
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 123–135

RESEARCH OF MULTICORE-BASED PARALLEL GABP

ALGORITHM WITH DYNAMIC LOAD-BALANCE

HANYUAN ZHENG, ANPING SONG, ZHIXIANG LIU, LEI XU, MINCHAO WANG,
AND WU ZHANG∗

Abstract. Based on Gaussian Belief Propagation(GaBP) algorithm for solving sparse symmetric

linear equations, an iterative acceleration optimization method of GaBP is studied and a corre-

sponding optimized storage scheme is proposed. We explore the parallelism and load balancing
features of this algorithm and present a multicore-based parallel GaBP algorithm with dynam-

ic load-balance. The numerical results indicate that this algorithm can solve large scale sparse
symmetric linear equations with good results and high parallel efficiency.

Key words. multicore-based parallelization, GaBP algorithm, load balance, linear equations.

1. Introduction

Solving linear equations Ax = b is the fundamental problems in various scientific
and engineering computing. Numerical methods, such as finite element method,
finite difference method, spectral method, and finite volume method [1, 2, 10, 3],
convert the actual problem into the problem of solving sparse linear equations.
With the increase of the scale and complexity of problems, how to effectively solve
large scale sparse linear equations has been a hot area [4].

For solving sparse linear equations, iterative method is mainly used. The it-
erative method includes classical iterative method, such as Jacobi method, SOR
method, Krylov subspace method which is very popular in recent years [5, 6]. In
2008, Ori Shental et al proposed an iterative method for symmetric diagonally
dominant linear equations Gaussian Belief Propagation(GaBP) [7]. GaBP algo-
rithm converts the problem of solving linear system into solving the problem of
Probability and information dissemination which differs from the classical iterative
method and Krylov subspace method. For symmetric diagonally dominant linear
equations, GaBP algorithm has a good convergence, and is essentially equivalent
to the classic Gauss elimination method.

The main objective of this paper is how to efficiently solve large scale sparse
symmetric linear equations. We study the iterative acceleration method to optimize
the GaBP algorithm based on its classical GaBP counterpart. By exploring the
parallelism and features of GaBP algorithm, we present a multicore-based parallel
GaBP algorithm with the feature of dynamic load-balance to solve large-scale sparse
linear equations. Numerical experiment of solving large scale are fulfilled and results
are compared with other algorithms.

The rest of the paper is organized as follows. In Section 2, GaBP Algorithm will
be described in detail. the iterative acceleration optimization method of GaBP and
a corresponding optimized storage scheme is shown in Section3. We discuss the
experimental results in section 4. Finally, Section 5 concludes the paper.

Received by the editors January 1, 2014 and, in revised form, March 24, 2014.

2000 Mathematics Subject Classification. 65F10, 65F50, 68W10.
∗Corresponding author.

123

124 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

2. GaBP Algorithm

In this section, we will review the classical GaBP algorithm [7, 8, 9]. For sym-
metric diagonally dominant linear equations

(1) Ax = b, A ∈ <n×n, x, b ∈ <n,

the coefficient matrix A is a nonsingular symmetric diagonally dominant matrix.

2.1. Symmetric Linear Equations and Its Probability Inference Model.
First, We connect undirected graph with symmetric linear equations. Given an
undirected graph G = (V,E), where V is a set of all vertices in G corresponding
to variables x in linear equations and E is the set of all edges associated with the
non-zero elements in matrix A.

Now, we define the following joint Gaussian probability density function based
on the coefficient matrix A and the observation vector b

(2) p(x) ∼ exp(−1

2
xTAx+ bTx),

and its corresponding graph G consisting of edge potentials (’compatibility func-
tions’) ψij and self potentials (’evidence’) φi. These graph potentials are simply
determined according to the following pairwise factorization of the Gaussian func-
tion (2)

(3) p(x) ∝
n∏

i=1

φi(xi)
∏
{i,j}

ψij(xi, xj).

where ψij(xi, xj) , exp(−xiAijxj) and φi(xi) , exp(− 1
2Aiix

2
i + bixi).

Proposition 1. ([7] Proposition 1 Solution and inference). The computation of
the solution vector x∗ is identical to the inference of the vector of marginal means
µ = µ1, · · · , µn over the graph G with the associated joint Gaussian probability
density function p(x) ∼ N(µ , A−1b, A−1).

According to Proposition 1, we can translate the problem of solving the linear
system (1) from the algebraic domain to the domain of probabilistic inference, see
Figure 1.

Next, we will introduce the BP(Belief Propagation) algorithm. The set of graph
nodes N(i) denotes the set of all the nodes neighboring the ith node. The set
N(i) \ j excludes the node j from N(i).

2.2. BP Algorithm. Belief propagation (BP) is equivalent to applying Pearls
local message-passing algorithm [11], originally derived for exact inference in trees,
to a general graph even if it contains cycles (loops). The excellent performance of
BP in these applications may be attributed to the sparsity of the graphs.

The BP algorithm functions by passing real-valued messages across edges in the
graph and consists of two computational rules, namely the ′sum-product rule′ and
the ′product rule′. For a graph G composed of potentials ψij and φi as previously
defined, the conventional sum-product rule becomes an integral-product rule and
the message mij(xj) [12], sent from node i to node j over their shared edge on the
graph, is given by

(4) mij(xj) ∝
∫
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)

mki(xi)dxi.

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 125

Figure 1. From the algebraic domain to the domain of proba-
bilistic inference

The marginals are computed according to the product rule

(5) p(xi) = αφi(xi)
∏

k∈N(i)

mki(xi),

where the α is a normalization constant.

2.3. The GaBP Algorithm. GaBP is a special case of continuous BP, where the
underlying distribution is Gaussian. Now, we derive the Gaussian BP update rules
by substituting Gaussian distributions into the continuous BP update equations (4)
and (5). Figure 2. plots a portion of a certain graph, describing the neighborhood
of node i. Each node is associated with a variable and self potential φ, which is a
function of this variable, while edges are identified with the pairwise potentials ψ.
Messages propagate along the edges in both directions (only the messages relevant
for the computation of mij are shown in Figure 2.).

Looking at the right hand side of the integral-product rule (4), we first introduce
Lemma 1.

Lemma 2.1. ([7] Lemma 2 Product of Gaussians) Let f1(x) and f2(x) be the prob-
ability density functions of a Gaussian random variable with two possible densities
N(µ1, P

−1
1) and N(µ2, P

−1
2), respectively. Then their product, f(x) = f1(x)f2(x)

is, up to a constant factor, the probability density function of a Gaussian random
variable with distribution N(µ, P−1), where

P−1 = (P1 + P2)−1, µ = P−1(P1µ1 + P2µ2).

Let φi(xi)
∏

k∈N(i)\j mki(xi) ∼ N(µi\j , P
−1
i\j), By formula (3), we can know

φi(xi) ∝ N(muii, P
−1
ii), mki(xi) ∝ N(muki, P

−1
ki). According to Lemma 1, we

126 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

Figure 2. The neighborhood of node i.

have

(6) Pi\j = Pii +
∑

k∈N(i)\j

Pki,

and

(7) µi\j = P−1
i\j (Piiµii +

∑
k∈N(i)\j

Pkiµki),

where Pii , Aii, µii , bi/Aii.

Using the Gaussian integral
∫∞
∞ exp(−ax2+bx)dx =

√
(π/a) exp(b2/4a) and (4),

we can find that the messages mij(xj) are proportional to a normal distribution
with precision and mean

(8) Pij = −A2
ijP
−1
i\j ,

(9) µij = −P−1
ij Aijµi\j .

Computing the product rule (5) is similar to the calculation of the previous
product and the resulting mean (9) and precision(8), Thus, the marginal are found
to be Gaussian probability density functions N(µi, P

−1
i) with precision and mean

(10) Pi = Pii +
∑

k∈N(i)

Pki,

(11) µi = P−1
i (Piiµii +

∑
k∈N(i)

Pkiµki).

For a dense matrix, the number of messages passed on the graph G can be
reduced from O(n2) down to O(n2) messages per iteration round by using a similar
construction to Bickson et al. [13]: Instead of sending a unique message composed
of the pair of µij and Pij from node i to node j, a node broadcasts aggregated

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 127

sums to all its neighbors, and consequently each node can retrieve locally Pi and
µi from the aggregated sums

(12) P̃i = Pii +
∑

k∈N(i)

Pki,

(13) µ̃i = P̃−1
i (Piiµii +

∑
k∈N(i)

Pkiµki).

By means of a subtraction,

Pi\j = P̃i − Pji, µi\j = µ̃i − P−1
i\jPjiµji.

The number of messages are reduced from O(n2) down to O(n2).
to sum up, GaBP algorithm cotains initialization and iteration, and the iteration

contains four sub parts. For the initialization part

Pij = 0, µij = 0 (i 6= j),

and

Pii , Aii, µii , bi.

There are three major computation parts in the iteration part, as listed below.
(1) The accumulation of message:

P̃i = Pii +
∑

k∈N(i)

Pki, µ̃i = µii +
∑

k∈N(i)

µki,

(2) The broadcast and update of message

Pi\j = P̃i − Pji, µi\j = µ̃i − µji.

Pij = −A2
ijP
−1
i\j , µij = −P−1

i\jAijµi\j .

(3) The Solving of the vector

xi = µ̃i/P̃i

The GaBP pseudo-code can see Algorithm 1 in [7].

3. Multicore-based parallel GaBP algorithm with dynamic load-balance

3.1. Data structure of sparse symmetric matrix. According to the special
features of GaBP algorithm, we establish the data structure and data search method
for this algorithm. The original left-hand side matrix is stored as follow.

A =

6 1 0 2 0
1 8 3 0 0
0 3 9 4 1
2 0 4 12 5
0 0 1 5 11

 = L+D + U =

1
0 3
2 0 4
0 0 1 5

 +

6

8
9

12
11

 +

1 0 2 0

3 0 0
4 1

5

128 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

Figure 3. Storage ratio

AD = 6. 8. 9. 12. 11.

AL = 1. 2. 3. 4. 1. 5. *

AU = * 1. 3. 2 4. 1. 5.

NBL = 2 4 3 4 5 5 *

NBJL = 1 3 4 6 7 7

NBU = * 1 2 1 3 4 5

NBJU = 0 1 2 4 6 6

Let n be the size of matrix and nnz be the number of non-zero elements.
A real array AD contains the Values aii,form column 1 to n, The length is n.
A real array AL contains the real Values aij(i > j) stored column by column

from column 1 to n, The length of AL is nnz−n
2 .

A real array AU contains the real Values aij(i < j) stored column by colum-
n,form column 1 to n, The length of AU is nnz−n

2 .
An integer array NBL contains the row indices of elements aij(i > j) as stored

in the array AL . The length of NBL is nnz−n
2 .

An integer array NBU contains the row indices of elements aij(i < j) as stored
in the array AU . The length of NBU is nnz−n

2 .
An integer array NBJL contains the pointers to beginning of each row in the

arrays NBL and AL.
An integer array NBJU contains the pointers to beginning of each row in the

arrays NBU and AU .
We store AD,AL,NBL,NBJL,AU ,NBU ,NBJU If A is not symmetric. This

storage format is referred to as the Modified compressed spare column(MCSC).
If A is symmetric, the lower triangle matrix L and the diagonal matrix D of

A should be stored. i.e. AD,AL,NBL,NBJL are stored. This storage format is
referred to as the Optimized compressed spare column (OCSC).

From Figure 3 we can see that ratio of density storage to MCSC and the ratio
of density to OCSC increase with the order and the sparsity of matrix. Therefore,

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 129

the MCSC and OCSC format need far less storage space than that of the density
storage, and the OCSC format needs less storage space than that of the MCSC
format. We use OCSC format to save the sparse matrix. If OCSC format is used to

Algorithm 1 Get aij

1: if j = i then
2: aij = AD[i]
3: end if
4: if j < i then
5: i1 = j; j1 = i;
6: else
7: i1 = i; j1 = j;
8: end if
9: tp = NBJL[j1]

10: NBJ = NBJL[j1 + 1]−NBJL[j1]
11: for all k ∈ 0..NBL do
12: tpk = NB[tp+ k]− 1
13: if tpk = i1 then
14: aij = AL[tp+ k]
15: end if
16: end for

save the sparse matrix, only the non-zero elements are stored. Another advantage
of this format is that the diagonal elements can be directly accessed. For non-zero
elements that are not located in the diagonal, only the sequence search algorithm is
given in algorithm 3.1 We can use binary search to replace it in real implementation.

From GaBP algorithm we know that the sparsity of P µ and left-hand-side
matrix A are equal. Both are symmetric in shape. P and A are symmetric in value
of elements. Therefore, if OCSC format is used to save P and A, NBL,NBJL
and AL,AD are the same for P and A. Furthermore, the algorithm to obtain Pij

is identical to obtain aij in algorithm 3.1.
Because µij is only symmetric in shape, the elements in upper triangle matrix

should also be saved. µD,µL,µNBL,µNBJL,µU ,µNBU ,µNBJU are saved if M-
CSC format is used to save µij .

3.2. Multicore-based parallel GaBP algorithm with dynamic load-balance.
The parallel algorithm to solve sparse linear equations differs from the partition for-
mat of sparse matrix, which could be in row block partition format or the column
block partition format. The block partition format contains the shutter format and
block sequence partition format. We use the column block partition format to save
the sparse matrix. In our algorithm, we assign each process the same number of
columns in the column block. Since the number of zero elements in each column is
not necessarily the same, the zero elements in each column block to be processed
by different process are not necessarily the same. Obviously, the processing of dif-
ferent number of zero elements will lead to load imbalance. To solve this problem,
we need to assign as equal the number of zero elements as we can to each process.

The partition algorithm using column block format is listed in algorithm 3.2.
The input parameter of this algorithm is NBsum, n, p, with array seg[] as the
return value. In algorithm 3.2, NB sum[j] is the number of zero elements in column
j, p is the number of threads. The result of this algorithm is, for q = 0, · · · , p− 1,
the columns ranging from segq to segq+1 − 1 are assigned to thread q.

130 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

Algorithm 2 Partition(seg,NBsum,n,p)

1: k = 0, q = 0, l = 0; seg[0] = 0
2: for all j ∈ 0..n do
3: l = l +NBsum[j]
4: end for
5: for all j ∈ 0..n do
6: k = k +NBsum[j]
7: if k > (q + 1) ∗ l/p) then
8: seg[q + 1] = j; q = q + 1
9: end if

10: seg[p] = n+ 1
11: end for

In GaBP algorithm, some nodes will reach the status of dynamic balance after
every round of iteration. In this case, it is not necessary to process these nodes.
Therefore, the number of nodes in each column block will decrease and result in
new load imbalance. To make each process get the same number of zero elements,
it is necessary to re-partition the column block and re-assign each process new
column block before the next iteration to obtain dynamic load-balance. Here we
re-partition the column block after DEFINE LOOP iterations. The efficiency is
achieved by control the iteration step and the dynamic load-balance.

There are three major computation parts in the iteration part, which are the
accumulation of message, the broadcast and update of message, and the solving of
the vector. The multicore-based GaBP algorithm is implemented by putting these
3 parts into the parallel pragma context. The detailed implementation is illustrated
in Algorithm3.2The input parameter of this algorithm is A, b, n and the output is
the solution vector x.
In algorithm 3.2, we add iteration step control before function Partition(). The
column block is re-partitioned after every DEFINE LOOP , which can be a self-
defined fixed value, or a dynamic varied value. The value of DEFINE LOOP is
related to the number of columns in the column block in real implementation.

In algorithm 3.2, when xi satisfies the per-defined convergence precision, we set
the value Ti of this node to 1. This node will jump out of the iteration loop in the
next iteration, and value NBsum[j] of this node is set to 0.

When the value NBsum[j] of this node equals to 0, this node will be removed
from the calculation of its neighboring nodes in the implementation of dynamic load-
balance in the next round. Because the computing load in this node is reduced, it
is necessary to re-partition the column block to reach new dynamic load-balance.

The re-partition of the new column block before the next iteration will decrease
the computation load in general. The computation load is relatively balanced in
each thread so that many threads will not wait a long time before thread synchro-
nization. Therefore, the iteration computation can be accelerated hereafter.

4. Numerical results

4.1. Environment of experiments. The hardware of the experiment is a server
with 2 Intel Xeon E5-2650(20M cache, 8 cores, 16 Threads, 2.00GHZ) and 96G
memory. The operating system is Redhat Linux 6.3X64, the compiler is gcc-4.81.

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 131

Algorithm 3 GaBP-MP algorithm

Require:
1: init();

Ensure:
2: repeat
3: if (iters mod DEFINE LOOP == 0) then
4: Partition(seg,NBsum, n,Nthreads)
5: end if
6: # pragma omp parallel private(tid, p, j) threads(NTHREADS)
7: { tid = omp get thread num()
8: for (i = seg[tid]; j < seg[tid+ 1]&&Ti == 0; i+ +) do
9: if (Ti == 0) then

10: Pi = Aii +
∑

k∈N(i) Pki; µi = bi +
∑

k∈N(i) µki

11: for all j ∈ N(i) \ j do
12: Pij = −A2

ij/(Pi − Pji); µij = −Aij(µi − µji)/(Pi − Pji)
13: end for
14: end if
15: end for
16: }
17: # pragma omp parallel private(tid, p, j) threads(NTHREADS)
18: { tid = omp get thread num()
19: for (i = seg[tid]; i < seg[tid+ 1]&&Ti == 0; i+ +) do
20: Pi = Aii +

∑
k∈N(i) Pki; µi = bi +

∑
k∈N(i) µki

21: xi = µi/Pi

22: if (Ti == 0) and (xi converged) then
23: Ti = 1; NBsumj = 0
24: end if
25: end for
26: }
27: until convergence: all xi converged
28: Output: x∗ = [xi]

4.2. Data sets and results. We choose UFget, a set of sparse matrice from
University of Florida as the test data. The detailed list of the matrice that we used
in our experiments are shown in Table 1.

In Figure 4, the two lines from top to the bottom represent the computing time
for parallel GaBP algorithm and parallel GaBP with dynamic load-balance. We
can see that the computing efficiency of the optimized parallel GaBP algorithm is
better than that of parallel GaBP.

In Figure 5, the arrangement of the matrix that we use for the experiment is
sorted according to the number of zero elements. We can see that the speedup of
these 2 paralel algorithms increase with the number of zero elements.

From Figure 5, we can also see that when the scale of the problem increases,
the speedup of the parallel GaBP algorithm with dynamic load-balance is better
than the algorithm without dynamic load-balancie, which indicates that the paral-
lel algorithm with dynamic load-balance is more suitable than the parallel GaBP
algorithm in solving large-scale sparse linear equations.

In Figure 6, the two lines from top to the bottom represent the speedup for test
case bodyy4, bodyy5, t2dah and dyro when different number of cores is used in

132 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

Figure 4. The speedup of multicore-based parallel GaBP algorithm

Figure 5. Comparison of the speedup of two multicore-based par-
allel GaBP algorithms

Figure 6. The speedup of multicore-based parallel GaBP algo-
rithm using different test cases and different number of cores

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 133

Table 1. Data Sets in the Experiments

No ID Group Name Rows Non-Zeros

1 873 Pothen mesh1em1 48 306

2 874 Pothen mesh1em6 48 306

3 875 Pothen mesh2e1 306 2018

4 222 HB nos6 675 3255

5 887 Norris fv1 9604 85264

6 888 Norris fv2 9801 87025

7 868 Pothen bodyy4 17546 121938

8 869 Pothen bodyy5 18589 129281

9 1205 Oberwolfach t2dah e 11445 176117

10 1435 Oberwolfach gyro 17361 1021159

Figure 7. The speedup of multicore-based parallel GaBP algo-
rithm using different order of zero elements

parallel GaBP algorithm with dynamic load-balance. Figure 3 indicates that the
speedup of this algorithm increases with the scale of problem.

From Figure 7 we see that the speedup of two multicore-based parallel GaBP
algorithms increase with the scale of problem. For small-scale problem where the
number of rows in sparse matrix is smaller than 104 and the number of zero elements
is smaller than 105, there is hardly any speedup result for multicore-based parallel
GaBP algorithm. The time needed in solving small-scale problems is even longer
than that of the serial algorithm. The reason for this is that it takes some time
to initialize the parallel algorithm, and this initialization time is longer than the
execution time of the serial algorithm. However, this should not be a problem for
the parallel algorithm as we will not consider parallel computing when the scale of
the problem is small and the problem can be easily solved using serial algorithm.

For problems with bigger scale, for example, the number of row reaches the order
of 10,000 and the number of zero elements reaches the order of 100,000,there are
some acceleration effects for two parallel GaBP algorithms.

134 H. ZHENG AND A. SONG, Z. LIU, L. XU, M. WANG AND W. ZHANG

For problems with large-scale, for example, the number of row reaches the order
of 100,000 and the number of zero elements reaches the order of 10,000,000, both
algorithms have good speedup, and the speedup of the multicore-based parallel
GaBP algorithm with dynamic load-balancing is very dramatic. Therefore, this
algorithm has a significant effect in solving large-scale problems.

5. Conclusion

In this paper, we store large-scale sparse linear equations in limited memory
space using an OCSC storage format that is suitable for GaBP algorithm to reduce
the space complexity. We explore the parallelism, load balancing features of this
algorithm and present a multicore-based parallel GaBP algorithm with dynamic
load-balance. The numerical results indicate that the scalability of this algorithm
is improved and the iteration speed is accelerated compared with the original GaBP
algorithm. The results also suggest that the acceleration efficiency is dramatically
improved when the size of the problem increased. Therefore, the multicore-based
parallel algorithm with dynamic load balance features higher parallel efficiency and
better scalability for large-scale problems.

Acknowledgments

The authors thank all members of the high performance computing group at
Shanghai University for their good advice and previous significant research work.
This research was supported by the Major Research Plan of NSFC [No. 91330116],
Key project of Science and Technology Commission of Shanghai Municipality [No.
11510500300] and the Research Fund for the Doctoral Program of Higher Education
[No. 20113108120022].

References

[1] Xu Yan, Vegt van der, Jaap J.W., Bokhove Onno, Discontinuous Hamiltonian finite element
method for linear hyperbolic systems, Journal of Scientific Computing, 35(2-3), 2008, 241-265

[2] Yongbin Ge, Fujun Cao, Jun Zhang, A transformation-free HOC scheme and multigrid

method for solving the 3D Poisson equation on nonuniform grids, J. Comput. Physics,
234(23), 2013, 199-216

[3] Medi Bijan, Amanullah Mohammad, Application of a finite-volume method in the simulation

of chromatographic systems: Effects of flux limiters, Industrial and Engineering Chemistry
Research, 50(3), 2011, 1739-1748

[4] Sun X HZhang W, A parallel two-level hybrid method for tridiagonal systems and its appli-

cation to fast poisson solvers, IEEE Transactions on Parallel and Distributed Systems, 15(2),
2004, 97-106

[5] Thomas J. Ashby, Pieter Ghysels, Wim Heirman, Wim Vanroose, The Impact of Global Com-

munication Latency at Extreme Scales on Krylov Methods, 12th International Conference on
Algorithms and Architerctures for Parallel Processing(ICA3PP-12), Fukuoka , Japan 2012,

428-442

[6] Yousef Saad, Iterative methods for sparse linear systems(2nd edition), Science Press, Beijing,
2009

[7] Ori Shental, Paul H. Siegel, Jack K. Wolf, Danny Bickson, Danny Dolev, Gaussian belief
propagation solver for systems of linear equations, ISIT 2008, 1863-1867

[8] Yousef El-Kurdi, Warren J. Gross, and Dennis Giannacopoulos, Efficient implementation of

Gaussian Belief Propagation Solver for Large Sparse Diagonally Dominant linear systems,
IEEE Transactions on magnetics, 48(2), 2012, 471-474

[9] Yousef El-Kurdi, Dennis Giannacopoulos, and Warren J. Gross, Relaxed Gaussian Belief

Propagation, 2012 IEEE International Symposium on Information Theory Proceedings(ISIT),
Cambridge, MA 2012, 2002-2006

[10] Wang Weiwei, Xu Chuanju,Spectral methods based on new formulations for coupled Stokes

and Darcy equations, Journal of Computional Physics, 257(2014), 2014, 126-142

RESEARCH OF MULTICORE-BASED PARALLEL GABP ALGORITHM 135

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San

Francisco, Morgan Kaufmann, 1988.

[12] Y. Weiss, W. T. Freeman, Correctness of belief propagation in Gaussian graphical models of
arbitrary topology, Neural Computation, 13(10), 2001, 2173-2200

[13] D. Bickson, D. Dolev, and Y. Weiss, Modified belief propagation for energy sav-

ing in wireless and sensor networks, in Leibniz Center TR-2005-85, School of Com-
puter Science and Engineering, The Hebrew University, 2005. [Online]. Available:

http://leibniz.cs.huji.ac.il/tr/842.pdf

[14] A. DAVIS, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Transactions
on Mathematical Software, 38(1), 2011, 1-28

Department of Computer, Longyan University, Longyan 364000, China

E-mail : zhyuan@shu.edu.cn

School of Computer Science,Shanghai University, Shanghai 200072, China

E-mail : apsong@shu.edu.cn,zxliu@shu.edu.cn,leixushu@shu.edu.cn,and wzhang@shu.edu.cn

E-mail : wzhang@shu.edu.cn

