow in a fashion
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similar to the growth of cytoskeletal networks. We note that this model is sim-
pler than the models of tumor growth presented thus far in the literature. The
atomistic models of tumor growth consider only diffusion and reaction of chemi-
cal species, without accounting for the mechanical behavior of the tumor due to
cellular mechano-transduction processes while the continuum models of solid tu-
mors are computationally very demanding since they involve solving systems of
coupled hyperbolic and parabolic partial differential equations that account for
both, mechanics and diffusion-reaction processes. By contrast, equation (9) has
been constructed such that it has the following advantages: (1) it incorporates
small incremental growth and deformation, which converts an intrinsically nonlin-
ear mechanical problem into a linear one with cumulative elastic quantities; (2) the
deformation decomposition is developed for viscoelastic media which is applicable
to the cytoskeletal network, and (3) the development allows for coupling of any
physically relevant phenomena such as the local stress in the material or local G-
actin concentration with the growth tensor [34]. In addition, from a computational
point of view, this model requires the solution of only one non-linear differential
equation.

We used the Adomian decomposition method for L = d/dt and Mathematica
software to solve equation (9). The Adomian series solution (3) converges in only
4 terms:

g(t) = 1 + exp

(

γ(λ− 1)E

kBT

)

t+
exp

(

2γ(λ−1)E
kBT

)

(kBT − γλE)

2kBT
t2

+
exp

(

3γ(λ−1)E
kBT

)

(k2BT
2 − 2γkBλTE + 2γ2λ2E2)

6k2BT
2

t3

+
exp

(

4γ(λ−1)E
kBT

)

(k3BT
3 − 3γk2BλT

2E + 4γ2λ2E2kBT − 6γ3λ3E3)

24k3BT
3

t4(10)

We replace now the first order temporal derivative in equation (9) by the left-
sided Riemann-Liouville fractional order derivative and obtain the following gener-
alized growth equation:

Dαg(t) = exp





γE
(

λ
g(t) − 1

)

kBT



 g(t), 0 < α < 1.(11)

By definition, the left-sided Riemann-Liouville fractional order derivative of order
α ∈ (−∞, 1] of a function f ∈ L1([0,∞)) is:

Dαf(t) =











































1

Γ(1− α)

d

dt

∫ t

0

f(s)ds

(t− s)α
for α ∈ (0, 1)

d

dt
f(t) for α = 1

1

Γ(−α)

∫ t

0

f(s)ds

(t− s)1+α
for α < 0

(12)
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where Γ(s) =

∫ ∞

0

e−tts−1dt is the gamma function.

As before, we use the Adomian decomposition method for L = Dα and Mathe-
matica software to find the Adomian series solution of (11). Given the length and
complexity of this solution we will not reproduce it here.

3.2. Linearized Evolution. In this subsection we reproduce briefly the results
we obtained in [25] by linearization of the non-linear evolution equations (9) and
(11).

The linearized form of equation (9) is:

d(ln(g(t)))

dt
= exp

(

γE(λ− 1)

kBT

)(

1−
γEλ

kBT
ln(g(t))

)

(13)

Equation (13) can be easily integrated to yield:

g(t) = exp





exp
(

γE(λ−1)
kBT

)

γEλ

kBT

(

1− exp

(

−exp

(

γE(λ− 1)

kBT

)

γEλ

kBT
t

))



(14)

The linearized form of equation (11) is:

Dα (ln(g(t))) = exp

(

γE(λ− 1)

kBT

)(

1−
γEλ

kBT
ln(g(t))

)

(15)

By applying the Laplace transfom L to equation (15) and using the fact that
L (Dαf(t)) = sαL(f(t)), we get [25]:

g(t) = exp







∞
∑

k=0

(−1)k
(

exp
(

γE(λ−1)
kBT

))k (
γEλ
kBT

)k+1

t−αk

Γ(1− αk)






(16)

4. Results

We use the Adomian series solutions to equations (9) and (11) for different values
of the stretch λ and of the fractional order α to investigate numerically the growth
of low and high grade gliomas. The physical parameters used in our numerical
simulations are given in Table 1.

Table 1. Physical parameters used in the numerical simulations.

γ 1.3× 10−26m3

kB 1.30× 10−23m2 ×Kg/(s2 ×K)
T 298K
Elow 30 kPa
Ehigh 40 kPa

In Table 1, Elow and Ehigh stand for averaged Young’s moduli for a low and
respectively high grade glioma estimated from Fig. 1.

In Fig.4 we show the growth curves g(t) given by (10) for different stretch values.
We observe that for small deformations both, the low and high grade gliomas, grow
in a similar way.
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(a)

(b)

(c)

Figure 4. Growth functions given by formula (10)of high grade
(red) and low grade (blue) gliomas versus a normalized time scale
for (a) λ = 0.25, (b) λ = 3, (c) λ = 5.

In Figs.5 and 6 we show the growth curves g(t), the Adomian series solutions
to (11), for λ = 0.25 and, respectively, λ = 5 for three different values of the
fractional order α = 0.25, 0.5, 0.9. From these graphs we see that for larger stretch
values the growth of a low grade glioma can become larger than the growth of
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(a)

(b)

(c)

Figure 5. Growth functions of high grade (red) and low grade
(blue) gliomas versus a normalized time scale for λ = 0.25 and (a)
α = 0.25, (b) α = 0.5, (c) α = 0.9.

a high grade glioma which could mean that a low grade transforms into a high
grade glioma if a certain deformation threshold has been reached. We also notice
that for a fixed stretch value λ, the convexity of the growth functions changes
with increasing α (the curve is concave for α < 0.5, and it becomes convex for
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(a)

(b)

(c)

Figure 6. Growth functions of high grade (red) and low grade
(blue) gliomas versus a normalized time scale for λ = 5 and (a)
α = 0.25, (b) α = 0.5, (c) α = 0.9.

α > 0.5). By comparing Figs.5, 6 for the fractional order model and Fig.4 for the
classic model we see that the the classic case does not capture this transition of
a glioma from low grade to high grade. This difference may be justified by the
fact that the fractional order temporal derivative in (11) could account for some of
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Figure 7. Growth functions given by (14) of high grade (red)
and low grade (blue) gliomas versus a normalized time scale for
(a) λ = 0.1, (b) λ = 1, (c) λ = 5, (c) λ = 10.

the microscopic heterogeneity and material nonlinearities which are not captured
by the macroscopic Hooke’s law. The fractional order mechano-growth model (11)
incorporates an inhomogeneous clock that connects the macroscopic global and the
microscopic local time scales through the presence of a fractional order temporal
derivative (we suspect that in materials with evolving microstructure such as living
biological tissue the fractional order α might connect not only multiple time scales
but also time and length scales). In this form, the model is able to predict the time
when a low grade tumor transforms into cancer at larger stretches that could occur
in the affected tissue due to the growth process itself.

By comparing Figs.4 and 7, we see that the linearized solution and the Adomian
series solution of the first order evolution equation (9) are similar. However, from
Figs.5, 6 and 8 the linearized solution and the Adomian series solution to the
fractional order evolution equation (11) show different trends. The transition from
low grade to high grade when a strain threshold has been reached is captured by
both solutions, but the linearized solution is bounded and shows a steep growth that
is delayed as α increases, while the Adomian series solution changes convexity as α
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Figure 8. Growth functions given by (16) of high grade (red) and
low grade (blue) gliomas versus a normalized time scale for λ = 10
and (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, and (d) α = 0.9.

increases and is unbounded. This difference between the two analytical solutions
of (11) shows that linearization in this case is not reliable and maybe not even
physical, and thus the work done in this paper to find the solution to the non-linear
evolution equation using the Adomian decomposition method represents useful first
steps to remedy this.

5. Conclusion

In this paper we have proposed a mechano-growth model that predicts the growth
behavior of low and high grade gliomas under uniaxial stretch. Our model shows
how an applied uni-axial stretch λ can affect the growth of gliomas of different
grades. For simplicity we assumed that the tissue is an isotropic homogeneous
linear elastic solid for which the stress-strain relationship is given by Hooke’s law
and that tumor growth is regulated by the growth of the viscoelastic cytoskeletal
networks present in the tissue. By considering that tumor growth is similar to
the growth of cytoskeletal networks, we obtained the same nonlinear first order
evolution equation as in [34]. Inspired by [31] where a fractional order temporal
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derivatives is used to describe abnormal processes believed to be involved in the
birth of tumors, we generalized this evolution equation by replacing the first order
temporal derivative by a fractional order one. We have shown that by using a
fractional order temporal derivative instead of a first order one, we can predict
when a low grade (benign) glioma transforms into a high grade (malignant) tumor.

Living biological materials are dynamic materials whose microstructure is evolv-
ing continuously. The fractional order α can be seen as modeling an inhomogeneous
clock that connects the macroscopic global time scale and the microscopic local time
scale. We used the Adomian decomposition method to find analytical solutions to
both the classical and the generalized fractional order non-linear evolution equa-
tions. While the classical model predicts that the high grade tumors grow similar to
the low grade ones, the fractional order model captures the transition of a low grade
tumor to a high grade one regardless of the amount of mechanical stretch applied.
Also, the size of the fractional order α appears to play an important role in this
growth process: the shape of the growth curve changes from concave to convex as α
increases. This piece of information could prove crucial in treatment decisions and
planning. We have also shown the analytic solutions of the corresponding linearized
evolution equations presented in [25]. The comparison between the linearized and
the Adomian series solutions shows that only for the classical, first order evolution
equation is linearization a good approximation. For the fractional order model, the
Adomian decomposition method directly solves the non-linear evolution equation
and thus should be closer to the physics of tumor growth than the solution ob-
tained through linearization. In our further work we plan to investigate how this
fractional order relates to bio-chemical processes (described by diffusion-reaction
differential equations) taking place in tissues and tumors. A multiple time and
length scales approach might have to be considered in order to incorporate these
effects appropriately.
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