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Abstract. We apply the local method of fundamental solutions (LMFS) to boundary

value problems (BVPs) for the Laplace and homogeneous biharmonic equations in
annuli. By appropriately choosing the collocation points, the LMFS discretization

yields sparse block circulant system matrices. As a result, matrix decomposition
algorithms (MDAs) and fast Fourier transforms (FFTs) can be used for the solution

of the systems resulting in considerable savings in both computational time and

storage requirements. The accuracy of the method and its ability to solve large scale
problems are demonstrated by applying it to several numerical experiments.
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1. Introduction

The method of fundamental solutions (MFS) was introduced as a numerical method

several decades ago [9, 28] and is by now an established method for accurately and

effectively solving certain elliptic boundary value problems (BVPs) [7, 10, 14]. It is

a boundary meshless method applicable to BVPs in which the fundamental solutions

of the operators of the governing partial differential equations (PDEs) are known. The

main attraction of the MFS is its simplicity since only the location of the boundary nodes

(and corresponding sources) is required and neither interior discretization nor bound-

ary integration are needed. As such, the MFS can be used to solve many complicated
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problems in science and engineering. However, identifying the source location (out-

side the domain) to yield optimal accuracy remains a challenge. In particular, when

the domain is multi-connected containing several small cavities, placing the source

points appropriately is a far from trivial task. It should be noted that the geometric

shape of the domain and the boundary conditions (BCs) can affect the optimal source

location. In theory, there are infinite ways of selecting the positions of the source

points and many studies have attempted to resolve this issue. Moreover, since the tra-

ditional MFS is a global method and not a local method, the matrix resulting from

such a discretization is full and poorly-conditioned. For large-scale problems requir-

ing a large number of collocation points, implementationally demanding techniques

such as domain decomposition or the fast multipole method need to be employed,

which defeats the purpose of using the MFS in the first place since, as stated earlier,

its major attraction is its simplicity. The above issues are, to a large extent, overcome

in a recently developed local version of the MFS which yields sparse matrices. More

specifically, the local method of fundamental solutions (LMFS) was introduced in the

key paper [11] and has since been applied for the solution of a large variety of prob-

lems [4–6,12,15–19,23–26,29–31,33–36].

The LMFS combines the traditional MFS with the ideas developed in other local

meshless methods. As a result, in the implementation of the LMFS, both boundary and

interior notes are required and, technically speaking, it may no longer be classified as

a boundary method. Hence, we can consider the LMFS as a hybrid method combining

features from both boundary and domain discretization methods. Fortunately however,

the LMFS inherits the simplicity of the MFS.

The matrix resulting from the LMFS discretization is sparse which means that the

corresponding linear systems can be efficiently solved. However, when the number of

boundary and interior points becomes extremely large, the memory storage space and

computational CPU time required become a problem.

In the current work we shall apply matrix decomposition algorithms (MDAs) [1] for

the solution of Laplacian and biharmonic BVPs in annular domains. In MDAs, global

systems (which could be sparse) are decomposed into many small systems, the solution

of which results in substantial savings in both computational time and storage. Such

algorithms have been employed extensively in MFS formulations, see e.g. [21]. MDAs

have also been applied to radial basis function (RBF) collocation methods [27] and, in

particular, to the local RBF method [2] which shares several features with the LMFS.

In this paper, we apply MDAs to the LMFS to form an even more powerful meshless

method which, as will be demonstrated, can readily handle problems with one million

collocation nodes without the need of a high performance computer.

The types of BVPs examined in this study are presented in Section 2. In Section 3

we provide a detailed description of the LMFS for the solution of BVPs governed by the

Laplace equation. The LMFS for biharmonic BVPs is presented in Section 4 while an

alternative formulation for such problems is given in Section 5. In Section 7 we analyze

the results obtained when the proposed method is applied to various test problems.

Finally, we conclude with some comments and ideas about future work in Section 8.
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2. The problems

2.1. Laplacian problems

We study the BVP, which consists of the Laplace equation

∆u = 0 in Ω, (2.1a)

and the boundary conditions

u = gD1 on ∂Ω1, (2.1b)

and

u = gD2 on ∂Ω2, (2.1c)

or
∂u

∂n
= gN2 on ∂Ω2, (2.1d)

in the annulus

Ω =
{

x ∈ R
2 : ̺1 < |x| < ̺2

}

. (2.2)

In (2.1) gD1 , g
D
2 and gN2 are given functions and the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω1 ∩

∂Ω2 = ∅, where

∂Ω1 =
{

x ∈ R
2 : |x| = ̺1

}

, ∂Ω2 =
{

x ∈ R
2 : |x| = ̺2

}

.

In (2.1d), ∂/∂n denotes the derivative along the outward unit normal vector n =
(nx, ny) to ∂Ω. Clearly, (2.1a), (2.1b) and (2.1c) compose a Dirichlet BVP, whereas

(2.1a), (2.1d), and (2.1c) a mixed Dirichlet-Neumann BVP.

2.2. Biharmonic problems

We also examine the homogeneous biharmonic equation

∆2u = 0 in Ω, (2.3a)

subject to either the BCs

u = gDk and
∂u

∂n
= gNk on ∂Ωk, k = 1, 2, (2.3b)

or the BCs

u = gDk and ∆u = gLk on ∂Ωk, k = 1, 2, (2.3c)

where gDk , g
D
k and gLk , k = 1, 2, are given functions. BVP (2.3a)-(2.3b) is the first bihar-

monic problem and, the BVP consisting of (2.3a) and (2.3c), the second biharmonic

problem. In elasticity, the former problem corresponds to a clamped plate whereas the

latter problem corresponding to a simply-supported plate. The domain Ω in the above

BVPs in depicted in Fig. 1(a).
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3. Laplacian problems

3.1. Collocation point distribution

The K collocation point (nodes) set X = {xi}
K
i=1 in Ω is constructed as follows. We

define the M angles

ϑm =
2π(m− 1)

M
, m = 1, . . . ,M, (3.1)

and the N radii

rn = ̺1 + (̺2 − ̺1)
n− 1

N − 1
, n = 1, . . . , N. (3.2)

We then define the collocation points {(xmn, ymn)}
M,N
m=1,n=1 by

xmn = rn cos θmn, ymn = rn sin θmn, m = 1, . . . ,M, n = 1, . . . , N, (3.3)

where

θmn = ϑm +
2πsn
M

.

In (3.3) the parameters {sn}
N
n=1 ∈ [−1/2, 1/2] result in rotations of the nodes and

produce more uniform collocation-point distributions, see e.g. [2]. A representative

collocation point distribution is shown in Fig. 1(b).

We take the Kint interior points Xint = {xi}
Kint

i=1 to be

x(n−2)M+m = (xmn, ymn) , m = 1, . . . ,M, n = 2, . . . , N − 1, (3.4)

and the Kbry boundary points Xbry = {xi}
Kint+Kbry

i=Kint+1 as

x(N−2)M+m = (xm1, ym1) , x(N−1)M+m = (xmN , ymN ) , m = 1, . . . ,M, (3.5)

where, clearly, X = Xint
⋃

Xbry, Xint
⋂

Xbry = ∅, Kint = (N − 2)M, Kbry = 2M and

K = MN . The points {xi}
Kint+Kbry1

i=Kint+1 are the boundary points on ∂Ω1 and the points

(a) (b)

Figure 1: (a) Geometry of problems under consideration. (b) Typical distribution of collocation points for
Laplacian BVPs.
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{xi}
K
i=Kint+Kbry1

+1 are the boundary points on ∂Ω2. Obviously, Kbry = Kbry1 + Kbry2

and K = Kint + Kbry1 + Kbry2 . For any node xi ∈ X , we select the nearest κ nodes in

X (excluding xi). These form a set Xi = {xi
ℓ}

κ
ℓ=1 and are indexed locally as xi

ℓ = xℓ(i).

Moreover, they lie in the local influence domain of the node which we shall denote

by Ωi. These overlapping sets of points (Xi)
K
i=1 are such that {xi}Ki=1 =

⋃K
i=1Xi = X .

Clearly, a crucial issue in the application of the LMFS is the selection of the κ nearest

nodes to xi in X for each Ωi. This can be achieved using the KD-tree algorithm [13]

which partitions an n ×K data set by recursively splitting n points in a K-dimensional

space into a binary tree. The building and storing of the KD binary tree is obtained

via the MATLAB® command KDTreeSearch. Once the KD-tree has been established,

one can search the stored tree to find all neighbouring points to the query data by

performing a nearest neighbour search using the MATLAB® command knnsearch.

3.2. The LMFS

For any node xi in X we first select the κ nearest nodes Xi = {xi
ℓ}

κ
ℓ=1 in X . We

then choose κ sources on a circle around Ωi which we shall denote by {ξiℓ}
κ
ℓ=1. These

are defined by

ξ
(n−1)M+m
ℓ = x(n−1)M+m

+Rmn

(

cos

(

2(ℓ− 1)π

κ
+ θmn

)

, sin

(

2(ℓ− 1)π

κ
+ θmn

))

, (3.6)

ℓ = 1, . . . , κ, m = 1, . . . ,M, n = 1, . . . , N , where Rmn is an appropriately chosen

radius. Note that often we choose the same radius R for each Ωi, that is Rmn = R,m =
1, . . . ,M, n = 1, . . . , N . A typical distribution of nodes in Ωi and the corresponding

sources is depicted in Fig. 2(a). It is important to stress that the source number could

be chosen to be κ1 < κ without affecting the proposed algorithm.

 
i

(a)

 
i

(b)

Figure 2: Simplified typical distribution of collocation points (×) and corresponding sources (o) for domain
Ωi around point xi (∗): (a) Laplacian. (b) Biharmonic.
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If xi is an interior node – i.e. xi ∈ Xint, motivated by the fact that in the domain Ωi

the solution u satisfies the Laplace equation, we consider the local MFS approximation

u(i)(x) =

κ
∑

ℓ=1

αi
ℓGL

(

x, ξiℓ
)

, x ∈ Ωi, (3.7)

where GL is a fundamental solution of the Laplace operator, defined by

GL(x, ξ) =
1

2π
ln |x− ξ|, (3.8)

and {αi
ℓ}

κ
ℓ=1 are unknown coefficients. We next collocate (3.7) at each of the points

xi
ℓ, ℓ = 1, . . . , κ, which yields











u(i)(xi
1)

u(i)(xi
2)

...

u(i)(xi
κ)











=













u
(i)
1

u
(i)
2
...

u
(i)
κ













=











GL(x
i
1 − ξi1) GL(x

i
1 − ξi2) · · · GL(x

i
1 − ξiκ)

GL(x
i
2 − ξi1) GL(x

i
2 − ξi2) · · · GL(x

i
2 − ξiκ)

...
...

...
...

GL(x
i
κ − ξi1) GL(x

i
κ − ξi2) · · · GL(x

i
κ − ξiκ)





















αi
1

αi
2
...

αi
κ











(3.9)

or with the obvious notation

u(i) = G
(i)
L αi. (3.10)

Assuming that the κ× κ matrix G
(i)
L is invertible, we have

αi = G
(i)
L

−1
u(i). (3.11)

As mentioned in [11], since each local coefficient matrix G
(i)
L is ill-conditioned, it is

advisable to use the MATLAB® function pinv to evaluate its inverse in (3.11) setting

the tolerance at 10−8. We then apply (3.7) at x = xi, and from (3.11), get

u(i)(xi) =
κ

∑

ℓ=1

αi
ℓGL

(

xi, ξ
i
ℓ

)

=
[

GL

(

xi, ξ
i
1

)

GL

(

xi, ξ
i
2

)

· · · GL

(

xi, ξ
i
κ

)]

αi

=
[

GL

(

xi, ξ
i
1

)

GL

(

xi, ξ
i
2

)

· · · GL

(

xi, ξ
i
κ

)]

G
(i)
L

−1
u(i)

= w(i)u(i)

=
κ

∑

ℓ=1

w
(i)
ℓ u

(i)
ℓ , (3.12)
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where the row vector w(i) is defined by

w(i) =
[

GL

(

xi, ξ
i
1

)

GL

(

xi, ξ
i
2

)

· · · GL

(

xi, ξ
i
κ

)]

G
(i)
L

−1
. (3.13)

From (3.12) we obtain a finite difference-type equation linking the approximate values

of u at all nodes in Ω(i) (including xi), and by applying this to every interior node we

generate the set of equations

u(i)(xi)−
κ
∑

ℓ=1

w
(i)
ℓ u

(i)
ℓ = ui −

κ
∑

ℓ=1

w
(i)
ℓ u

(i)
ℓ = 0, i = 1, . . . ,Kint. (3.14)

To these Kint equations, in the case of a Dirichlet BVP, we need to add the Dirichlet BCs

(2.1b) and (2.1c) for xi ∈ Xbry

u(xi) = ui = gD1 (xi), i = Kint + 1, . . . ,Kint +Kbry1 , (3.15)

u(xi) = ui = gD2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry. (3.16)

For a Neumann BC (2.1d) on ∂Ω2, by differentiating (3.7) we have

∂u(i)

∂n
(x) =

κ
∑

ℓ=1

αi
ℓ

∂GL

∂n

(

x, ξiℓ
)

, (3.17)

which, when applied at x = xi ∈ Xbry on ∂Ω2 in combination with (3.10) yields

gN2 (xi) =
∂u(i)

∂n
(xi)

=

κ
∑

ℓ=1

αi
ℓ

∂GL

∂n

(

xi, ξ
i
ℓ

)

=

[

∂GL

∂n

(

xi, ξ
i
1

) ∂GL

∂n

(

xi, ξ
i
2

)

· · ·
∂GL

∂n

(

xi, ξ
i
κ

)

]

αi

=

[

∂GL

∂n

(

xi, ξ
i
1

) ∂GL

∂n

(

xi, ξ
i
2

)

· · ·
∂GL

∂n

(

xi, ξ
i
κ

)

]

G
(i)
L

−1
u(i)

= w(i)
n u(i)

=

κ
∑

ℓ=1

w
(i)
ℓn
u
(i)
ℓ , (3.18)

where

w(i)
n =

[

∂GL

∂n

(

xi, ξ
i
1

) ∂GL

∂n

(

xi, ξ
i
2

)

· · ·
∂GL

∂n

(

xi, ξ
i
κ

)

]

G
(i)
L

−1
,

∂GL

∂n

(

xi, ξ
i
ℓ

)

= nxi

∂GL

∂x

(

xi, ξ
i
ℓ

)

+ nyi
∂GL

∂y

(

xi, ξ
i
ℓ

)

(3.19)
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with
∂GL

∂x
(x, ξ) =

1

2π

x− ξx
|x− ξ|2

,
∂GL

∂y
(x, ξ) =

1

2π

y − ξy
|x− ξ|2

, (3.20)

and

x = (x, y), ξ = (ξx, ξy).

From (3.18) we again obtain a finite difference-type equation linking the approximate

values of all nodes in Ω(i) (now excluding the boundary node xi), and by applying this

to every boundary node on ∂Ω2, instead of Eqs. (3.16), we get the set of equations

κ
∑

ℓ=1

w
(i)
ℓn
u
(i)
ℓ = gN2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry. (3.21)

The assembly of the equations corresponding to all K nodes xi ∈ X , namely (3.14),

(3.15) and (3.16) or (3.21), results in a K ×K system

A uK = b, (3.22)

where A ∈ R
K×K is a sparse matrix and the vector b = [b1, . . . , bK]

T is given by

bi = 0, i = 1, . . . ,Kint,

bi = gD1 (xi), i = Kint + 1, . . . ,Kint +Kbry1 ,

bi = gD2 (xi) or gN2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry1 +Kbry2 .

Solving system (3.22) for uK ∈ R
K×1 yields the solution u approximations at the

nodes in X . More specifically, if uK = [uK1
, . . . , uKK

]T , then uKi
denotes the solution

approximation at the node xi, i = 1, . . . ,K.

In the present case, with the distribution of collocation points described in Sec-

tion 3.1, system (3.22) has the special structure

Au =











A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N
...

...
. . .

...

AN,1 AN,2 . . . AN,N





















u1

u2
...

uN











=











b1
b2
...

bN











= b, (3.23)

where M ×M submatrices An1,n2
, n1, n2 = 1, . . . , N, are sparse circulants [8]. In other

words, A in (3.23) is a block circulant matrix consisting of sparse blocks. Consequently,

the MDA described in the Appendix may be employed for the efficient solution of sys-

tem (3.23). Each M ×M submatrix An1,n2
in (3.23) is circulant because the configura-

tion of the neighbouring points {xi
ℓ}

κ
ℓ=1 around point xi and the corresponding sources

{ξℓ}
κ
ℓ=1 as depicted in Fig. 2(a) will be repeated for each point xi on each concentric

circle around the origin. This means that the appropriate node-source distances will

be the same, leading to the same intermediate vectors/matrices in (3.13) and hence to

the same coefficients w
(i)
ℓ in (3.12). In other words, the coefficients linking each point
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xi to its κ neighbouring points are the same for each point on each different concentric

circle. This yields a circulant matrix for the set of points xi lying on the same con-

centric circle. A similar argument holds for the imposition of the Neumann BC on the

outer circular boundary ∂Ω2. The submatrices corresponding to the Dirichlet BCs are

obviously unit matrices (still circulant).

3.3. Evaluation of approximation at boundary test points

In the current method we have only evaluated the approximation at nodes in the

set X . In view of the fact that in most BVPs describing physical phenomena the exact

solution is not known, to assess the accuracy of the method it is often useful to evaluate

the approximation at extra boundary points different than the boundary collocation

points (where the exact BC is imposed). This can be achieved easily by simply adding

such (extra) boundary collocation points to the set of interior points. In the current

context, in order to maintain the block circulant structure of the global matrix, the

extra boundary points {(xmj , ymj)}
M,2
m=1,j=1 are given by

xmj = rnj
cos

(

ϑm +
2πt

M

)

, ymj = rnj
sin

(

ϑm +
2πt

M

)

,

m = 1, . . . ,M, j = 1, 2, n1 = 1, n2 = N.

(3.24)

Now the parameter t is chosen to be different than s1 and sN in (3.3) to avoid coinci-

dence with the current boundary collocation points.

The Kint interior points Xint = {xi}
Kint

i=1 are now taken as the ones defined in (3.4)

to which we add the extra boundary points

x(N−2)M+(j−1)M+m = (xmj , ymj) , m = 1, . . . ,M, j = 1, 2. (3.25)

Clearly, now Kint = MN instead of M(N − 2). The nodes on the boundary are con-

structed as in (3.5) and the total point number is now M(N + 2). The details of the

implementation are identical to those described in Section 3.2 where the extra bound-

ary points (3.25) are treated as interior points. The resulting global matrix has the

same block circulant structure as matrix A in (3.23) but with N replaced with N + 2.

The MDA described in the Appendix can be readily applied to system (3.23) with N
replaced with N + 2.

4. Biharmonic problems – first formulation

4.1. Collocation point distribution

The nodes are constructed as in Section 3.1, see (3.1)-(3.3). The interior nodes

Xint = {xi}
Kint

i=1 are, however, now defined from (note that now Kint = M(N − 4))

x(n−3)M+m = (xmn, ymn) , m = 1, . . . ,M, n = 3, . . . , N − 2, (4.1)
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whilst the boundary nodes X 1
bry = {xi}

Kint+K1
bry

i=Kint+1 are

x(N−4)M+m = (xm1, ym1) , x(N−3)M+m = (xmN , ymN ) , m = 1, . . . ,M. (4.2)

In this case, we also define a second set of boundary points X 2
bry = {xi}

Kint+K1
bry

+Kbry

i=Kint+K1
bry

+1

x(N−2)M+m = (xm1, ym1) , x(N−1)M+m = (xmN , ymN ) , m = 1, . . . ,M, (4.3)

where the points (xmi, ymi), m = 1, . . . ,M, i = 1, 2 are defined as in (3.24). Fewer

interior nodes are considered than in the Laplacian case and a second set of boundary

points is included because, in the biharmonic case, two BCs are imposed instead of

one. A representative collection of interior and boundary nodes is depicted in Fig. 3(a).

Thus, now X = Xint
⋃

X 1
bry

⋃

X 2
bry, Kint = (N − 4)M, Kbry = K1

bry + K2
bry = 4M and

K = NM .

4.2. The LMFS

As in Section 3.2 for each node xi ∈ X we select the κ nearest nodes Xi = {xi
ℓ}

κ
ℓ=1

occupying an area which we shall again denote by Ωi. Assuming that κ is even, we now

choose κ/2 sources on a circle surrounding Ωi which we shall denote by {ξiℓ}
κ/2
ℓ=1. These

are defined as in (3.6) with κ replaced by κ/2. Note that, as in the Laplacian case, the

number of sources could be taken to be κ1 < κ/2 without affecting the proposed algo-

rithm. A typical distribution of nodes in Ωi and the corresponding sources is depicted

in Fig. 2(b).

For an interior node xi ∈ Xint, since the solution u satisfies the biharmonic equation,

we consider the local MFS approximation

u(i)(x) =

κ/2
∑

ℓ=1

αi
ℓ GL

(

x, ξiℓ
)

+

κ/2
∑

ℓ=1

βi
ℓGB

(

x, ξiℓ
)

, x ∈ Ωi, (4.4)

where GL is a fundamental solution of the Laplace operator defined in (3.8) and GB is

a fundamental solution of the biharmonic operator

GB(x, ξ) =
1

8π
|x− ξ|2 ln |x− ξ|, (4.5)

while {αi
ℓ}

κ/2
ℓ=1, {β

i
ℓ}

κ/2
ℓ=1 are unknown coefficients.

We next collocate (4.4) at each of the points xi
ℓ, ℓ = 1, . . . , κ, which yields











u(i)(xi
1)

u(i)(xi
2)

...

u(i)(xi
κ)











=













u
(i)
1

u
(i)
2
...

u
(i)
κ













= u(i) = G
(i)
LB γi, (4.6)
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where

G
(i)
LB =

[

A1 A2

]

,

and

A1 =













GL(x
i
1 − ξi1) GL(x

i
1 − ξi2) · · · GL(x

i
1 − ξiκ/2)

GL(x
i
2 − ξi1) GL(x

i
2 − ξi2) · · · GL(x

i
2 − ξiκ/2)

...
...

...
...

GL(x
i
κ − ξi1) GL(x

i
κ − ξi2) · · · GL(x

i
κ − ξiκ/2)













,

A2 =













GB(x
i
1 − ξi1) GB(x

i
1 − ξi2) · · · GB(x

i
1 − ξiκ/2)

GB(x
i
2 − ξi1) GB(x

i
2 − ξi2) · · · GB(x

i
2 − ξiκ/2)

...
...

...
...

GB(x
i
κ − ξi1) GB(x

i
κ − ξi2) · · · GB(x

i
κ − ξiκ/2)













,

γi =

[

αi

βi

]

, αi =











αi
1

αi
2
...

αi
κ/2











, βi =











βi
1

βi
2
...

βi
κ/2











.

Assuming the κ× κ matrix G
(i)
LB is invertible, we have

γi = G
(i)
LB

−1
u(i). (4.7)

We now apply (4.4) at the interior point x = xi, and from (4.7),

u(i)(xi) =

κ/2
∑

ℓ=1

αi
ℓ GL

(

xi, ξ
i
ℓ

)

+

κ/2
∑

ℓ=1

βi
ℓGB

(

xi, ξ
i
ℓ

)

= B1 · α
i +B2 · β

i

= [B1 B2]γ
i

= [B1 B2]G
(i)
LB

−1
u(i)

= v(i)u(i)

=

κ
∑

ℓ=1

v
(i)
ℓ u

(i)
ℓ (4.8)

with

B1 =
[

GL

(

xi, ξ
i
1

)

GL

(

xi, ξ
i
2

)

· · · GL

(

xi, ξ
i
κ/2

)

]

,

B2 =
[

GB

(

xi, ξ
i
1

)

GB

(

xi, ξ
i
2

)

· · · GB

(

xi, ξ
i
κ/2

)

]

,
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where the row vector v(i) is defined by

v(i) := [B1 B2]G
(i)
LB

−1
.

From (4.8) we obtain a finite difference-type equation linking the approximate values

of all nodes in Ω(i) (including xi), and application to every interior node yields the set

of equations

u(i)(xi)−
κ
∑

ℓ=1

v
(i)
ℓ u

(i)
ℓ = u

(i)
i −

κ
∑

ℓ=1

v
(i)
ℓ u

(i)
ℓ = 0, i = 1, . . . ,Kint. (4.9)

To these Kint equations, we add the Dirichlet BCs for xi ∈ X 2
bry

u(xi) = ui = gD1 (xi), i = Kint +Kbry + 1, . . . ,Kint +Kbry +Kbry1 , (4.10)

u(xi) = ui = gD2 (xi), i = Kint +Kbry +Kbry1 + 1, . . . ,Kint + 2Kbry. (4.11)

Note that the Dirichlet BCs are collocated at the second set of boundary points X 2
bry.

For the Neumann BCs (first biharmonic problem (2.3a)-(2.3b)) we differentiate

(4.4) to obtain

∂u(i)

∂n
(x) =

κ/2
∑

ℓ=1

αi
ℓ

∂GL

∂n

(

x, ξiℓ
)

+

κ/2
∑

ℓ=1

βi
ℓ

∂GB

∂n

(

x, ξiℓ
)

, (4.12)

which, when applied on ∂Ω1 at x = xi, i = M(N − 4) + 1, . . . ,M(N − 3) (or i =
Kint + 1, . . . ,Kint +Kbry1), in combination with (4.6) gives

gN1 (xi) =
∂u(i)

∂n
(xi)

=

κ/2
∑

ℓ=1

αi
ℓ

∂GL

∂n

(

xi, ξ
i
ℓ

)

+

κ/2
∑

ℓ=1

βi
ℓ

∂GB

∂n

(

xi, ξ
i
ℓ

)

= [C1 C2]γ
i

= [C1 C2]G
(i)
LB

−1
u(i)

= v(i)
n u(i)

=

κ
∑

ℓ=1

v
(i)
ℓn
u
(i)
ℓ (4.13)

with

C1 =

[

∂GL

∂n

(

xi, ξ
i
1

) ∂GL

∂n

(

xi, ξ
i
2

)

· · ·
∂GL

∂n

(

xi, ξ
i
κ/2

)

]

,

C2 =

[

∂GB

∂n

(

xi, ξ
i
1

) ∂GB

∂n

(

xi, ξ
i
2

)

· · ·
∂GB

∂n

(

xi, ξ
i
κ/2

)

]

,
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where the row vector v
(i)
n is defined by

v(i)
n = [C1 C2]G

(i)
LB

−1

and ∂GL/∂n is given by (3.19)-(3.20) while

∂GB

∂n

(

xi, ξ
i
ℓ

)

= nxi

∂GL

∂x

(

xi, ξ
i
ℓ

)

+ nyi
∂GL

∂y

(

xi, ξ
i
ℓ

)

with
∂GB

∂x
(x, ξ) =

1

8π
(x− ξx) (1 + 2 ln |x− ξ|) ,

∂GB

∂y
(x, ξ) =

1

8π
(y − ξy) (1 + 2 ln |x− ξ|) .

(4.14)

From (4.13) we again obtain a finite difference-type equation linking the approximate

values of all nodes in Ω(i) (now excluding the boundary node xi), and by applying this

to every boundary node on ∂Ω1, we get the equations

κ
∑

ℓ=1

v
(i)
ℓn
u
(i)
ℓ = gN1 (xi), i = Kint + 1, . . . ,Kint ++Kbry1 . (4.15)

In exactly the same way, by applying (4.12) on ∂Ω2 at the boundary points x = xi, i =
M(N − 3) + 1, . . . ,M(N − 2) (or i = Kint +Kbry1 + 1, . . . ,Kint +Kbry), we also obtain

the set of equations

κ
∑

ℓ=1

v
(i)
ℓn
u
(i)
ℓ = gN2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry. (4.16)

For the Laplacian operator BCs (second biharmonic problem, (2.3a) and (2.3c)) we

differentiate (4.4) to obtain

∆u(i)(x) =

κ/2
∑

ℓ=1

αi
ℓ ∆GL

(

x, ξiℓ
)

+

κ/2
∑

ℓ=1

βi
ℓ ∆GB

(

x, ξiℓ
)

=

κ/2
∑

ℓ=1

βi
ℓ ∆GB

(

x, ξiℓ
)

(since ∆GL = 0), (4.17)

which, when applied on ∂Ω1 at x = xi, i = M(N − 4) + 1, . . . ,M(N − 3) (or i =
Kint + 1, . . . ,Kint +Kbry1), in combination with (4.6) gives

gL1 (xi) = ∆u(i)(xi) =

κ/2
∑

ℓ=1

βi
ℓ∆GB

(

xi, ξ
i
ℓ

)

=
[

0 0 · · · 0
∣

∣∆GB

(

xi, ξ
i
1

)

∆GB

(

xi, ξ
i
2

)

· · · ∆GB

(

xi, ξ
i
κ/2

)

]

γi
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=
[

0 0 · · · 0
∣

∣∆GB

(

xi, ξ
i
1

)

∆GB

(

xi, ξ
i
2

)

· · · ∆GB

(

xi, ξ
i
κ/2

)

]

G
(i)
LB

−1
u(i)

= v
(i)
L u(i)

=

κ
∑

ℓ=1

v
(i)
ℓL
u
(i)
ℓ , (4.18)

where the row vector v
(i)
L is now defined by

v
(i)
L =

[

0 0 · · · 0
∣

∣∆GB

(

xi, ξ
i
1

)

∆GB

(

xi, ξ
i
2

)

· · · ∆GB

(

xi, ξ
i
κ/2

)

]

G
(i)
LB

−1

and

∆GB(x, ξ) =
1

2π
(1 + ln |x− ξ|) . (4.19)

From (4.18) we again obtain a finite difference-type equation linking the approximate

values of all nodes in Ω(i) (now excluding the boundary node xi), and by applying this

to every boundary node on ∂Ω1, we generate the set of equations

κ
∑

ℓ=1

v
(i)
ℓL
u
(i)
ℓ = gL1 (xi), i = Kint + 1, . . . ,Kint +Kbry1 . (4.20)

In exactly the same way, by applying (4.17) on ∂Ω2 at x = xi, i = M(N − 3) +
1, . . . ,M(N − 2) (or i = Kint + Kbry1 + 1, . . . ,Kint + Kbry), we also get the set of

equations

κ
∑

ℓ=1

v
(i)
ℓL
u
(i)
ℓ = gL2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry. (4.21)

We assemble the equations for the K nodes xi ∈ X , namely (4.9), (4.10)-(4.11),

(4.15)-(4.16) or (4.20)-(4.21), and obtain a K × K system of the form (3.22) where

A ∈ R
K×K is sparse and the vector b = [b1, . . . , bK]

T is

bi = 0, i = 1, . . . ,Kint,

bi = gN1 (xi) or gL1 (xi), i = Kint + 1, . . . ,Kint +Kbry1 ,

bi = gN2 (xi) or gL2 (xi), i = Kint +Kbry1 + 1, . . . ,Kint +Kbry1 +Kbry2 ,

bi = gD1 (xi), i = Kint +Kbry + 1, . . . ,Kint +Kbry +Kbry1 ,

bi = gD2 (xi), i = Kint +Kbry +Kbry1 + 1, . . . ,Kint +Kbry +Kbry1 +Kbry2 .

Solving (3.22) for uK ∈ R
K×1 determines the approximations at the nodes in set X .

As in the Laplacian case, if uK = [uK1
, . . . , uKK

]T , then uKi
is the solution approxima-

tion at node xi, i = 1, . . . ,K.

With the collocation point construction outlined in Section 3.1, the system matrix

in (3.22) for the biharmonic BVP possesses the special structure of the system matrix in
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(3.23) where the M ×M submatrices An1,n2
, n1, n2 = 1, . . . , N, are, again, sparse and

circulant. The block circulant structure of A may be deduced employing arguments

similar to those used at the end of Section 3.2 for showing that the corresponding

submatrices for the Laplacian are circulant. Consequently, the MDA described in the

Appendix may also be employed to solve system (3.23) for the biharmonic BVP effi-

ciently.

5. Biharmonic problems – second formulation

We next propose a second approach for biharmonic BVPs involving a different node

configuration. An MDA is still applicable to this approach demonstrating the resilience

of the method.

5.1. Collocation point distribution

The interior collocation nodes Xint = {xi}
Kint

i=1 and boundary nodes Xbry =

{xi}
Kint+Kbry

i=Kint+1 are selected as in Section 3.1, with Kint = (N − 2)M, Kbry = 2M and

K = NM . We also define the subset X ′
int of Xint consisting of the K′

int = (N − 4)M
interior nodes

x(n−2)M+m = (xmn, ymn) , m = 1, . . . ,M, n = 3, . . . , N − 2. (5.1)

5.2. The LMFS

For each node xi ∈ X ′
int

⋃

Xbry we select the κ nearest nodes Xi = {xi
ℓ}

κ
ℓ=1 occu-

pying an area which we shall again denote by Ωi. The sources {ξiℓ}
κ/2
ℓ=1 are selected in

exactly the same way as in Section 4.2.

For an interior node xi ∈ X ′
int we take the local MFS approximation (4.4) in Ωi . We

follow the same steps as in Section 4.2 except that we do not collocate at all interior

nodes Xint but only at the K′
int = M(N − 4) nodes X ′

int (cf. (5.1)). This leads to a set

of K′
int equations of the form (4.9). Note that now, unlike the previous biharmonic

formulation, the values of the approximations of u at the points

x(n−2)M+m = (xmn, ymn) , m = 1, . . . ,M, n = 2, N − 1 (5.2)

are now also involved, see Fig. 3(b).

The application of the Dirichlet and Neumann (or Laplacian) BCs is identical to the

one described in Section 4.2 with the exception that both BCs are applied at the same

set of boundary points {xi}
Kint+Kbry

i=Kint+1 . This leads to a set of 2Kbry = 4M equations.

We assemble the equations for the K nodes xi ∈ X ′
int

⋃

Xbry and, noting that we

have two BCs at each boundary node, and obtain a K × K system of the form (3.22)

where A ∈ R
K×K is sparse and the vector b = [b1, . . . , bK]

T is now defined as follows:
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(a) First formulation (b) Second formulation

Figure 3: Biharmonic BVPs: (a) Typical collocation point distribution (the second set of boundary points is
marked in o) for first formulation and (b) Typical collocation point distribution for second formulation (the
interior points where no collocation occurs are denoted by o).

bi = 0, i = 1, . . . ,K′
int,

bi = gN1 (xi) or gL1 (xi), i = K′
int + 1, . . . ,K′

int +Kbry1 ,

bi = gN2 (xi) or gL2 (xi), i = K′
int +Kbry1 + 1, . . . ,K′

int +Kbry1 +Kbry2 ,

bKbry+i = gD1 (xi), i = K′
int + 1, . . . ,K′

int +Kbry1 ,

bKbry+i = gD2 (xi), i = K′
int +Kbry1 + 1, . . . ,K′

int +Kbry1 +Kbry2 .

Solving (3.22) for uK ∈ R
K×1 yields the approximations at the nodes in X . Note

that now the solution vector u includes the approximations at all points defined by (3.4)

and (3.5), instead of the points in the previous formulation defined by (4.1)-(4.3). As

in the previous biharmonic formulation, system (3.23) for the biharmonic BVP can also

be solved efficiently using the MDA described in the Appendix.

6. Implementational issues

6.1. Selection of source points

It is well-known that the performance of the MFS is related to the source location

and their optimal position has been the subject of intensive research. This is also true

of the LMFS where, unlike the traditional MFS where only one set of source points

needs to be determined, the source location for each local influence domain needs to

be found. In the case of the traditional MFS, in [3], the LOOCV (Leave-One-Out Cross

Validation) algorithm was adopted for the determination of a suitable source location.

The LOOCV was originally proposed by [32] for the determination of a suitable shape

parameter value in RBFs. Clearly, in the case of the local MFS it would be computa-

tionally very expensive to determine the optimal source location via LOOCV for each

local domain.



Local MFS MDAs in Annuli 109

As explained in Section 3.2, in each subdomain Ωi the source points are distributed

on a circle centred at the centre point of the sub-domain and with radius Rmn, see

(3.6). For practical reasons, a unique value R of Rmn is often chosen by trial and error

or an optimal value of R is chosen, by brute force, by examining the approximation

error for a range of values of R. Alternatively, obtaining an appropriate Rmn value

for the case of the Laplace equation using LOOCV can be performed by the following

MATLAB® code:

% (x,y): points in sub-domain; (x0,y0); centre of sub-domain

% (xs0, ys0): points on unit circle

% pdist2: MATLAB function returning pairwise distance between

two observation sets

1 function ceps =costEps(ep,x,y,x0,y0,xs0,ys0)

2 xs=x0+xs0*ep; ys=y0+ys0*ep; %source points

3 DM=pdist2([x,y],[xs0,ys0]); %distance matrix

4 A=log(DM);

5 D=pdist2([x0,y0],[xs0,ys0]);

6 rhs=-log(D);

%LOOCV

7 invA=pinv(A);

8 errorvector= (invA*rhs’)./diag(invA);

9 ceps=norm(errorvector);

where DM in Line 3 is the distance matrix G
{i}
L and D in Line 5 is the distance vector

in (3.13). The cost function costEps is given by

R=fminbnd(@(ep) costEps(ep,x,y,x0,y0,xs0,ys0),minR,maxR);

where fminbnd is the MATLAB® function searching the cost function minimum for the

source circle radius Rmn and minR and maxR define the initial search interval for Rmn.

Note that, as already stated, it is impractical to search for a suitable Rmn using LOOCV

for each sub-main (i.e. m = 1, . . . ,M, n = 1, . . . , N). To be cost effective, we propose

to sampling M sub-domains using LOOCV to determine the corresponding Rmn and

then taking the average of these radii as the unique R for solving each local matrix

system in (3.13). In this work, we chose M = 10 and as each local system is small, the

additional cost when employing LOOCV is inconsequential. A similar technique may

be applied for biharmonic problems.

6.2. Efficient construction of sparse system matrices

In system (3.23), the sparse matrix A has order MN ×MN . When M and N are

large, despite the sparseness of the matrix A, the memory storage space required is

still formidable. However, due to the symmetry of the circularly distributed collocation

points, the reduction of the storage required for the matrix A is possible.
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More specifically, we observe that on each concentric circle, there are M evenly

distributed collocation points. This means that the distribution of the collocation points

and corresponding sources in each sub-domain on this circle is identical (see Fig. 7(a)

and Remark A.1 in Appendix.) As a result, the M local matrix systems in (3.23) are

identical. Hence, we only need to store the local matrix G
(i)
L in (3.9) for the Laplacian

(and G
(i)
LB in (4.6) for the biharmonic) once for each concentric circle. Equivalently, we

only need to store the first row of each circulant submatrix An1,n2
, n1, n2 = 1, . . . , N,

of A in system (3.23). The storage required for the sparse matrix is thus reduced from

MN × MN to N × MN elements and enormous savings in memory space and CPU

running (assembly) time can thus be achieved.

7. Numerical examples

We carried out all numerical experiments with ̺1 = 0.3 and ̺2 = 1. Moreover, in

the construction of the nodes we took sn = (−1)n/5, n = 1, . . . , N (cf. (3.3)).

To assess the accuracy of the approximations we computed the maximum relative

error E at the nodes comprising X , defined by

E =
‖u− uK‖∞,X

‖u‖∞,X
. (7.1)

In this section, all calculations were performed in a notebook computer using

MATLAB© R2021a with Intel(R) Core(TM) i5-10310 CPU @1.70GHZ, RAM 32 GB,

Window 10 Education, 64 bit operation system.

7.1. Example 1

We first study the Dirichlet and the mixed Dirichlet-Neumann BVPs (2.1) for the

Laplace equation derived the exact solution

u(x, y) = ex cos y.

We choose the number of nodes in each sub-domain to be κ = 30 and the same number

of source points. As explained in Section 6.1 we place the source points on a circle

of radius R centred at the centre of each subdomain (that is we take the same R for

each Ωi). In Fig. 4, we show the accuracy obtained by brute force with respect to

varying R for various M and N . We observe that the optimal R is getting smaller

when the number of collocation points becomes larger. As the increasing density of

the collocation points renders the coefficient matrix in each local system (3.9) more

ill-conditioned, the radius of the source circles should be adjusted accordingly.

To properly select the location of the source points for each sub-domain, we also

applied LOOCV to determine an appropriate source circle radius R, see Section 6.1.

Since we know that as the number of nodes increases the radius is expected to be

smaller, we use a smaller upper bound for the search interval for a large number of
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(a) Dirichlet BVP (b) Mixed BVP

Figure 4: Example 1: Accuracy versus R for various M and N . (a) Dirichlet BVP. (b) Mixed Dirichlet-
Neumann BVP.

collocation points. Furthermore, we chose 10 sub-domains, whose centres are equally

distributed in [0.3, 1] along the x-axis, and computed the radius for each of these sub-

domains using LOOCV and then took the average of these radii as the final radius of

each source circle, as described in Section 6.1. In Table 1, we list some results obtained

for different M and N for the Dirichlet BVP, using LOOCV and compare these to the

results for optimal accuracy obtained (by brute force) in Fig. 4(a). Similar results were

obtained for the mixed Dirichlet-Neumann BVP as seen in Table 2.

One of the main advantages of MDAs is that they enable us to handle large-scale

problems. To this end, we employ the approach described in Appendix which leads

to savings in both computational time and memory storage. For example, for M =
N = 300, the standard approach forms a sparse matrix of order 3002 × 3002 containing

Table 1: Example 1: Optimal accuracy results for Dirichlet BVP using LOOCV and brute force.

(M,N)
LOOCV Optimal

[min, max] R E R E

(20, 10) [0, 3.0] 2.268 8.863(-7) 1.865 1.152(-7)

(40, 20) [0, 3.0] 1.925 2.053(-8) 0.965 1.207(-8)

(60, 30) [0, 1.6] 1.107 3.405(-9) 1.015 7.157(-10)

Table 2: Example 1: Optimal accuracy results for mixed BVP using LOOCV and brute force.

(M,N)
LOOCV Optimal

[min, max] R E R E

(20, 10) [0, 4] 3.212 1.807(-7) 4.315 1.609(-7)

(40, 20) [0, 4] 1.909 5.101(-8) 2.965 4.432(-8)

(60, 30) [0, 3] 1.363 3.054(-8) 1.015 4.323(-9)
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(b) Mixed BVP

Figure 5: Example 1: Accuracy versus R for various M and N . (a) Dirichlet BVP. (b) Mixed Dirichlet-
Neumann BVP.

Table 3: Example 1: Results for Dirichlet and mixed Dirichlet-Neumann BCs using proposed MDA.

M = N [min, max]
Dirichlet BC Mixed BC

R E CPU R E CPU

200 [0, 2.0] 0.987 1.693(-9) 0.50 1.210 2.411(-7) 0.54

400 [0, 1.8] 0.937 2.182(-8) 2.99 1.079 7.933(-8) 3.49

600 [0, 1.6] 1.051 6.925(-8) 9.90 0.996 1.571(-8) 9.89

800 [0, 1.6] 1.095 1.207(-8) 23.1 1.074 4.849(-8) 22.9

1000 [0, 1.6] 0.974 8.255(-9) 43.2 0.987 2.474(-8) 42.4

277, 2000 nonzero entries while the efficient approach gives a sparse matrix of order

3002 × 3002 containing only 9240 nonzero entries. In Fig. 5 it is shown that when M
and N become large, the optimal R occurs in the neighbourhood of 1. In Fig. 5(a), the

optimal values of R for M = N = 100, 200, 300 all occur at R = 0.995 for the case of

Dirichlet BC. Similar results are observed for the mixed BVP where the optimal values

of R are 0.995, 0.975, and 0.995, respectively (see Fig. 5(b)). In Table 3, we present

results obtained for up to 106 nodes, i.e., M = N = 1000. We again observe that the

LOOCV-predicted R is close to 1 for all cases in this table. One trick which one may

employ to reduce the CPU time further is to convert each of the matrices Am in systems

(A.6) in the Appendix to sparse matrices using the MATLAB® command sparse prior

to solving the systems. By doing so, for example, in the case M = N = 1000, the CPU

time is reduced from 78 to 43 seconds. Furthermore, without the application of the

proposed MDA, handling the memory space for a 106 × 106 matrix system would be

a challenge even thought the global matrix is sparse.

7.2. Example 2

We now examine both BVPs (2.3) for the biharmonic equation derived from the

exact solution [11]
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u(x, y) =
x

2

(

cos(x) sinh(y) + sin(x) cosh(y)
)

+ 1.

In this example, we choose the number of nodes in each sub-domain to be κ = 40
and the same number of source points. In Fig. 6, we present the accuracy with respect

to varying R for three different sets of M and N for the case of the first biharmonic BVP

with both the first and second formulations. Unlike the Laplacian case in Example 1,

we notice that the optimal R for all three cases occurs at 0.995. Additional tests for

various M and N revealed that the optimal R always occurs near 1. In Tables 4 and 5,

we demonstrate that the predicted R and accuracy using LOOCV with search interval

[0,2] is consistent with the optimal R depicted in Fig. 6.

Next, to show the efficiency of the proposed approaches, we discuss the numerical

results issued from large numbers of nodes. In Table 6, we depict the results for the

first and second biharmonic BVPs using the first formulation and LOOCV. As was the

case for the Laplacian in Example 1, we can handle one million collocation points

(M = N = 1000) effectively in terms of CPU time and memory space. From this table,

we also observe that the obtained optimal values of R using LOOCV are all close to

1 which is consistent with the results shown in Fig. 6. This further confirms that the

LOOCV algorithm is a reliable tool for determining an appropriate source location. The

accuracy achieved for the first biharmonic BVP is slightly better than that obtained for

the second biharmonic BVP.

(a) First biharmonic BVP, first formulation
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(b) First biharmonic BVP, second formulation

Figure 6: Example 2: Error versus R for first biharmonic BVP.

Table 4: Example 2: Comparison of the optimal accuracy using exhaustive approach and LOOCV for the
first biharmonic BVP with first formulation.

M = N
Optimal LOOCV

R E R E

80 0.995 5.508(-9) 0.936 3.703(-7)

150 0.995 2.748(-7) 0.966 6.101(-7)

250 0.995 4.359(-7) 0.989 3.064(-6)
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The results obtained for the second formulation described in Section 5 are presented

in Table 7 and these are similar to those calculated using the first formulation. We

again notice that LOOCV yields, as expected, values of R which are located in the

neighbourhood of 1.

Table 5: Example 2: Comparison of the optimal accuracy using exhaustive approach and LOOCV for first
biharmonic BVP with second formulation.

M = N
Optimal LOOCV

R E R E

80 0.995 2.947(-9) 0.998 6.700(-9)

150 0.995 2.966(-7) 0.994 1.378(-7)

250 0.995 8.408(-7) 1.015 3.565(-6)

Table 6: Example 2: Results for first and second biharmonic BVPs using first biharmonic formulation.

M = N [min, max]
First Biharmonic BVP Second Biharmonic BVP

R E CPU R E CPU

50 [0, 2.5] 0.982 1.469(-7) 0.12 0.982 4.924(-6) 0.12

100 [0, 2.0] 1.036 1.417(-7) 0.20 1.036 2.967(-7) 0.20

200 [0, 2.0] 1.010 6.099(-7) 0.61 1.010 3.469(-5) 0.57

400 [0, 1.8] 1.036 5.711(-5) 3.18 1.036 1.186(-4) 3.23

600 [0, 1.6] 0.998 4.231(-5) 10.5 0.998 1.566(-4) 9.89

800 [0, 1.6] 0.996 4.735(-4) 24.5 0.996 7.310(-4) 24.4

1000 [0, 1.6] 0.999 4.727(-4) 49.5 0.999 7.387(-4) 49.6

Table 7: Example 2: Results for first and second biharmonic BVPs using second biharmonic formulation.

M = N [min, max]
First Biharmonic BVP Second Biharmonic BVP

R E CPU R E CPU

50 [0, 2.5] 1.094 6.084(-6) 0.12 0.995 2.427(-8) 0.12

100 [0, 2.0] 1.026 5.252(-7) 0.20 1.030 1.593(-6) 0.20

200 [0, 2.0] 1.074 2.099(-5) 0.61 0.994 2.028(-7) 0.57

400 [0, 1.8] 1.001 2.458(-5) 3.38 0.937 7.901(-4) 3.69

600 [0, 1.6] 0.994 4.577(-5) 10.5 0.984 1.752(-4) 9.89

800 [0, 1.6] 0.999 4.619(-4) 25.0 0.993 1.620(-4) 26.9

1000 [0, 1.6] 0.965 5.227(-4) 51.5 0.997 4.270(-4) 54.5

8. Conclusions

In this study, the LMFS was applied to Laplacian and biharmonic BVPs in annuli.

The collocation points are defined in such a way so that the systems resulting from
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the LMFS discretization exhibit special convenient structures. In contrast to the tra-

ditional MFS, in the LMFS we adopt the LOOCV to accurately predict the radii of the

local source circles. Furthermore, the matrices in these systems are sparse and block

circulant and their solution lends itself to the application of MDAs which, as is well-

documented, result in considerable savings in both computer time and storage. The

combined efficacy of the LMFS and MDA enables us to solve large-scale problems with-

out the need of expensive computer hardware. Clearly, the application of the proposed

method to circular disks instead of annular domains is trivial. It is noteworthy that

the solution of Laplacian BVPs in more general domains can be obtained via conformal

mapping techniques, see [21]. Moreover, the current ideas may be applied readily to

the corresponding Helmholtz BVPs as well as higher order polyharmonic and polymeta-

harmonic BVPs. Future work will include the application of the proposed method to

BVPs in which we have mixed BCs on, say ∂Ω1, see [20], as well as to 3D axisymmetric

BVPs, see e.g. [22].

Appendix

Since matrix A in (3.23) is block circulant, its M ×M circulant submatrices An1,n2

can be fully characterized by its first row and will thus be defined by

An1,n2
= circ

(

An1,n21
, An1,n22

, . . . , An1,n2M

)

, n1, n2 = 1, . . . , N. (A.1)

In addition, following the description in [27], we denote by UM the conjugate of the

M ×M Fourier matrix [8] and by IN the identity matrix of order N . Pre-multiplication

of system (3.23) by IN ⊗ UM yields

(IN ⊗ UM )A (IN ⊗ U∗
M ) (IN ⊗ UM )u = Au = (IN ⊗ UM ) b = b, (A.2)

where

A = (IN ⊗ UM )A (IN ⊗ U∗
M ) =











D1,1 D1,2 · · · D1,N

D2,1 D2,2 · · · D2,N
...

...
...

DN,1 DN,2 · · · DN,N











, (A.3)

where each of the submatrices Dn1,n2
(of order M) is diagonal with

Dn1,n2
= diag

(

Dn1,n21
,Dn1,n22

, . . . ,Dn1,n2M

)

, n1, n2 = 1, . . . , N

and from [8]

Dn1,n2m
=

M
∑

k=1

An1,n2k
e2π(k−1)(m−1) i/M , m = 1, . . . ,M. (A.4)
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Moreover,

u =











u1

u2
...

uN











= (IN ⊗ UM )u =











UMu1

UMu2
...

UMuN











,

b =











b1

b2
...

bN











= (IN ⊗ UM ) b =











UMb1
UMb2

...

UMbN











.

(A.5)

The basic steps in the MDA can be described as follows:

Step 1. We calculate bn = UMbn, n = 1, . . . , N in (A.5). These operations can be

performed efficiently using the MATLAB® command fft. Note that in practice we do

not need to calculate bn for n = 1, . . . , N as most of the vectors bn are zeros vectors.

For example, in Laplacian case we only need to calculate bn = UMbn, n = 1, 2, which

results in further savings in computational time.

Step 2. We compute the diagonal matrices Dn1,n2
from (A.4). These operations can

be carried out efficiently using the MATLAB® command ifft. The matrix A in (3.23)

is sparse and, as a result, several of the row vectors in (A.1) which determine each

circulant submatrix An1,n2
are zero. Hence, not all elements Dn1,n2m

in (A.4) need to

be calculated. Thus, additional savings can be achieved by introducing an if statement

in the appropriate position, as shown in line 11 of the MATLAB® code listed at the end

of this Appendix.

Step 3. Matrix A in (A.2) is made up of N2 diagonal blocks of order M . Hence, system

(A.2) may be broken into M independent N ×N sub-systems, namely,

Am um = bm, m = 1, . . . ,M, (A.6)

where

(Am)n1,n2
= Dn1,n2m

, n1, n2 = 1, . . . , N,

and

(um)n = (un)m , (bm)n = (bn)m , n = 1, . . . , N. (A.7)

Solving systems (A.6) is the costliest part of the MDA as it involves solving M linear

N × N systems. However, each matrix Am, m = 1, . . . ,M , is sparse and use of the

MATLAB® sparse command in solving systems (A.6) yields further savings.

Step 4. From (A.7) we obtain the vectors un, n = 1, . . . , N and from these u from

(A.5), with un =U∗
Mun, n = 1, . . . , N . These operations can be carried out efficiently

using the MATLAB® command ifft.
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Remark A.1. In addition to the savings in computational time, we also obtained sub-

stantial storage savings because only the first row (A.1) of each of the sparse circulant

submatrices An1,n2
must be constructed and stored. From symmetry, see Fig. 7(a), and

as explained in Section 3.2, the node distribution in any two influence domains whose

centres lie on the same circle is identical. Clearly, this is also true of the corresponding

surrounding sources (under appropriate rotation). It is therefore only necessary to use

the N red centre points in Fig. 7(b) along with the collocation points in their influence

domains and corresponding surrounding sources for the construction of the first row of

each sparse circulant MFS interpolation submatrix.

(a)
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Y

(b)

Figure 7: (a) Identical influence domains whose centres lie on the same circle. (b) Only one row of the
sparse circulant sub-matrix is required for the formulation of the MFS interpolation matrix.

The implementation of the MDA steps is presented in following MATLAB® code:

% A: sparse LMFS matrix with order n x nm

% B: Boundary conditions

% nr: number of concentric circles;

% nc: number of collocation points in each concentric circle

1 function solution=MDA(A,B,nr,nc)

2 n=nr; m=nc; b=sparse(n,m);

3 b1=[B(1:m,1) B(m+1:2*m,1)];

4 b(1:2,1:m)=transpose(fft(b1(1:m,1:2))/sqrt(m));

5 b=sparse(b);

6 D=zeros(nr,nr,nc);

7 for in=1:nr

8 temp=(A(in,:))’; temp=reshape(temp,nc,nr);

9 T=sum(temp) ;

10 for jn=1:nr

11 if T(jn) ~=0
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12 D(in,jn,:)=ifft(full(temp(:,jn)))*nc;

13 end

14 end

15 end

16 sol=zeros(m,n);

17 for ii=1:m

18 sol(ii,:)=sparse(D(:,:,ii))\b(:,ii); % solution of subsystems

19 end
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