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1 Introduction

High-index saddle points of complex systems contain ample physical and chemical
information and thus attract extensive attentions [4, 15, 27, 46]. Here the index of
the saddle point refers to the Morse index characterized by the maximal dimension
of a subspace on which its Hessian operator is negative definite [28]. There exist
several successful algorithms for finding saddle points [5, 6, 8, 10, 11, 19, 47, 50]. For
instance, the search extension method [2, 37] has been applied to find multiple so-
lutions of nonlinear problems. The iterative minimization formulation [9] and the
local minimax method [20, 21, 23] have been developed to search high-index saddle
points. Recently, a high-index saddle dynamics is proposed in [43] to compute an
index-k saddle point

dx

dt
=β

(
I−2

k∑
j=1

vjv
>
j

)
F (x),

dvi
dt

=γ

(
I−viv>i −2

i−1∑
j=1

vjv
>
j

)
J(x)vi, 1≤ i≤k.

(1.1)

Here x∈Rd represents the state variable, {vi}ki=1 are directional variables, β, γ >
0 are relaxation parameters, F (x) : Rd→Rd represents the force generated from
the energy E(x) by F (x) =−∇E(x) and J(x) is the negative Hessian of E(x),
i.e., J(x)=−∇2E(x). This high-index saddle dynamics could be further combined
with the downward and upward algorithms [42] to construct solution landscapes
of complex systems, the pathway map consisting of all stationary points and their
connections [36], that arises several successful applications [13, 14, 24, 30, 38, 40, 41,
44,45,48,49,51].

In most previous studies, exact model values such as F and J used in the high-
index saddle dynamics (1.1) are assumed to be given a priori. However, this is not
the case in many practical problems. For instance, a surrogate model based saddle
dynamics is proposed in [12,55] to reduce the number of queries of model values that
may be expensive or time-consuming, where the model values are predicted via the
Gaussian process learning. In this scenario, the model value may not be accurate
but instead follows a probabilistic distribution. For such complicated cases, deter-
ministic error estimates for numerical approximations to high-index saddle dynamics
in, e.g., [52, 54] are not applicable and instead the probabilistic error estimates are
natural to be considered, which motivates the current study.

In this work we prove probabilistic error estimates for high-index saddle dynam-
ics with or without constraints. The main contribution lies in incorporating the
probabilistic error bound of the model values with the conventional error estimate
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methods for high-index saddle dynamics. The derived error estimates could ensure
the dynamical pathway convergence of the numerical scheme, that is, to ensure that
the discrete high-index saddle dynamics evolves along the dynamical pathway of
continuous high-index saddle dynamics, which in turn ensures that the numerical
scheme converges to the same target saddle point of continuous high-index saddle
dynamics. Furthermore, compared with traditional estimates that control the errors
with respect to the time step size τ , the developed error estimate results such as
(3.1) and (4.5) also characterize the impacts of the uncertainty and inaccuracy of
the model values on the computational accuracy of the schemes.

The rest of the work is organized as follows: In Section 2 we present numerical
discretization of high-index saddle dynamics and the assumptions and their expla-
nations. In Section 3 we prove probabilistic error estimate for the numerical scheme
of high-index saddle dynamics. In Section 4 we extend the results to study the
probabilistic error estimate for the numerical scheme of high-index saddle dynam-
ics constrained on the high-dimensional unit sphere. We finally address concluding
remarks in the last section.

2 Numerical discretization with inaccurate

models

2.1 Numerical scheme

For a fixed time step size τ >0 and time steps tn=nτ with the terminal time T=tN
for some N , we apply the Euler discretization for first-order derivatives in (1.1) to
obtain a reference equation

x(tn)=x(tn−1)+τβ

(
I−2

k∑
j=1

vj(tn−1)vj(tn−1)
>
)
F (x(tn−1))+O(τ 2),

vi(tn)=vi(tn−1)+τγ

(
I−vi(tn−1)vi(tn−1)>

−2
i−1∑
j=1

vj(tn−1)vj(tn−1)
>
)
J(x(tn−1))vi(tn−1)+O(τ 2), 1≤ i≤k.

(2.1)

In general, we could drop truncation errors in (2.1) to obtain the explicit scheme
of (1.1). However, exact values of F and J may not be available in practice due
to various reasons such as modeling inaccuracies, experimental errors and uncer-
tainties, and instead the inaccurate values are more common. For this concern, the
numerical scheme with inaccurate F (x) and J(x), which are denoted by F̂ (x) and
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Ĵ(x), respectfully, is proposed as follows with the approximations {xn,vi,n}N,kn=1,i=1 to

{x(tn),vi(tn)}N,kn=1,i=1

xn=xn−1+τβ

(
I−2

k∑
j=1

vj,n−1v
>
j,n−1

)
F̂ (xn−1),

ṽi,n=vi,n−1+τγ

(
I−vi,n−1v>i,n−1

−2
i−1∑
j=1

vj,n−1v
>
j,n−1

)
Ĵ(xn−1)vi,n−1, 1≤ i≤k,

vi,n=
1

Yi,n

(
ṽi,n−

i−1∑
j=1

(ṽ>i,nvj,n)vj,n

)
, 1≤ i≤k,

(2.2)

for 1≤n≤N with the normalization constants

Yi,n :=

∥∥∥∥ṽi,n− i−1∑
j=1

(ṽ>i,nvj,n)vj,n

∥∥∥∥
=

(
‖ṽi,n‖2−2

i−1∑
j=1

(ṽ>i,nvj,n)2+
i−1∑
j=1

(ṽ>i,nvj,n)v>j,n ·
i−1∑
j=1

(ṽ>i,nvj,n)vj,n

)1/2

=

(
‖ṽi,n‖2−

i−1∑
j=1

(ṽ>i,nvj,n)2
)1/2

,

equipped with the initial conditions

x0 =x(0), vi,0 =vi(0) for 1≤ i≤k satisfying v>i,nvj,n=δi,j for 1≤ i,j≤k.

The third equation of (2.2) is indeed the Gram-Schmidt normalized orthogonaliza-
tion procedure in order to preserve the orthonormal property of directional vectors
as in the continuous problem (1.1) [43, 52].

2.2 Assumptions and motivations

We make the following assumptions for model properties and the degree of model
inaccuracy throughout this work.

Assumption A. There exists a constant L> 0 such that the following linearly
growth and Lipschitz conditions hold under the standard l2 norm ‖·‖ of a vector or
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a matrix

‖J(x2)−J(x1)‖+‖F (x2)−F (x1)‖≤L‖x2−x1‖,
‖F (x)‖≤L(1+‖x‖), x,x1,x2∈Rd.

Assumption B. For a given compact set X⊂Rd, there exist constants Q0 > 0,
0<δ<1 and ε>0 such that the following boundedness for inaccurate values of F
and J

max{‖F̂ (x)‖,‖Ĵ(x)‖}≤Q0, ∀x∈X,
and the probabilistic error bound

P

( m∑
i=1

‖F (xi)−F̂ (xi)‖+
n∑
j=1

‖J(xm+j)−Ĵ(xm+j)‖≤(m+n)ε

)
≥1−δ, ∀{x1,··· ,xm+n}⊂X, m,n≥0,

hold.

In many applications, there exist various energy functions E such that the corre-
sponding F and J satisfy the Assumption A, e.g., the Minyaev-Quapp surface [29]
and the Eckhardt surface [7]. Furthermore, the Assumption A is also natural and
commonly used for numerical analysis [52, 53] since if the dynamics is convergent
to some saddle point, then the trajectory of the dynamics could certainly lie within
a bounded domain such that a truncated F or J could be designed to satisfy the
Assumption A without any impact on the analysis. However, the Assumption
B is rarely encountered in the literature as the accurate values of models are usually
supposed to be given a priori. In real applications the Assumption B is indeed
much more practical as we will show in the following scenarios.

For problems with complicated underlying mechanisms the exact forms of F and
J are not given a priori in some cases such that we need to either investigate the
modeling of the underlying processes or perform experiments in order to obtain the
inquired values of the model in high-index saddle dynamics. In practice, modeling
complex problems may be difficult or inaccurate, while the experiments or simula-
tions are often expensive that restrict the application of high-index saddle dynamics
for computing saddle points.

A potential remedy is the data-driven approach replacing F and J in the original
high-index saddle dynamics by surrogate models trained from, e.g., the Gassian
process learning. In the past few decades, the Gaussian process has been widely
employed in extensive applications for constructing the surrogate models from the
training data [32]. In particular, there exist some recent works on combining the
Gaussian process with searching algorithms of saddle points [3, 12,17,55].
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Gaussian process regression is a Bayesian machine learning method based on
the assumption that any finite collection of random variables yi∈R follows a joint
Gaussian distribution with prior mean 0 and covariance kernel k(x,x′) [33]. There-
fore, the variables yi are observations of a sample function f :X⊂Rd→R of the
Gaussian process distribution perturbed by the Gaussian noise with zero mean and
variance σ2. By concatenating M input data points xi in a matrix XM the elements
of the Gaussian process kernel matrix K (XM ,XM) are defined as Kij = k(xi,xj),
i,j=1,...,M and k(XM ,x) denotes the kernel vector defined analogously. The prob-
ability distribution of the Gaussian process at a point x conditioned on the training
data concatenated in XM and YM is then given as a normal distribution [18,33] with
mean

ν(x)=k(x,XM)
(
K (XM ,XM)+σ2IM

)−1
YM (2.3)

and variance

σ2
∗ (x,x

′)=k(x,x′)−k(x,XM)
(
K (XM ,XM)+σ2IM

)−1
k(XM ,x

′).

The mean ν serves as the input value of the original model in practical computations.
The following theorem proved in [18, Theorem 3.1] provides a uniform probabilistic
error bound for the Gaussian process regression.

Theorem 2.1. Consider a zero mean Gaussian process defined through the continu-
ous covariance kernel k(·,·) with Lipschitz constant Lk on the compact set X defined
as

Lk := max
x,x′∈X

∥∥∥∥∥
[
∂k(x,x′)

∂x1
··· ∂k(x,x′)

∂xd

]>∥∥∥∥∥.
Furthermore, consider a continuous unknown function f :X→R with Lipschitz con-
stant Lf and M observations yi satisfying the assumption that f(·) is a sample
from a Gaussian process GP (0,k(x,x′)) and observations y=f(x)+ε are perturbed
by zero mean i.i.d. Gaussian noise ε with variance σ2. Then, the posterior mean
function ν(·) and standard deviation σ∗(·) of a Gaussian process conditioned on the
training data {(xi,yi)}Mi=1 are continuous with Lipschitz constant Lν and modulus of
continuity ωσ∗(·) on X such that

Lν≤Lk
√
M
∥∥∥(K (XM ,XM)+σ2IM

)−1
YM

∥∥∥, (2.4a)

ωσ∗(τ)≤

√
2τLk

(
1+M

∥∥(K (XM ,XM)+σ2IM)−1
∥∥max
x,x′∈X

k(x,x′)

)
. (2.4b)
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Moreover, pick δ∈(0,1), τ >0 and set

β(τ)=2log

(
M(τ,X)

δ

)
, (2.5a)

γ(τ)=(Lν+Lf )τ+
√
β(τ)ωσ∗(τ), (2.5b)

where the τ -covering number M(τ,X) of a set X (with respect to the Euclidean
metric) is defined as the minimum number of spherical balls with radius τ, which is
required to completely cover X. Then, it holds that

P
(
|f(x)−ν(x)|≤

√
β(τ)σ∗(x)+γ(τ), ∀x∈X

)
≥1−δ. (2.6)

Based on this theorem, we could take σ̄ :=maxx∈Xσ∗(x) to derive from (2.6) that

P
(
|f(x)−ν(x)|≤

√
β(τ)σ̄+γ(τ), ∀x∈X

)
≥1−δ. (2.7)

Furthermore, we obtain from (2.3) that

|ν(x)|≤max
x∈X
‖k(x,XM)‖‖

(
K (XM ,XM)+σ2IM

)−1
YM‖≤Q, (2.8)

where we use Q to denote a generic positive constant that may assume different
values at different occurrences.

To clarify the relations between the above two relations and the Assumption
B, we consider a simple case of the Assumption B, where m= 1, n= 0 and F
or J is a scalar-valued function. In this case, the Assumption B is imposing the
following conditions:

max{‖F̂ (x)‖,‖Ĵ(x)‖}≤Q0, ∀x∈X,

P

(
‖F (x)−F̂ (x)‖≤ε

)
≥1−δ, ∀x⊂X,

which is valid if we select F̂ (x) and Ĵ(x) as the posterior mean functions of a
Gaussian process based on the training data of F (x) and J(x), respectively, and
then apply (2.7) and (2.8). Similarly, another simple case of the Assumption B
where m=0, n=1 and F or J is a scalar-valued function also holds, which indicates
that the Assumption B may be appropriate.

As commented in [34, Section 6], for the vector-valued functions such as F and J ,
we could simply emulate each entry independently as the scalar-valued case such that
the aforementioned simple cases of Assumption B could be applied for each entry.
In many applications, however, it is natural to assume that the entries are correlated,
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and a better emulator could be constructed by including this correlation in the
emulator [34]. For this more physically-relevant approach, one could follow [22, 33]
to perform the vector-valued Gaussian process regression to predict F and J based
on the training data or employ the derivative properties of the Gaussian process
to predict F and J from the observations of E as [12]. As the corresponding error
analysis such as the Theorem 2.1 for the scalar-valued case is not available in the
literature, we impose the Assumption B for the sake of numerical analysis in this
work.

3 Error estimate

In this section we prove error estimates for the scheme (2.2) by assuming that
the trajectory of discrete high-index saddle dynamics lies within a compact set X.
This restriction is proposed as the approximation property of the Gaussian process
regression is proved only for functions defined on a compact set X as shown in
Theorem 2.1. Theoretically, this assumption is reasonable as if the high-index saddle
dynamics algorithm is convergent then its trajectory would certainly lie within some
X. However, as the volume of X becomes larger, the bound of f(x)−ν(x) grows,
cf. (2.6) such that the accuracy of the prediction of the Gaussian process regression
decreases. Increasing training data could help to recover the prediction accuracy
but may lead to an increment of cost. Nevertheless, this issue can be resolved
in practice by applying the sequential learning algorithm [55], which divides the
learning-based optimization into several trust region optimization subproblems such
that each suboptimization is performed within a (relatively small) specified region
that fulfills our presumption.

We first introduce an auxiliary estimate to support the error estimates. As The
following lemma could be proved by exactly the same procedure as [52, Lemma 4.2]
due to the fact that the trajectory of discrete high-index saddle dynamics lies within
a compact set X (as assumed above) implies the boundedness of xn. Thus we only
present the result of the lemma without proof.

Lemma 3.1. Under the Assumptions A-B, the following estimate holds for 1≤
n≤N and τ sufficiently small

‖vi,n−ṽi,n‖≤Qτ 2, 1≤ i≤k.

Here the positive constant Q depends on Q0 but is independent from n, N and τ .

Based on these auxiliary results, we intend to prove error estimates for the nu-
merical scheme (2.2) and characterize the affect of inaccurate model values on the
convergence rate.
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Theorem 3.1. Suppose the Assumptions A-B hold. Then the following prob-
abilistic error estimate holds for the scheme (2.2) for τ sufficiently small and for
some Q>0

P
(
‖x(tn)−xn‖≤Qε+Qτ

)
≥1−δ, 1≤n≤N. (3.1)

Here Q depends on k, L, T , β, γ and Q0 but is independent from τ , n, N , ε and δ.

Proof. Define the errors

exn :=x(tn)−xn, evin :=vi(tn)−vi,n, 1≤n≤N, 1≤ i≤k.

We subtract the second equation of (2.1) from that of (2.2) and apply vi(tn)−ṽi,n
as (vi(tn)−vi,n)+(vi,n−ṽi,n)=evin +(vi,n−ṽi,n) to obtain

evin =evin−1+τγ

(
I−vi(tn−1)vi(tn−1)>−2

i−1∑
j=1

vj(tn−1)vj(tn−1)
>
)
J(x(tn−1))vi(tn−1)

−τγ
(
I−vi,n−1v>i,n−1−2

i−1∑
j=1

vj,n−1v
>
j,n−1

)
Ĵ(xn−1)vi,n−1

−(vi,n−ṽi,n)+O(τ 2), (3.2)

which, together with Lemma 3.1, implies

‖evin ‖≤‖e
vi
n−1‖+τγ

∥∥∥∥I−vi(tn−1)vi(tn−1)>−2
i−1∑
j=1

vj(tn−1)vj(tn−1)
>

−I+vi,n−1v
>
i,n−1+2

i−1∑
j=1

vj,n−1v
>
j,n−1

∥∥∥∥∥∥J(x(tn−1))vi(tn−1)
∥∥

+τγ

∥∥∥∥I−vi,n−1v>i,n−1−2
i−1∑
j=1

vj,n−1v
>
j,n−1

∥∥∥∥
×
∥∥J(x(tn−1))vi(tn−1)−Ĵ(xn−1)vi,n−1

∥∥+Qτ 2.

Direct calculations show that∥∥J(x(tn−1))vi(tn−1)−Ĵ(xn−1)vi,n−1
∥∥

≤
∥∥J(x(tn−1))(vi(tn−1)−vi,n−1)

∥∥
+
∥∥(J(x(tn−1))−J(xn−1)+J(xn−1)−Ĵ(xn−1))vi,n−1

∥∥
≤Q‖evin−1‖+Q‖exn−1‖+‖J(xn−1)−Ĵ(xn−1)‖, (3.3)
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and we incorporate the above two equations to obtain

‖evin ‖≤‖e
vi
n−1‖+Qτ‖exn−1‖+Qτ

i∑
j=1

‖evjn−1‖+Qτ‖J(xn−1)−Ĵ(xn−1)‖+Qτ 2.

Adding this equation from i=1 to k and denoting

Ev
n :=

k∑
i=1

‖evin ‖ for 1≤n≤N,

yield a relation in terms of Ev
n

Ev
n≤Ev

n−1+Qτ‖exn−1‖+QτEv
n−1+Qτ‖J(xn−1)−Ĵ(xn−1)‖+Qτ 2.

Adding this equation from n=1 to n∗ leads to

Ev
n∗≤Qτ

n∗∑
n=1

Ev
n−1+Qτ

n∗∑
n=1

‖exn−1‖+Qτ
n∗∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+Qτ.

Then an application of the discrete Gronwall’s inequality [31, Lemma 11.2] leads to

Ev
n∗≤Qτ

n∗∑
n=1

‖exn−1‖+Qτ
n∗∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+Qτ (3.4)

for 1≤n∗≤N .
We then subtract the equations of the state variable in (2.1) and (2.2) to obtain

exn=exn−1+τβ

[(
I−2

k∑
j=1

vj(tn−1)vj(tn−1)
>
)
F (x(tn−1))

−
(
I−2

k∑
j=1

vj,n−1v
>
j,n−1

)
F̂ (xn−1)

]
+O(τ 2), (3.5)

and the key is to bound the difference in the above equation as follows∥∥∥∥(I−2
k∑
j=1

vj(tn−1)vj(tn−1)
>
)
F (x(tn−1))−

(
I−2

k∑
j=1

vj,n−1v
>
j,n−1

)
F̂ (xn−1)

∥∥∥∥
≤
∥∥∥∥(I−2

k∑
j=1

vj(tn−1)vj(tn−1)
>−I+2

k∑
j=1

vj,n−1v
>
j,n−1

)
F (x(tn−1))

∥∥∥∥
+

∥∥∥∥(I−2
k∑
j=1

vj,n−1v
>
j,n−1

)(
F (x(tn−1))−F̂ (xn−1)

)∥∥∥∥
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≤Q
k∑
j=1

‖evjn−1‖+‖F (x(tn−1))−F (xn−1)‖+‖F (xn−1)−F̂ (xn−1)‖

≤QEv
n−1+Q‖exn−1‖+‖F (xn−1)−F̂ (xn−1)‖.

We incorporate the above two equations to obtain

‖exn‖≤‖exn−1‖+QτEv
n−1+Qτ‖exn−1‖+Qτ‖F (xn−1)−F̂ (xn−1)‖+Qτ 2.

Summing this equation from n=1 to m we obtain

‖exm‖≤Qτ
m∑
n=1

Ev
n−1+Qτ

m∑
n=1

‖exn−1‖+Qτ
m∑
n=1

‖F (xn−1)−F̂ (xn−1)‖+Qτ.

We invoke (3.4) and apply

m∑
n=1

Ev
n−1≤

m∑
n=1

[
Qτ

n−1∑
q=1

‖exq−1‖+Qτ
n−1∑
q=1

‖J(xq−1)−Ĵ(xq−1)‖+Qτ
]

≤Q
m−1∑
n=1

‖exn−1‖+Q
m−1∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+Q

to reach

‖exm‖≤Qτ
m∑
n=1

‖exn−1‖+Qτ
m−1∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖

+Qτ
m∑
n=1

‖F (xn−1)−F̂ (xn−1)‖+Qτ.

An application of the discrete Gronwall’s inequality leads to

‖exm‖≤Qτ
m−1∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+Qτ
m∑
n=1

‖F (xn−1)−F̂ (xn−1)‖+Qτ,

that is,

‖exm‖−Qτ
Qτ

≤
m−1∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+
m∑
n=1

‖F (xn−1)−F̂ (xn−1)‖.
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Then we apply the Assumptions B to obtain

P

(
‖exm‖−Qτ

Qτ
≤(2m−1)ε

)
≥P
(m−1∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖+
m∑
n=1

‖F (xn−1)−F̂ (xn−1)‖≤(2m−1)ε

)
≥1−δ,

that is,
P
(
‖exm‖≤Qτ(2m−1)ε+Qτ

)
≥1−δ.

As τ(2m−1)≤ 2T , we reach the conclusion (3.1) that completes the proof of this
theorem.

4 Extension to constrained saddle dynamics

In many physical processes such as the Thomson problem [35] and the Bose–Einstein
condensation [1], the energy functional is constrained on the high-dimensional unit
sphere. To compute saddle points of such constrained problems, the constrained
high-index saddle dynamics for an index-k saddle point on the unit sphere Sd−1 is
proposed in [39]

dx

dt
=
(
I−xx>−2

k∑
j=1

vjv
>
j

)
F (x),

dvi
dt

=
(
I−xx>−viv>i −2

i−1∑
j=1

vjv
>
j

)
J(x)vi+βxv

>
i F (x), 1≤ i≤k.

(4.1)

We discretize the first-order derivative by the explicit Euler scheme to get the ref-
erence equations for constrained high-index saddle dynamics (4.1)

x(tn)=x(tn−1)+τ
(
I−x(tn−1)x(tn−1)

>

−2
k∑
j=1

vj(tn−1)vj(tn−1)
>
)
F (x(tn−1))+O(τ 2),

vi(tn)=vi(tn−1)+τ
(
I−x(tn−1)x(tn−1)

>−vi(tn−1)vi(tn−1)>

−2
i−1∑
j=1

vj(tn−1)vj(tn−1)
>
)
J(x(tn−1))vi(tn−1)

+τx(tn−1)vi(tn−1)
>F (x(tn−1))+O(τ 2), 1≤ i≤k.

(4.2)
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Then we drop the truncation errors and take account of the inaccuracy of F and J
to obtain a first-order scheme of (4.1)

x̃n=xn−1+τ
(
I−xn−1x>n−1−2

k∑
j=1

vj,n−1v
>
j,n−1

)
F̂ (xn−1),

xn=
x̃n
‖x̃n‖

,

ṽi,n=vi,n−1+τ
(
I−xn−1x>n−1−vi,n−1v>i,n−1−2

i−1∑
j=1

vj,n−1v
>
j,n−1

)
Ĵ(xn−1)vi,n−1

+τxn−1v
>
i,n−1F̂ (xn−1), 1≤ i≤k,

v̂i,n= ṽi,n−ṽ>i,nxnxn, 1≤ i≤k,

vi,n=
1

Yi,n

(
v̂i,n−

i−1∑
j=1

(v̂>i,nvj,n)vj,n

)
, 1≤ i≤k,

(4.3)
for 1≤n≤N and

x0 =x(0), vi,0 =vi(0), Yi,n :=

(
‖v̂i,n‖2−

i−1∑
j=1

(v̂>i,nvj,n)2
)1/2

, 1≤ i≤k,

such that

x>0 vi,0 =0 and v>i,0vj,0 =δi,j for 1≤ i,j≤k.

The second equation of (4.3) represents the retraction in order to ensure that xn∈
Sd−1. The last two equations of (4.3), which stand for the vector transport and the
Gram-Schmidt orthonormalization procedure [39], respectively, aim to ensure the
following properties as for the continuous problem

v>i,nxn=0, v>i,nvj,n=δij, 1≤ i,j≤k, 0≤n≤N. (4.4)

Compared with the numerical scheme (2.2) for the unconstrained high-index saddle
dynamics, additional operations such as the retraction and vector transport in (4.3)
caused from the sphere constraint make this scheme and the corresponding analysis
more complicated.

We first introduce auxiliary estimates to support the error estimates. The follow-
ing lemma could be proved by exactly the same procedure as [54, Lemmas 3.1-3.4]
and thus we only present the results without proof.
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Lemma 4.1. Under the Assumptions A-B, the following estimates hold for τ
sufficiently small

‖xn−x̃n‖=
∣∣1−‖x̃n‖∣∣≤Qτ 2, 1≤n≤N,

‖v̂i,n−ṽi,n‖≤Qτ 2, 1≤ i≤k, 1≤n≤N,
‖vi,n−v̂i,n‖≤Qτ 2, 1≤ i≤k, 1≤n≤N.

Here Q depends on Q0 but is independent from τ , n and N .

We then derive error estimates for the numerical scheme (4.3).

Theorem 4.1. Suppose the Assumptions A-B hold. Then the following prob-
abilistic error estimate holds for the scheme (4.3) for τ sufficiently small and for
some Q>0

P
(
‖x(tn)−xn‖≤Qε+Qτ

)
≥1−δ, 1≤n≤N. (4.5)

Here Q depends on k, L, T , Q0 but is independent from τ , n, N , ε and δ.

Proof. In general the proof could be performed following that of Theorem 3.1 and
we thus only provide a sketch. We first subtract the equations of directional vectors
in (4.2) and (4.3) and apply Lemma 4.1, which implies

vi(tn)−ṽi,n=(vi(tn)−vi,n)+(vi,n−v̂i,n)+(v̂i,n−ṽi,n)=evin +O(τ 2)

to obtain

evin =evin−1+τ

(
I−x(tn−1)x(tn−1)

>−vi(tn−1)vi(tn−1)>

−2
i−1∑
j=1

vj(tn−1)vj(tn−1)
>
)
J(x(tn−1))vi(tn−1)

−τ
(
I−xn−1x>n−1−vi,n−1v>i,n−1−2

i−1∑
j=1

vj,n−1v
>
j,n−1

)
Ĵ(xn−1)vi,n−1

+τx(tn−1)vi(tn−1)
>F (x(tn−1))−τxn−1v>i,n−1F̂ (xn−1)+O(τ 2).

Compared with (3.2), the newly encountered differences are

τx(tn−1)x(tn−1)
>J(x(tn−1))vi(tn−1)−τxn−1x>n−1Ĵ(xn−1)vi,n−1

and
τx(tn−1)vi(tn−1)

>F (x(tn−1))−τxn−1v>i,n−1F̂ (xn−1),
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which could be bounded by the splitting techniques as (3.3). Then we follow the
derivations in (3.2)–(3.4) to reach a similar estimate as (3.4)

Ev
n∗≤Qτ

n∗∑
n=1

‖exn−1‖+Qτ
n∗∑
n=1

‖J(xn−1)−Ĵ(xn−1)‖

+Qτ
n∗∑
n=1

‖F (xn−1)−F̂ (xn−1)‖+Qτ (4.6)

for 1≤n∗≤N .
We could similarly subtract the equations of state variables in (4.2) and (4.3)

and apply
x(tn)−x̃n=(x(tn)−xn)+(xn−x̃n)=exn+O(τ 2)

to get the error equation

exn=exn−1+τ

[(
I−x(tn−1)x(tn−1)

>−2
k∑
j=1

vj(tn−1)vj(tn−1)
>
)
F (x(tn−1))

−
(
I−xn−1x>n−1−2

k∑
j=1

vj,n−1v
>
j,n−1

)
F̂ (xn−1)

]
+O(τ 2).

Compared with (3.5), the newly encountered difference is

τx(tn−1)x(tn−1)
>F (x(tn−1))−τxn−1x>n−1F̂ (xn−1),

which could be bounded by the splitting techniques as (3.3). Then we could esti-
mate this error equation as that in the proof of Theorem 3.1 based on (4.6) and
Assumptions A-B to complete the proof.

5 Concluding remarks

We prove probabilistic error estimates for high-index saddle dynamics without con-
straints or with sphere constraint in order to account for the inaccurate values of the
model, which could be encountered in various scenarios such as model uncertainties
or surrogate model algorithms via machine learning methods. Therefore, the cur-
rent study serves as a generalization of conventional numerical analysis results for
deterministic high-index saddle dynamics.

There are potential extensions of the current work that deserve further explo-
ration. For instance, the dimer method [16] with the dimer length l could be used
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in (2.2) and (4.3) to approximate the product of the Hessian matrix and the vector,
i.e.,

J(x)vi≈
F (x+lvi)−F (x−lvi)

2l

for efficient computation and storage, which leads to the shrinking-dimer high-index
saddle dynamics [43,53]. Under this approximation, only the values of F are required
in high-index saddle dynamics, which could simplify the implementation. However,
this introduce additional errors that are not easy to be estimated due to, e.g., the
low regularity of F generated from machine learning methods. Furthermore, it is
meaningful but challenging to extend the ideas and techniques to analyze prob-
abilistic error estimates for the numerical scheme for high-index saddle dynamics
constrained by m equalities [39, Eq. 24]

dx

dt
=

(
I−2

k∑
j=1

vjv
>
j

)
F (x),

dvi
dt

=

(
I−viv>i −2

i−1∑
j=1

vjv
>
j

)
H(x)[vi]

−A(x)
(
A(x)>A(x)

)−1(∇2c(x)
dx

dt

)>
vi, 1≤ i≤k.

(5.1)

Here c(x) = (c1(x),··· ,cm(x)) = 0 represents the m equality constraints and A(x) =
(∇c1(x),··· ,∇cm(x)). The sphere-constrained high-index saddle dynamics (4.1) is a
special case of (5.1) with one equality constraint

c1(x)=‖x‖−1=0.

In the generalized constrained saddle dynamics (5.1), H(x) refers to the Riemannian
Hessian [39], which is difficult to compute and approximate in practice.

Another interesting topic in optimization algorithms lies in performing the asymp-
totic stability analysis of the discretization. In [24], the asymptotic convergence rate
is proved for the explicit scheme of the high-index saddle dynamics (1.1), following
which the asymptotic convergence rate is proved for the explicit scheme of the ac-
celerated high-index saddle dynamics that contains an additional momentum term
in the dynamics of x [25]. Based on the methods in [24,25], the asymptotic stability
analysis of the discretizations in this work will be considered in the future.

Apart from the explicit schemes, the semi-implicit schemes are developed and
analyzed recently for high-index saddle dynamics (1.1) [26] and the constrained high-
index saddle dynamics (4.1) [56], respectively. As shown in numerical experiments
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in [26], the semi-implicit scheme is more efficient than the explicit scheme in terms
of the computational time and the number of queries of the model value. Thus we
will combine the analysis techniques in [26, 56] and the current work to perform
probabilistic error estimates of the semi-implicit schemes for the (constrained) high-
index saddle dynamics with inaccurate models.

In the current setting, the x is assumed to be a d-dimensional vector with a
finite dimension d. A more generalized version is the PDE case of the high-index
saddle dynamics, i.e., the x becomes a vector of infinite dimension. For this situ-
ation, it seems that the developed analysis still works if we could impose suitable
boundedness and Lipschitz assumptions on the model values like the Assumptions
A-B. However, the validity of these assumptions for infinite dimensional problems
remains to be considered and illustrated, which may lead to difficulties. A careful
analysis is required to explore this interesting scenario.

Finally, there exists some numerical examples in [55] to substantiate the ef-
fectiveness of the surrogate-model based algorithm for high-index saddle dynamics
without explicit expression of the model, a typical scenario that the model is inac-
curate. However, to our best knowledge, numerical experiments to demonstrate the
numerical analysis results in this work are not available in the literature. We will
consider this interesting and meaningful topic in future works.
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