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Abstract. This paper is concerned with the pullback dynamics and robustness for
the 2D incompressible Navier-Stokes equations with delay on the convective term in
bounded domain. Under appropriate assumption on the delay term, we establish the
existence of pullback attractors for the fluid flow model, which is dependent on the
past state. Inspired by the idea in Zelati and Gal’s paper (JMFM, 2015), the robustness
of pullback attractors has been proved via upper semi-continuity in last section.
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1 Introduction

This presented is concerned with the pullback dynamics and robustness for the 2D Navier-
Stokes equations with delay, which can be written as

∂u
∂t

−ν∆u+(u(t−ρ(t))·∇)u+∇p= f (t), (t,x)∈ (τ,+∞)×Ω,

divu=0, (t,x)∈ (τ,+∞)×Ω,
u(t,x)=0, (t,x)∈ (τ,+∞)×∂Ω,
u(τ+θ,x)=ϕ(θ), (θ,x)∈ [−h,0]×Ω,

(1.1)
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where the kinematic viscosity ν>0, p is the unknown pressure, the external force term is
f (t), the delay function ρ(t)∈C1(R;[0,h]) with

0<ρ′(t)≤M<1 for all t∈R,

h > 0 is a constant, ut(s) = u(t+s), s ∈ [−h,0], ϕ(θ) is the initial datum in [−h,0], and
u(τ,x)=ϕ(0).

The research on dynamic systems for the two dimensional incompressible Navier-
Stokes equations has attracted mathematician’s attention in 1980s, which contains the
existence of attractors and its geometric structure on different domains, see [1–3] and the
literatures therein. Delay effect can be found in many aspects, such as biology, economic
and so on, which can lead to the instability of system, even if the delay is very small. Since
the motion of fluid flow is not only dependent on current state, but also the past history
such as delay and memory, which leads to the research on incompressible functional
Navier-Stokes equations and some extended models. In 1963, Krasovskii [4] first noticed
the system with delay, constructed the Navier-Stokes equations with delay and obtained
the well-posedness of system. In past decades, there were many literatures about the
hydrodynamic system with delay, especially the Navier-Stokes equations with constant,
variable and distributed delays, which can be referred to, Taniguchi [5], Hale [6], Cara-
ballo and Real [7], Garcı́n-Luengo, Marı́n-Rubio and Planas [8–10] and more literatures
therein about the fluid flow with delays.

The hydrodynamic system with perturbation is a key research point in last thirty
decades, which includes the convergence of attractors as perturbation vanishes, i.e., the
robustness of attractors via upper and lower semi-continuity, see the theory and applica-
tion in Chapter III of Carvalho, Langa and Robinson [11]. However, the lower semi-
continuity is very difficult to verify since the lack of good regularity, which leads to
the validity of upper semi-continuity for attractors as a tool to understand turbulence,
see [11–13]. In 2009, another interesting method was given by Wang [14] to obtain the
upper semi-continuity of random attractors, and Wang [15] for the pullback attractors.
For more relating results to the convergence of attractors and solutions, we can refer
to [16–18] and so on.

To our best knowledge, there are fruitful results on the dynamics for Navier-Stokes
equations and related models with delay, which illustrated the complexity of fluid flow.
However, the research on robustness of attractors for incompressible Navier-Stokes equa-
tions with delay on convective term, i.e., the convergence of pullback attractors as delay
vanishes is still open, which is our main goal in this paper. The main features of this
paper can be summarized as follows:

(1) In Section 2, some functional spaces and related conclusions on pullback D-attra-
ctors are given. The definition of upper semicontinuity of attractors for system with delay
term is presented, which is inspired by [17];

(2) In Section 3, we use the standard Galerkin method and conclusions on compact-
ness to derive the wellposedness of solutions, and determine a continuous semi-flow
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in space MH = H×(CH∩L2
V). In addition, based on the basic conclusions, the pull-

back D-attractor A= {A(t)}t∈R is derived after the existence of pullback D-absorbing
set B={B(t)}t∈R for the semi-flow in Section 5;

(3) In Section 6, we present two lemmas to show that the pullback attractors Ah =
{Ah(t)}t∈R in MH and A0={A0(t)}t∈R in H have the property of upper semi-continuity
as h→0, i.e., the robustness of attractors has been shown.

2 Some preliminaries

2.1 Some functional settings

Let be E :={u; u∈ (C∞
0 (Ω))2, divu=0}, H is the closure of E in (L2(Ω))2 topology, with

norm ∥·∥H = |·| and inner product (·,·), where

(u,v)=
2

∑
j=1

∫
Ω

uj(x)vj(x)dx, ∀ u,v∈ (L2(Ω))2.

V is the closure of E in (H1(Ω))2 topology, with norm ∥·∥V = ∥·∥ and inner product
((·,·)), where

((u,v))=
2

∑
i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx, ∀ u,v∈ (H1

0(Ω))2,

and its dual space is written as V ′ with norm ∥·∥∗. Also, V ↪→↪→H ↪→V ′, and there hold

<u,v>V′×V=(u,v)H, ∀ u∈H⊂V ′, v∈V.

A :=−PL∆ is the Stokes operator with the domain (H2(Ω))2∩V, PL is the Helmholtz-
Leray projection in (L2(Ω))2, and

PL : H⊕G(Ω)→H,

where
G(Ω)=H⊥ :={u∈ (L2(Ω))2; ∃ ς∈ (L2

loc(Ω))2 : u=∇ς}.

Especially, < Au,v>=((u,v)). The normalized eigenfunctions {ωj}∞
j=1 of A are defined

on the Hilbert basis of H, which possesses eigenvalues as {λj}∞
j=1(0 < λ1 ≤ ··· ≤ λj ≤

··· , λj →+∞ as j→∞). The fractional power operator As is defined as

Asu=∑
j

λs
j ajωj, s∈R, j∈Z+, u=∑

j
ajωj, aj =(u,ωj),
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with the domain D(As)= {u; Asu∈ H}, and we still use D(As) to denote ED(As) whose
norm is written as

∥u∥2
2s = |Asu|2=∑

j
λ2s

j |aj|2.

Also,

V=D(A
1
2 )={u; A

1
2 u∈H}={u=∑

j
ajωj; ∑

j
λj|aj|2<+∞},

and
∥u∥1= |A 1

2 u|=∥u∥, for any u∈V.

Given a Banach space X, let CX =C([−h,0];X) with norm

∥u(θ)∥CX = sup
θ∈[−h,0]

∥u(θ)∥X,

L2
X is Lebesgue space in the delayed interval [−h,0], and the product space MH = H×

(CH∩L2
V) with norm

∥(u(t),ut)∥2
MH

= |u(t)|2+∥ut∥2
CH

+∥ut∥2
L2

V
.

Let P1 and P2 be projections from MH to H and CH∩L2
V , that is

P1MH =H, P2MH =CH∩L2
V .

And we define the bilinear and trilinear operators B(·,·), b(·,·,·) given by

B(u,v) :=PL((u·∇)v), ∀ u,v∈E,

b(u,v,w)=
2

∑
i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx=(B(u,v),w)

respectively, where B(u,v) is a linear continuous operator from V to V ′, and for all u,v,w∈
V there hold 

b(u,v,v)=0,
b(u,v,w)=−b(u,w,v),
|b(u,v,w)|≤C|u| 1

2 ∥u∥ 1
2 ∥v∥∥w∥ 1

2 |w| 1
2 .

(2.1)

Lemma 2.1. (The Lions-Aubin Lemma [19]) Let X,Y and Z be three Banach spaces, X and Y
are reflexive, X ↪→↪→Z ↪→Y, 1< p0,p1<∞, and T>τ is a fixed constant. If a bounded sequence
{un} satisfies that un∈Lp0(τ,T;X) and ∂un

∂t ∈Lp1(τ,T;Y), then the sequence {un} is precompact
in Lp0(τ,T;Z).

Lemma 2.2. (The Lions-Magenes Theorem [19]) For 1 < p < +∞, 1/p+1/p′ = 1, u ∈
Lp(τ,T;V), and ∂

∂t u ∈ Lp′(τ,T;V ′), then u ∈ C([τ,T];H) (if necessary, some function values
could be changed in some set of zero measure in [τ,T]).
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2.2 Some conclusions about tempered pullback dynamic system

Before analyzing our model, we recall briefly some interesting results on pullback D-
attractors, which can be found in [11, 15, 20].

Definition 2.1. Let P(X) be the family of all nonempty subsets in X, and D is a nonempty class
of families {D(t)}t∈R⊂P(X). Then D is called a universe in P(X).

Definition 2.2. Let be a metric space (X,d), R2
d = {(t,τ)∈ R2|τ ≤ t}, and a family of two-

parameter mappings {U(·,·)} : R2
d×X→X is called process in X if

(i) U(τ,τ)= Id;
(ii) U(t,l)U(l,τ)=U(t,τ), ∀τ≤ l≤ t.

Definition 2.3. Let X be a Banach space, the process {U(t,τ)|t≥τ} is said to be continuous in
X if the mapping U(t,τ) : X→X is continuous.

Definition 2.4. The family of subsets D0 = {D0(t)}t∈R is said to be pullback D-absorbing for
the process {U(t,τ)} in X if for any {D(t)}t∈R∈D and any t∈R, there exists τ(t,D)≤ t such
that U(t,τ)D(τ)⊂D0(t) for all τ≤τ(t,D).

Definition 2.5. A process {U(t,τ)} in X is said to be pullback D-asymptotically compact if for
any t∈R, any sequence {τn}⊂ (−∞,t] with τn →−∞ as n→+∞, and {un}⊂ D(τn), there
holds that {U(t,τn)un} is relatively compact in X.

Definition 2.6. A family of compact subsets A={A(t)}t∈R is called the pullback D-attractor
for the process {U(t,τ)} in X, if for any τ≤ t∈R,

(i) A is invariant (U(t,τ)A(τ)=A(t));
(ii) A is pullback D-attracting, i.e.,

lim
τ→−∞

distX(U(t,τ)D(τ),A(t))=0.

Theorem 2.1. (See [8]) Let {U(t,τ)} be a continuous process in a Banach space X, and D is a
universe in P(X). A family of subsets D0={D0(t)|t∈R} is pullback D-absorbing for {U(t,τ)},
and {U(t,τ)} is pullback D-asymptotically compact in X. Then the process {U(t,τ)} possesses
the pullback D-attractors A={A(t)}t∈R in X, where

A=Λ(D,t)=
⋂
s≤t

(⋃
τ≤s

U(t,τ)D(τ)

)
.

Remark. For a family of closed sets C={C(t)}t∈R which satisfies that

lim
τ→−∞

distX(U(t,τ)D(τ),C(t))=0,

if there always holds that A⊂ C(t), then it is said that the pullback D-attractors A=
{A(t)}t∈R is minimal.
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If A⊂D, then it is said that the pullback D-attractors A={A(t)}t∈R is unique. And
the sufficient condition for A⊂D is that D0 ∈D, D(t) is closed for any t∈R, and D is
inclusion-closed.

To study the relationship among the pullback attractors, we provide the following
definition of upper semi-continuity and related conclusion, see [11].

Definition 2.7. Suppose that X and Λ are metric spaces, and {Aλ}λ∈Λ is a family of subsets
of X. Then it is said that the family of subsets {Aλ} has the property of upper semicontinuity as
λ→λ0 in X if

lim
λ→λ0

distX(Aλ,Aλ0)=0.

Theorem 2.2. Suppose that, λ∈ [λ0,λ0+1), {Sλ(·,·)} is a family of processes such that
(i) Sλ(·,·) has a pullback attractor Aλ(·) for all λ∈ [λ0,λ0+1);
(ii) For any t∈R, any T≥0, and any bounded set D⊂X,

sup
s∈[0,T], u0∈D

d(Sλ(t+s,t)u0,Sλ0(t+s,t)u0)→0 as λ→λ0;

(iii) There exist δ>0 and t0∈R such that⋃
λ∈(λ0,λ0+δ)

⋃
s≤t0

Aλ(s)

is bounded. Then the pullback attractors have the property of upper semicontinuity as λ→λ0: for
each t∈R,

lim
λ→λ0

dist(Aλ,Aλ0)=0.

Remark. Considering the incompressible Navier-Stokes equations, the nonlinearity of
convective term leads to that we can not use the above method to study the upper semi-
continuity of pullback attractors directly, and thus the technique in Zelati and Gal’s paper
[18] has been introduced and applied to achieve our goal.

3 Wellposedness

3.1 Abstract form and weak solution

The problems (1.1) can be written as the abstract equivalent form
∂

∂t
u+νAu+B(u(t−ρ(t)),u)=PL f (t),

u(τ+θ,x)=ϕ(θ), (θ,x)∈ [−h,0]×Ω.
(3.1)
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Definition 3.1. A solution u : [τ,∞)→H is called the weak solution to (3.1) if there hold
(i) u∈C([τ−h,T];H)∩L2(τ,T;V), ∂u

∂t ∈L2(τ,T;V ′);
(ii) u(τ+θ,x)=ϕ(θ), θ∈ [−h,0];
(iii) for any v∈V and s,t∈ [τ,T) with s≤ t, there holds

(u(t),v)+ν
∫ t

s
<Au(l),v>dl+

∫ t

s
<B(u(l−ρ(l),u(l)),v>dl

=(u(s),v)+
∫ t

s
(PL f ,v)dl; (3.2)

(iv) for any T≥τ, the energy inequality holds in the distribution sense that

1
2

d
dt

|u(t)|2+ν∥u(t)∥2≤ ( f ,u(t)). (3.3)

Also, the inequality (3.3) can be understood in the way that there holds for any posi-
tive test function ψ∈C∞

0 [τ,T] that

−1
2

∫ T

τ
|u(t)|2ψ′(t)dt+ν

∫ T

τ
∥u(t)∥2ψ(t)dt≤

∫ T

τ
( f ,u(t))ψ(t)dt. (3.4)

3.2 Existence, uniqueness and continuity of solutions

To study the well-posedness of solutions, we first assume that∫ t

−∞
ers| f |2ds, 0< r<ν.

Theorem 3.1. Let (u(τ),ϕ) ∈ MH, then there exists a unique weak solution u(t;τ,ϕ(θ)) to
system (3.1) on [τ−h,T].

Proof. We first use the standard Faedo-Galerkin method to establish the existence of so-
lution to (3.1).

Step 1: Approximation solution. Consider an orthonormal basis {ej}∞
j=1 of (L2(Ω))2

which is dense in space V. Fix m≥1, write Xm =span{e1,··· ,em}, and define

Pmu=
m

∑
j=1

(u,ej)ej, ∀ u∈ (L2(Ω))2.

We also assume that um(t)=∑m
j=1amj(t)ej satisfies for a.e. t>τ that

(um(t),ej)+ν
∫ t

τ
<Aum,ej >ds+

∫ t

τ
b(um(s−ρ(s)),um,ej)ds

=(um(τ),ej)+
∫ t

τ
(PmPL f (s),ej)ds,

um(τ+θ,x)=ϕm(θ), (θ,x)∈ [−h,0]×Ω,

(3.5)
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where

um(τ+θ)=ϕm(θ)=
m

∑
k=1

bmjej →ϕ(θ) in H,

and
PmPL f (t)→PL f (t) in H as m→+∞.

From the basic conclusion of ordinary differential equations [21] we know that the system
(3.5) has a unique solution on some local interval [τ−h,tm), where tm ∈ (τ,∞).

Step 2: Priori estimate. Letting τ<T< tm, from (3.5) we obtain that

∂

∂t
|um|2+2ν∥um∥2≤2|um|| f |≤νλ1|um|2+

1
νλ1

| f |2, a.e. t∈ [τ,T],

i.e.,

d
dt

|um|2+ν∥um∥2≤ 1
νλ1

| f |2. (3.6)

Using Gronwall’s inequality, we obtain

|um(t)|2≤ e−νλ1(t−τ)|u(τ)|2+ 1
ν2λ2

1
| f |2, (3.7)

ν
∫ t

s
∥um(k)∥dk≤|um(s)|2+

1
νλ1

∫ t

s
| f |2dk, (3.8)

it follows from (3.7) and (3.8) that tm =∞ for all m, and

um ∈L∞(τ−h,T;H)∩L2(τ−h,T;V).

Also, if we integrate (3.6) from t to t+θ, θ∈ [−h,0], from the fact that ϕ∈CH we have

∥(um)t∥2
CH

≤∥ϕ(θ)∥2
CH

+
1

νλ1

∫ t

τ
| f |2ds.

For any v∈V, there holds

|<B(um(t−ρ(t)),um),v> |

=
∫

Ω
um(t−ρ(t))∇vumdx≤C∥um(t−ρ(t))∥L∞ |∇v||um|,

then
∥B(um(t−ρ(t)),um(t)∥V′ ≤C∥um(t−ρ(t))∥L∞ |um|≤C|um|,

it follows that
B(um(t−ρ(t)),um)∈L2(τ,T;V ′).
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Since Aum ∈L2(τ−h,T;V ′), and

∂

∂t
um =−νAum−B(um(t−ρ(t)),um)+ f (t),

we have ∂
∂t um ∈L2(τ,T;V ′).

Step 3: Limit procedure. From the Lions-Aubin lemma we obtain that there exist func-
tions u∈L∞(τ−h,T;H)∩L2(τ−h,T;V), u1∈L2(τ,T;V ′), and u2∈L2(τ,T;V ′) such that

um ⇀u, weakly star in L∞(τ−h,T;H);
um ⇀u, weakly in L2(τ−h,T;V);
Aum ⇀u1, weakly in L2(τ−h,T;V ′);
∂

∂t
um ⇀u2, weakly in L2(τ,T;V ′);

um →u, strongly in L2(τ,T;H);
um(s)→u(s) in ΩT (a.e.),

(3.9)

and from the compactness results we can obtain u1 = Au, u2 =
∂
∂t u. Also, the Lions-

Magenes Theorem can lead to that um ∈C([τ,T];H).
Also, from (3.9) and the Sobolev interpolation inequality we can obtain that

∥um(t)∥L4(Ω)≤C∥um(t)∥
1
2 ·|um(t)|

1
2 ≤C∥um(t)∥

1
2 ,

and um(t)∈L4(τ−h,T;L4(Ω)), it follows that um(t−ρ(t))um(t) is bounded in L2(τ,T;H),
which means there exists a subsequence (also written {um}) such that

um(t−ρ(t))um(t)⇀u(t−ρ(t))u(t) weakly in L2(τ,T;H).

In addition, um(t−ρ(t))um(t)⇀u(t−ρ(t))u(t) weakly in L2(ΩT), and for any v∈V there
holds ∫ T

τ
b(um(t−ρ(t)),um,v)dt=

∫ T

τ

2

∑
i,j=1

∫
Ω

umi(t−ρ(t))Diumjvjdxdt

=−
2

∑
i,j=1

∫ T

τ

∫
Ω

umi(t−ρ(t))Divjumjdxdt→−
2

∑
i,j=1

∫ T

τ

∫
Ω

ui(t−ρ(t))Divjujdxdt

=
∫ T

τ
b(u(t−ρ(t)),u,v)dt. (3.10)

From (3.9), we can also obtain that for any v∈V,

(um(t),v)+ν
∫ T

τ
<Aum(t),v>dt→ (u(t),v)+ν

∫ T

τ
<Au(t),v>dt, (3.11)
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and passing to the limit in (3.5)can lead to that u satisfies (3.2) and (3.3).

Step 4: Continuous dependence on initial data. Suppose that u and v are two solutions
to (3.1) with initial data ϕ1 and ϕ2 in [−h,0]×Ω respectively, we denote w(t)=u(t)−v(t),
and there holds

∂w
∂t

+νAw+B(u(t−ρ(t)),u)−B(v(t−ρ(t)),v)=0.

Noting that

B(u(t−ρ(t)),u)−B(v(t−ρ(t)),v)=B(w(t−ρ(t)),u)+B(v(t−ρ(t)),w),

we get

∂w
∂t

+νAw+B(w(t−ρ(t)),u)+B(v(t−ρ(t)),w)=0. (3.12)

Multiplying (3.12) by w, we obtain

d
dt

|w|2+2ν∥w∥2≤2|b(w(t−ρ(t)),u,w)|

≤C|w(t−ρ(t))| 1
2 ∥w(t−ρ(t))∥ 1

2 ∥u∥∥w∥ 1
2 |w| 1

2

≤Cesssup
r∈[t−h,t]

|w(r)|∥u∥∥w(t−ρ(t))∥ 1
2 ∥w(t)∥ 1

2

≤ C
ε

esssup
r∈[t−h,t]

|w(r)|2∥u∥2+ε∥w(t−ρ(t))∥∥w(t)∥

≤ C
ε

esssup
r∈[t−h,t]

|w(r)|2∥u∥2+
ε2

2ν
∥w(t−ρ(t))∥2+

ν

2
∥w(t)∥2,

which implies

d
dt

|w|2+ 3ν

2
∥w∥2≤ C

ε
esssup
r∈[t−h,t]

|w(r)|2∥u∥2+
ε2

2ν
∥w(t−ρ(t))∥2. (3.13)

Choosing ε=ν
√

1−M and integrating (3.13) over [τ,t], we get

|w(t)|2−|w(τ)|2+ 3ν

2

∫ t

τ
∥w∥2ds

≤ C
ε

∫ t

τ
esssup
r∈[s−h,s]

|w(r)|2∥u(s)∥2ds+
ε2

2ν

∫ t

τ
∥w(s−ρ(s))∥2ds

≤ C
ε

∫ t

τ
esssup
r∈[s−h,s]

|w(r)|2∥u(s)∥2ds+
ε2

2ν(1−M)

∫ t

τ−h
∥w(s)∥2ds
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≤ C
ν
√

1−M

∫ t

τ
esssup
r∈[s−h,s]

|w(r)|2∥u(s)∥2ds+
ν

2

∫ t

τ
∥w(s)∥2ds+

ν

2

∫ τ

τ−h
∥w(s)∥2ds (3.14)

i.e.,

|w(t)|2+ν
∫ t

τ
∥w∥2ds (3.15)

≤|w(τ)|2+ ν

2

∫ τ

τ−h
∥w(s)∥2ds+

C
ν
√

1−M

∫ t

τ
esssup
r∈[s−h,s]

|w(r)|2(1+∥u(s)∥2)ds,

and

esssup
r∈[t−h,t]

|w(r)|2≤∥wτ∥2
CH

+
ν

2
∥wτ∥2

L2
V
+C

∫ t

τ
esssup
r∈[s−h,s]

|w(r)|2(1+∥u(s)∥2)ds.

By the Gronwall inequality, we conclude that

esssup
r∈[t−h,t]

|w(r)|2≤ (∥ϕ1−ϕ2∥2
CH

+
ν

2
∥ϕ1−ϕ2∥2

L2
V
)·exp(C

∫ t

τ
(1+∥u(s)∥2)ds),

from (3.15) we can also have

ν
∫ t

τ
∥w∥2ds≤(∥ϕ1−ϕ2∥2

CH
+

ν

2
∥ϕ1−ϕ2∥2

L2
V
)

·(1+Cexp(C
∫ t

τ
(1+∥u(s)∥2)ds)

∫ t

τ
(1+∥u(s)∥2)ds),

which leads to the continuous dependence on initial data, and the uniqueness of solu-
tions holds naturally.

4 Regularity of solution

In [22], the regularity of solution to the 2D non-homogeneous Navier-Stokes equations
in non-smooth domain was derived, and in the same way we can study the system (3.1)
and obtain the conclusion as follows.

Theorem 4.1. Let (u(τ),ϕ)∈ MH, and u(t) is the solution to system (3.1) as in Theorem 3.1,
then u(t)∈L∞(τ,T;D(A

1
4 )).

Proof. We also use the Faedo-Galerkin method to consider the regularity of solution.

Step 1: Priori Estimate. From (3.5) we get for a.e. t>τ

d
dt

<um,A
1
2 um >+ν<Aum,A

1
2 um >ds+b(um(t−ρ(t)),um,A

1
2 um)
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=< f (t),A
1
2 um >, (4.1)

and from the Sobolev embedding inequality, Hölder inequality and Young inequality, we
can also derive

d
dt

|A 1
4 um(t)|2+2ν|A 3

4 um|2

≤2
∫

Ω
um(t−ρ(t))∇um A

1
2 umdx+2| f ||A 1

2 um|

≤C∥um(t−ρ(t))∥L4∥um∥∥A
1
2 um∥L4+2| f ||A 1

2 um|

≤C|A 1
4 um(t−ρ(t))|∥um∥|A

3
4 um|+C| f |·|A 3

4 um|

≤ν|A 3
4 um|2+

C
ν
|A 1

4 um(t−ρ(t))|2∥um∥2+
C

νλ1/2
1

| f |2, (4.2)

i.e.,
d
dt

|A 1
4 um|2+ν|A 3

4 um|2≤
C
ν
∥um∥2|A 1

4 um(t−ρ(t))|2+ C
νλ1/2

1

| f |2. (4.3)

Integrating (4.3) over [s,t], we obtain that

|A 1
4 um(t)|2+ν

∫ t

s
|A 3

4 um|2dk

≤|A 1
4 um(s)|2+

C
ν

∫ t

s
|A 1

4 um(k−ρ(k))|2∥um(k)∥2dk+
C

νλ1/2
1

| f |2(t−s)

≤|A 1
4 um(s)|2+

C
ν

∫ t

s
esssup

k1∈[k−h,k]
|A 1

4 um(k1)|2∥um(k)∥2dk+
C

νλ1/2
1

| f |2(t−s), (4.4)

which means

esssup
k∈[t−h,t]

|A 1
4 um(k)|2

≤C
ν

∫ t

s
esssup

k1∈[k−h,k]
|A 1

4 um(k1)|2∥um(k)∥2dk+|A 1
4 um(s)|2+

C
νλ1/2

1

| f |2(t−s), (4.5)

and applying the Gronwall lemma lead to that

esssup
k∈[t−h,t]

|A 1
4 um(k)|2

≤
[
|A 1

4 um(s)|2+
C

νλ1/2
1

| f |2(t−s)

]
·exp

(
C
ν

∫ t

s
∥um(k)∥2dk

)
. (4.6)

Also, Combing (3.7) and (3.8), we have

ν
∫ t

s
∥um(k)∥dk≤|u(τ)|2+ 1

νλ1
| f |2

(
t−s+

1
νλ1

)
. (4.7)
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Let t−s= 1
νλ1

, we use the technique as shown as in Theorem 4.11 in [22] and show that,
in any interval of length 1

νλ1
, there exists k such that

∥um(k)∥2≤2λ1|u(τ)|2+
2| f |2
ν2λ1

, (4.8)

which, with (4.6) and (4.7), can lead to that

sup
t>1/νλ1

|A 1
4 um(t)|2≤

(
2λ

1
2
1 |u(τ)|

2+
C| f |2

ν2λ3/2
1

)
·exp

[
C
ν2

(
|u(τ)|2+ | f |2

ν2λ2
1

)]
. (4.9)

Step 2: Limit procedure. From (3.9) we know

um ⇀u, weakly in L2(τ−h,T;V),

the fact that V ↪→ D(A1/4) is compact leads to there is subsequence (still written {um})
satisfying

um →u, strongly in L2(τ,T;D(A
1
4 )).

It thus follows that there exists another subsequence {umj} such that

umj →u in D(A
1
4 ) for a.e. t,

which leads to fact that
sup

t>1/νλ1

|A 1
4 u(t)|≤C,

and the conclusion holds naturally.

5 Existence of pullback D-attractors A

From Theorem 4.1 we know that the system (3.1) generates a continuous semi-flow S(t,τ)=
(U0(t,τ),Uh(t,τ)) in MH by

S(t,τ)(u(τ),ϕ)=(u(t),ut).

To obtain the pullback D-attractors, we must establish the existences of pullback D-
absorbing set and the pullback D-asymptotic compactness of semi-flow. We first provide
D to denote a class of all families {D(t)}t∈R⊂P(MH) satisfying

lim
τ→−∞

erτ sup
(u(τ),ϕ)∈D(τ)

|u(τ)|2=0, 0< r<ν.
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5.1 Pullback D-absorbing sets in MH

Theorem 5.1. Assume (u(τ),ϕ) ∈ MH, the semi-flow {S(t,τ)} to system (3.1) possesses a
pullback D-absorbing set B={B(t)}t∈R in MH, where

B(t)= B̄H(0,ρH(t))×(B̄CH (0,ρH(t))∩ B̄L2
V
(0,ρL2

V
(t))),

in which

ρ2
H(t)=1+

1
νλ1

e−rterh
∫ t

−∞
ers| f |2ds, ρ2

L2
V
(t)=

1
ν

ρ2
H(t)+

1
ν2λ1

∫ t

t−h
| f |2ds.

Proof. Multiplying (3.1) by u, we obtain

d
dt

|u|2+2ν∥u∥2≤2|u|| f |≤νλ1|u|2+
1

νλ1
| f |2,

i.e.,

d
dt

|u|2+ν∥u∥2≤ 1
νλ1

| f |2, (5.1)

d
dt

ert|u|2+(ν−r)ert∥u∥2≤ 1
νλ1

ert| f |2. (5.2)

Integrating (5.2) on [τ,t], we have

|u(t)|2≤ er(τ−t)|u(τ)|2+ e−rt

νλ1

∫ t

τ
ers| f |2ds,

which means there exists τ(D,t)< t−h such that, for τ<τ(D,t),

|u(t)|2<1+
1

νλ1
e−rterh

∫ t

−∞
ers| f |2ds=ρ2

H(t).

Also, we can derive that
∥ut∥2

CH
≤ρ2

H(t), τ<τ(D,t).

From (5.1) we obtain

ν
∫ t

t−h
∥u(s)∥2ds≤|u(t−h)|2+ 1

νλ1

∫ t

t−h
| f |2ds, (5.3)

and there holds

∥ut∥2
L2

V
≤ 1

ν
ρ2

H(t)+
1

ν2λ1

∫ t

t−h
| f |2ds=ρ2

L2
V
(t), τ<τ(D,t),

and the conclusion holds.
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Remark 5.1. For the process U0(t,τ), it has the pullback D-absorbing set B0={B0(t)}t∈R

in H, where

B0(t)=
{

u(t)∈H; |u(t)|2≤ρ2
0(t)=1+

e−rt

νλ1

∫ t

−∞
ers| f |2ds

}
. (5.4)

For the process Uh(t,τ), it has the pullback D-absorbing set Bh={Bh(t)}t∈R in CH, where

Bh(t)=
{

ut ∈CH; ∥ut∥2≤ρ2
H(t)=1+

e−rterh

νλ1

∫ t

−∞
ers| f |2ds

}
. (5.5)

And there holds

limsup
h→0

ρ2
H(t)=ρ2

0(t). (5.6)

5.2 Pullback D-asymptotic compactness of S(t,τ) in MH

Theorem 5.2. Let (u(τ),ϕ)∈ MH, then the semi-flow S(t,τ) : MH → MH generated by the
system (3.1) is pullback D-asymptotically compact.

Proof. For any family D̂={D(t)}t∈R in D, the sequence {τn}⊂ (−∞,t] satisfies τn →−∞
as n→∞, {(u(τn),ϕn)}⊂D(τn), and we write un(·)=u(·;τn,u(τn),ϕn).

Step 1. We establish the weak convergence of {un(t,x)} in [t−h,t] and in H for any
arbitrary fixed t≥τ respectively.

From the conclusions and techniques in Theorems 4.1 and 5.1, we know there exists
τ(D̂,t)≤ t−3h−1 such that, for τ≤τ(D̂,t),

{un}⊂L∞(t−3h−1,t;H)∩L2(t−2h−1,t;V),
{

∂

∂t
(un)

}
⊂L2(t−h−1,t;V ′).

Which together with the compactness Lemma and the diagonal procedure can lead to
that there exists a subsequence (written also as {un}) satisfying

un ⇀u weakly star in L∞(t−3h−1,t;H);
un ⇀u weakly in L2(t−2h−1,t;V);
∂

∂t
un ⇀

∂

∂t
u weakly in L2(t−h−1,t;V ′);

un →u strongly in L2(t−h−1,t;H);
un →u in H, a.e. s∈ (t−h−1,t).

(5.7)

Thus, from (5.7) we can conclude that u∈C([t−h−1,t];H) is a weak solution for system
(3.1) with the initial datum u(t−h−1).
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Since {un}⊂L∞(t−h−1,t;D(A1/4)) and { ∂
∂t (u

n)}⊂L2(t−h−1,t;V ′), the Aubin-Lions-
Simon Lemma leads to that

un →u strongly in C([t−h−1,t];H). (5.8)

It thus follows for any {sn}⊂ [t−h−1,t] with sn → s∈ [t−h−1,t] that

un(sn)⇀u(s) weakly in H, (5.9)

and there holds that

liminf
n→∞

|un(sn)|≥ |u(s)|. (5.10)

Step 2. We establish the strong convergence of sequence {un(sn)} in C([t−h,t];H) for
any sequence {sn}⊂ [t−h,t] with sn → s as n→+∞.

According to the energy equality for un and u, we define the following two functionals
in [t−h−1,t]

Jn(s)=
1
2
|un(s)|2−

∫ s

t−h−1
( f ,un(r))dr, (5.11)

J(s)=
1
2
|u(s)|2−

∫ s

t−h−1
( f ,u(r))dr, (5.12)

which are continuous and non-increasing in [t−h−1,t]. From (5.7) we know as n→+∞
that ∫ s

t−h−1
( f ,un(r))dr→

∫ s

t−h−1
( f ,u(r))dr, (5.13)

it follows that

Jn(s)→ J(s) a.e. s∈ (t−h−1,t), (5.14)

which means that, for any ε>0, there exists a constant N̂ such that, for any n≥ N̂ and any
sequence {sn}⊂ [t−h−1,t],

|Jn(sn)− J(sn)|≤
ε

2
. (5.15)

Also, the uniform continuity of J(s) with respect to s can lead to that for any ε > 0,
there exist a constant Ñ such that, for any n ≥ Ñ and any sequence {sn} ⊂ [t−h−1,t]
satisfying sn → s,

|J(sn)− J(s)|≤ ε

2
. (5.16)
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Letting N=max{N̂,Ñ} and using (5.15) and (5.16), we can obtain for n≥N that

|Jn(sn)− J(s)|≤ |Jn(sn)− J(sn)|+|J(sn)− J(s)|≤ ε. (5.17)

It thus follows for any {sn}⊂ [t−h−1,t] that

limsup
n→∞

Jn(sn)≤ J(s), (5.18)

which can lead to the strong convergence of {un(sn)} in C([t−h,t];H) by using (5.10).

Step 3. We establish the strong convergence of {un(sn)} in L2(t−h,t;V) for any sequence
{sn}⊂ [t−h,t] with sn → s as n→+∞. For un and u, there hold

|un(t)|2+2ν
∫ t

t−h
∥un(r)∥2dr= |un(t−h)|2+2

∫ t

t−h
( f ,un(r))dr, (5.19)

|u(t)|2+2ν
∫ t

t−h
∥u(r)∥2dr= |u(t−h)|2+2

∫ t

t−h
( f ,u(r))dr. (5.20)

Combining (5.7), (5.19) and (5.20), we can derive that as n→+∞

2ν
∫ t

t−h
∥un(r)∥2dr→2ν

∫ t

t−h
∥u(r)∥2dr, (5.21)

and the strong convergence of {un(sn)} in L2(t−h,t;V) can be derived by using (5.7) and
(5.21).

To sum up, from the upward three steps we can obtain that the semi-flow {S(t,τ)} :
MH →MH generated by the system (3.1) is pullback D-asymptotically compact.

5.3 Existence of pullback D-attractors

In Theorem 4.1 the continuity of semi-flow {S(t,τ)} generated by system (3.1) is derived,
the pullback D-absorbing sets are established in Theorem 5.1, and we show that {S(t,τ)}
is pullback D-asymptotically compact in MH. According to Theorem 2.1 or the technique
as in [17], we obtain the conclusion as following.

Theorem 5.3. Assume (u(τ),ϕ) ∈ MH, the semi-flow S(t,τ) : MH → MH generated by the
system (3.1) possesses the pullback D-attractor A={A(t)}t∈R in MH, and the pullback attractors
corresponding to the processes U0(t,τ) and Uh(t,τ) exist respectively, where

A0=P1A, Ah =P2A.
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6 Upper semi-continuity of pullback attractors

When h=0, the system (3.1) can be reduced to the following system
∂

∂t
u+νAu+B(u,u)= f (t),

u(τ,x)=ϕ(0), x∈Ω.
(6.1)

In the following way, we intend to establish some results on the convergence of pull-
back attractors Ah to system (3.1) and A0 to system (6.1) as h→0. In view of the complex-
ity of problem in the case of strong topology in H, we use the concept of weak topology
of L2 to consider the convergence problem, denote the metric by d◦H in H in which the
weak topology on bounded sets is metrizable, and give the corresponding definition of
upper semi-continuity as follows.

Definition 6.1. It is said that a family of subsets {Ah(t)}t∈R in H has the property of upper
semi-continuity if

lim
h→0

sup
−h≤θ≤0

dist◦H(Ah(t),A0(t))=0, for any t∈R,

where
dist◦H(E,S)=sup

ϕ∈E
inf
φ∈S

||ϕ(θ)−φ||H, ∀ E⊂H, S⊂H.

Lemma 6.1. Let {hn}⊂ (0,h] be any sequence such that hn →0 as n→+∞, (uτ,n,ϕn)∈ MH,
and Uhn uτ,n is the solution to the system (3.1) with h= hn. Assume that u : [τ,+∞)→ H is the
solution to system (6.1), then there exists a subsequence {nk}k∈N such that

lim
k→+∞

d◦H(U
hnk uτ,n,u(t))=0, ∀t≥τ.

Proof. Similar to the proof of Theorem 4.1, we can show that, for every T>τ, the sequence
of solution {un(t)=Uhn uτ,n} satisfies

{un}⊂L∞(τ−h,T;H)∩L2(τ−h,T;V),
{

∂

∂t
un

}
⊂L2(τ,T;V ′).

And there exists a function u : [τ,+∞)→H satisfying

{u(t)}⊂L∞(τ−h,T;H)∩L2(τ−h,T;V),
{

∂

∂t
u(t)

}
⊂L2(τ,T;V ′),

with {
un →u, strongly in L2(τ,T;H);
un ⇀u, weakly in L2(τ−h,T;V).

(6.2)
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For each n∈N and any s,t∈ [τ,T], we have

(un(t),v)+ν
∫ t

s
(A

1
2 un(l),A

1
2 v)dl+

∫ t

s
<un(l−ρ(l)·∇un(l),v>dl

=(un(s),v)+
∫ t

s
( f ,v)dl, ∀v∈V. (6.3)

From (6.2) we know that the pointwise convergence holds in H for any t∈[τ,T], which
means

(un(t),v)→ (u(t),v), for any v∈H as n→+∞,

and

ν
∫ t

s
(A

1
2 un(l),A

1
2 v)dl→ν

∫ t

s
(A

1
2 u(l),A

1
2 v)dl as n→+∞,

it thus follows that

(u(t),v)+ν
∫ t

s
(A

1
2 u(l),A

1
2 v)dl+

∫ t

s
<u(l)·∇u(l),v>dl

=(u(s),v)+
∫ t

s
( f ,v)dl, ∀v∈V, (6.4)

which means u is the weak solution to system (6.1).
For any n ∈ N, un is the weak solution to system (3.1) with h = hn, then from the

definition of weak solution we know

−1
2

∫ T

τ
|un(t)|2ψ′(t)dt+ν

∫ T

τ
∥un(t)∥2ψ(t)dt=

∫ T

τ
(un(t), f )ψ(t)dt, (6.5)

for any T>τ and any positive function ψ(t)∈C∞
0 (τ,T). To gain our ends, we need to get

the convergence of each term in (6.5).
Since |un(t)|2→|u(t)|2 as n→+∞ for almost all t∈ [τ,T], and the sequence {|un(t)|2

·ψ′(t)}⊂L1(τ,T), the Lebesgue dominated convergence theorem can lead to∫ T

τ
|un(t)|2ψ′(t)dt→

∫ T

τ
|u(t)|2ψ′(t)dt, as n→+∞.

We use the conclusion (6.2) again, and from the property of weak convergence we have

ν
∫ T

τ
∥u(t)∥2ψ(t)dt≤ liminf

n→+∞
ν
∫ T

τ
∥un(t)∥2ψ(t)dt.

Hence, it yields

−1
2

∫ T

τ
|u(t)|2ψ′(t)dt+ν

∫ T

τ
∥u(t)∥2ψ(t)dt=

∫ T

τ
(u(t), f )ψ(t)dt, (6.6)

which is just the energy inequality for u, and the conclusion holds naturally.
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Lemma 6.2. Let (u(τ),ϕ) ∈ MH, Bh = {Bh(t)}t∈R is the pullback absorbing set of Uh(t,τ)
in MH to system (3.1), and B0 = {B0(t)}t∈R is the correspondingly pullback absorbing set of
U0(t,τ) in H to system (6.1), then

lim
h→0

dist◦H(U
h(t,τ)Bh,U0(t,τ)B0)=0.

Proof. In the following way, we use the proof by contradiction to obtain the conclusion.
Assume that there are t > τ, the sequence {hn} ⊂ (0,1), where hn → 0 as n →+∞, and
uτ,n ∈Bhn(τ)∈Bh such that for any n∈N

inf
v∈U0(t,τ)B0

dist◦H(U
hn(t,τ)uτ,n,v)≥ ε.

Then, for any v∈U0(t,τ)B0, we obtain that for any n∈N

dist◦H(U
hn(t,τ)uτ,n,v)≥ ε,

which is a contradiction with Lemma 6.1.

Theorem 6.1. Let (u(τ),ϕ)∈MH, Ah={Ah(t)}t∈R is the pullback attractor of Uh(t,τ) in CH∩
L2

V to system (3.1), and A0={A0(t)}t∈R is the correspondingly pullback attractor of U0(t,τ) in
H to system (6.1), then

lim
h→0

dist◦H(Ah,A0)=0.

Proof. It is known that A0={A0(t)}t∈R is the pullback attractor of U0(t,τ) in H to system
(6.1), from the definition of pullback attractor we know that, for any arbitrarily fixed
constant ε>0, there exists τε <0 such that

dist◦H(U
0(t,τε)B0,A0)≤ ε

2
.

From the upper lemma we know that there exist 0<hε <1 such that for h<hε

dist◦H(U
h(t,τε)Bh,U0(t,τε)B0)≤ ε

2
.

And the conclusion
Uh(t,τ)A(τ)=A(t), Ah ⊂Bh

leads to

dist◦H(Ah,U0(t,τε)B0)=dist◦H(U
h(t,τε)Ah,U0(t,τε)B0)

≤dist◦H(U
h(t,τε)Bh,U0(t,τε)B0), (6.7)

which implies that

dist◦H(Ah,U0(t,τε)B0)≤ ε

2
.

In addition, the triangle inequality

dist◦H(Ah,A0)≤dist◦H(Ah,U0(t,τε)B0)+dist◦H(U
h(t,τε)Bh,U0(t,τε)B0)

ensures that the conclusion holds.
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6.1 Further research

The convergence of pullback attractors Ah to system (3.1) as h→ 0 has been attained in
weak topology, which implies the robustness of dynamic system. Whereas the topology
here we considered is weak, what about the case of strong topology? Can we obtain
the structure and stability as in [23], and pullback dynamics on Lipschitz-like domain as
in [24]? This is the objective we want to be next.
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