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Abstract. Value-at-Risk (VaR) and expected shortfall (ES) are two key risk mea-
sures in financial risk management. Comparing these two measures has been
a hot debate, and most discussions focus on risk measure properties. This pa-
per uses independent data and autoregressive models with normal or t-distri-
bution to examine the effect of the heavy tail and dependence on comparing
the nonparametric inference uncertainty of these two risk measures. Theoret-
ical and numerical analyses suggest that VaR at 99% level is better than ES at
97.5% level for distributions with heavier tails.
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1 Introduction

Using economically meaningful risk measures is vital in market regulation, port-
folio management, and the banking and insurance industry. Two popular risk
measures are Value-at-Risk (VaR) and expected shortfall (ES). The Value-at-Risk
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has been adopted for measuring market risk in trading portfolios since 1990.
Because of its lack of subadditivity and insensitivity to extreme losses, Artzner
et al. [3] advocate the coherent expected shortfall risk measure. In 2016, the mini-
mum capital requirement for market risk in the recent revision by the Basel Com-
mittee on Banking Supervision (BCBS) had moved from Value-at-Risk at 99%
level to expected shortfall at 97.5% level to capture more extreme risks (Daniels-
son and Zhou [9]). The reason to use different risk levels is that the difference
between these two risk measures is tiny when the loss has the standard normal
distribution.

Comparing these two risk measures has been hot and intensive in the liter-
ature. Emmer et al. [11] compare the pros and cons of Value-at-Risk and expec-
ted shortfall and argue that expected shortfall is better in practice, despite some
shortcomings regarding its estimation backtesting. Embrechts et al. [10] discuss
from risk aggregation and model uncertainty viewpoint and provide a broadly
accessible critical assessment of the Value-at-Risk and expected shortfall debate
triggered by Basel III. Because Cont et al. [8] argue that robustness is as vital as the
coherence properties, Kou et al. [16] compare these two risk measures using ro-
bustness related to model misspecification and tiny changes in data. Krätschmer
et al. [17] compare a list of risk measures, including Value-at-Risk and expected
shortfall by the index of qualitative robustness. Gneiting [14] shows that ES is not
elicitable, while Fissler and Ziegel [13] show that ES is jointly elicitable with VaR.

In this paper, we theoretically and empirically examine the effect of heavy tails
and serial dependence on comparing the nonparametric inference efficiency of
the Value-at-Risk at 99% level and the expected shortfall at 97.5% level. A related
but different study is Barnard et al. [4], where they compare the nonparametric
inference efficiency using independent observations with exponential power dis-
tributions. Our main conclusion is that using VaR at 99% level is better than ES at
97.5% level in terms of nonparametric inference efficiency when the underlying
loss distribution has a heavier tail. This conflicts with the preference of using ES
as it is argued that ES takes more extremes into account.

We organize the paper as follows. Section 2 presents our theoretical and nu-
merical comparison results. Section 3 is a simulation study to confirm our find-
ings in Section 2. Section 4 analyzes two insurance datasets. Section 5 concludes.

2 Theoretical and numerical comparisons

For a random variable X representing the loss of a financial institution or risk
variable, the Value-at-Risk and expected shortfall at risk level p ∈(0,1) are de-
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fined as

VaR(p;X)=sup{x : P(X≤ x)≤ p}, ES(p;X)=E{X |X>VaR(p;X)},

respectively. When we observe losses X1,··· ,Xn from X, the nonparametric esti-
mators for Value-at-Risk and expected shortfall at level p are

V̂aR(p;X)=F−
n (p), ÊS(p;X)=

1

1−p

(
1

n

n

∑
i=1

Xi I
(
Xi > V̂aR(p;X)

)
)

,

respectively, where

Fn(x)=
1

n+1

n

∑
i=1

I(Xi ≤ x),

F−
n denotes the generalized inverse function of Fn, and I(·) is the indicator func-

tion. The study of nonparametric estimation for VaR and ES and conditional risk
measures includes [1, 2, 5–7, 15, 18–20].

Suppose we observe X1,··· ,Xn from an α-mixing sequence {Xt} with mixing
coefficient αn and distribution function F satisfying

C(i) αk ≤Cρk for some ρ∈ (0,1) and C>0.

C(ii) F is continuous and has a continuous second derivative in a neighborhood
of F−(p).

C(iii) E|Xt|2+δ≤C for some δ>0.

Under the above regulation conditions, it follows from [6, 7] that

√
n
{

V̂aR(p;X1)−VaR(p;X1)
} d→ N

(
0,σ2

1 (p)
)
,

√
n
{

ÊS(p;X1)−ES(p;X1)
} d→ N

(
0,σ2

2 (p)
)

as n→∞, where

σ2
1 (p)=

1
(

F′(F−(p))
)2

∞

∑
k=−∞

Cov
[
I(X1≤F−(p)), I(X1+k ≤F−(p))

]
,

σ2
2 (p)=

1

(1−p)2

∞

∑
k=−∞

Cov
[
(X1−F−(p))I(X1>F−(p)),

(X1+k−F−(p))I(X1+k>F−(p))
]
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with Cov and N(µ,σ2) denoting the covariance and the normal distribution with
mean µ and variance σ2.

Using the asymptotic results above, this paper examines the effect of the de-
gree of freedom in t-distributions and serial dependence in an autoregressive
(AR) model on the ratio of σ1(0.99)/σ2(0.975). Although normal distribution
is the limit of t-distribution with an infinite degree of freedom, we study them
separately for comparison. More specifically, we look at various cases according
to normal or t-distribution and independent or dependent observations. When
this ratio is smaller (larger) than one, nonparametric inference for VaR at the 99%
level is more efficient (inefficient) than ES at the 97.5% level. When both risk mea-
sures are allowed by regulations, one may prefer the risk measure to be estimated
efficiently.

Case 1. Xi are independent and identically distributed (iid) random variables
with N(0,σ2). Because

σ2
1 (p)=

p(1−p)
(

F′(F−(p)
))2

=
p(1−p)σ2

(
Φ′(Φ−(p)

))2
=2πσ2p(1−p)eΦ−(p)2

,

σ2
2 (p)=

1

(1−p)2
Var

[(
X1−F−(p)

)
I
(
X1>F−(p)

)]

=
1

(1−p)2

(
σ2(1−p)

(
1+pΦ−(p)2

)
− σ2

2π
e−Φ−(p)2

+(1−2p)
σ2

√
2π

Φ−(p)e−
Φ−(p)2

2

)
,

Φ−(0.99)=2.326348, and Φ−(0.975)=1.959964, we have

σ2
1 (0.99)=13.937061σ2, σ2

2 (0.975)=10.235226σ2,

implying that σ2
1 (0.99)>σ2

2 (0.975). That is, it is theoretically better to employ ES
at 97.5% than VaR at 99% level when nonparametric inference efficiency is the
concern. This preference for ES differs from the argument that ES takes more
extremes into account.

Case 2. Xi are iid random variables with t(ν) and ν > 2 (t-distribution with ν
degrees of freedom). The probability density function (PDF) of t(ν) is

fν(t)=
1√

νB(ν/2,1/2)

(
1+

t2

ν

)− ν+1
2

,
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where B(a,b) is the Beta function defined as

B(a,b)=
∫ 1

0
xa−1(1−x)b−1dx.

Note that

σ2
1 (p) :=σ2

1 (p,ν)=
p(1−p)

(
F′(F−(p)

))2

= p(1−p)ν

[
B

(
ν

2
,
1

2

)]2
(

1+
[t−p (ν)]

2

ν

)ν+1

.

It is straightforward to compute that

E
[
X1 I

(
X1> t−p (ν)

)]

=
∫ ∞

t−p (ν)

t√
νB(ν/2,1/2)

(
1+

t2

ν

)− ν+1
2

dt

=

√
ν

(ν−1)B(ν/2,1/2)

(
1+

[t−p (ν)]
2

ν

)− ν−1
2

,

E
[
X2

1 I
(
X1> t−p (ν)

)]

=
∫ ∞

t−p (ν)

t2

√
νB(ν/2,1/2)

(
1+

t2

ν

)− ν+1
2

dt

=

√
νt−p (ν)

(ν−1)B(ν/2,1/2)

(
1+

[t−p (ν)]
2

ν

)− ν−1
2

+

√
ν

(ν−1)B(ν/2,1/2)

∫ ∞

t−p (ν)

(
1+

t2

ν

)− ν−1
2

dt

=

√
νt−p (ν)

(ν−1)B(ν/2,1/2)

(
1+

[t−p (ν)]
2

ν

)− ν−1
2

+
1

2

ν

ν−1

1

B(ν/2,1/2)

∫ ν

ν+[t−p (ν)]2

0
x

ν
2−2(1−x)−

1
2 dx

=

√
νt−p (ν)

(ν−1)B(ν/2,1/2)

(
1+

[t−p (ν)]
2

ν

)− ν−1
2
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+
1

2

ν

ν−1

1

B(ν/2,1/2)
B

(
ν

ν+[t−p (ν)]2
;
ν

2
−1,

1

2

)
,

where the third equality follows from the transform x=(1+t2/ν)−1, and B(y;a,b)
is the incomplete Beta function defined as

B(y;a,b)=
∫ y

0
xa−1(1−x)b−1dx.

Hence, we have

σ2
2 (p) :=σ2

2 (p,ν)=
g(p,ν)

(1−p)2
,

where

g(p,ν)=
(1−2p)

√
νt−p (ν)

(ν−1)B(ν/2,1/2)

(
1+

[t−p (ν)]
2

ν

)− ν−1
2

+
1

2

ν

ν−1

1

B(ν/2,1/2)
B

(
ν

ν+[t−p (ν)]2
;
ν

2
−1,

1

2

)

− 1

[B(ν/2,1/2)]2
ν

(ν−1)2

(
1+

[t−p (ν)]
2

ν

)−(ν−1)

+p(1−p)[t−p (ν)]
2.

It is challenging to compare σ2
1 (0.99,ν) with σ2

2 (0.975,ν) theoretically, although
we conjecture that there exists ν0 such that σ2

1 (0.99,ν)/σ2
2 (0.975,ν)< or = or > 1 as

ν is small or equal to or larger than ν0. To support this conjecture numerically, we
plot the curves of ((ν−2)/ν)σ2

1 (0.99,ν) and ((ν−2)/ν)σ2
2 (0.975,ν) as a function

of ν in Fig. 1. Using the factor (ν−2)/ν is equivalent to fixing the variance of
t-distributions at one. As we can see from the figure, both functions decrease
with ν, but the latter decreases faster. The cross point is around ν0=5.657, which
conjectures that σ2

1 (0.99,ν)<σ2
2 (0.975,ν) when ν<ν0, and σ2

1 (0.99,ν)>σ2
2 (0.975,ν)

when ν > ν0. When ν → ∞, the two functions go to 13.937061 and 10.235226,
respectively, consistent with Case 1.

Case 3. Stationary AR(s) model

Xt =
s

∑
i=1

φiXt−i+εt,
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Figure 1: We plot ((ν−2)/ν)σ2
1(0.99,ν) (solid line) and ((ν−2)/ν)σ2

2(0.975,ν) (dashed line) against
ν for Case 2 of Section 2.

where εt are iid random variables with N(0,σ2). Define γk =Cov(X1,X1+k) and
ρk =γk/γ0. Then, the joint PDF of (X1,X1+k) is

f (x,y)=
1

2πγ0

√
1−ρ2

k

exp

{
−x2+y2−2ρkxy

2γ0(1−ρ2
k)

}
.

For k≥1, using the transforms

u=
(x−ρky)√
(1−ρ2

k)γ0

, v=
y√
γ0

,

we have

E
[
I
(
X1<F−(p)

)
I
(
X1+k <F−(p)

)]

=P
(

X1<F−(p),X1+k <F−(p)
)
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=
∫ F−(p)

−∞

∫ F−(p)

−∞

1

2πγ0

√
1−ρ2

k

exp

{
−x2+y2−2ρkxy

2γ0(1−ρ2
k)

}
dxdy

=
1

2π

∫ F−(p)√
γ0

−∞

∫ F−(p)−ρkv
√

γ0√
γ0(1−ρ2

k
)

−∞
e−

u2+v2

2 dudv

=
1

2π

∫ Φ−(p)

−∞

∫ Φ−(p)−ρkv√
1−ρ2

k

−∞
e−

u2+v2

2 dudv,

implying that

1
(

F′(F−(p)
))2

Cov
[
I
(
X1≤F−(p)

)
, I
(
X1+k ≤F−(p)

)]

=γ0eΦ−(p)2

{∫ Φ−(p)

−∞

∫ Φ−(p)−ρkv√
1−ρ2

k

−∞
e−

u2+v2

2 dudv−2πp2

}
.

Similarly, we can show that

P
(

X1>F−(p),X1+k >F−(p)
)
=

1

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

e−
u2+v2

2 dudv

and

E
[
X1X1+k I

(
X1>F−(p)

)
I
(
X1+k >F−(p)

)]

=
γ0

√
1−ρ2

k

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

uve−
u2+v2

2 dudv

+
γ0ρk

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

v2e−
u2+v2

2 dudv,

implying that

Cov
[(

X1−F−(p)
)

I
(
X1>F−(p)

)
,
(
Xk+1−F−(p)

)
I
(
Xk+1>F−(p)

)]

=E
[
X1X1+k I

(
X1>F−(p)

)
I
(
X1+k >F−(p)

)]

+[F−(p)]2P
(
X1>F−(p),X1+k >F−(p)

)

−2F−(p)E
[
X1+k I

(
X1>F−(p)

)
I
(
X1+k >F−(p)

)]
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−
{

E
[
X1 I

(
X1>F−(p)

)]
−(1−p)F−(p)

}2

=
γ0

√
1−ρ2

k

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

uve−
u2+v2

2 dudv

+
γ0ρk

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

v2e−
u2+v2

2 dudv

+
γ0Φ−(p)2

2π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

e−
u2+v2

2 dudv

−γ0Φ−(p)

π

∫ ∞

Φ−(p)

∫ ∞

Φ−(p)−ρkv√
1−ρ2

k

ve−
u2+v2

2 dudv

−γ0

{
1√
2π

e−
Φ−(p)2

2 −Φ−(p)(1−p)

}2

.

Next, we focus on the comparison for the simplest case of s=1, i.e.

Xt=φXt−1+εt, {εt} iid∼N(0,σ2).

In this case, we have γ0=σ2/(1−φ2),γk =φkγ0, and ρk =φk for k≥1. Define

g1(φ)=13.937061+2eΦ−(0.99)2
∞

∑
k=1

{∫ Φ−(0.99)

−∞

∫ (Φ−(0.99)−φkv)√
1−φ2k

−∞
e−

u2+v2

2 dudv−2π0.992

}
,

g2(φ)=10.235226+
2

0.000625

∞

∑
k=1





√
1−φ2k

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

uve−
u2+v2

2 dudv

+
φk

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

v2e−
u2+v2

2 dudv

+
Φ−(0.975)

2

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

e−
u2+v2

2 dudv

−Φ−(0.975)

π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

ve−
u2+v2

2 dudv
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−
(

1√
2π

e−
Φ−(0.975)

2

2 −Φ−(0.975)×0.025

)2


.

Then

σ2
1 (0.99,φ)=

σ2

1−φ2
g1(φ), σ2

2 (0.975,φ)=
σ2

1−φ2
g2(φ).

Because g1(φ) and g2(φ) are difficult to compute, we approximate ∑
∞
k=1 in g1 and

g2 by ∑
2000
k=1 . That is, we study

h1(φ)=13.937061+2eΦ−(0.99)2
2000

∑
k=1

{∫ Φ−(0.99)

−∞

∫ Φ−(0.99)−φkv√
1−φ2k

−∞
e−

u2+v2

2 dudv−2π0.992

}
,

h2(φ)=10.235226+
2

0.000625

2000

∑
k=1





√
1−φ2k

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

uve−
u2+v2

2 dudv

+
φk

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

v2e−
u2+v2

2 dudv

+
Φ−(0.975)

2

2π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

e−
u2+v2

2 dudv

−Φ−(0.975)

π

∫ ∞

Φ−(0.975)

∫ ∞

Φ−(0.975)−φkv√
1−φ2k

ve−
u2+v2

2 dudv

−
(

1√
2π

e−
Φ−(0.975)

2

2 −Φ−(0.975)×0.025

)2


.

Table 1 shows that h2(φ) is always smaller than h1(φ), implying that σ2
1 (0.99,φ)>

σ2
2 (0.975,φ). Note that the case of φ= 0 becomes Case 1. Our numerical results

conjecture that using ES at 97.5% level is better than VaR at 99% level regardless
of the strength of serial dependence when the underlying process is stationary
with normal errors.

Case 4. Stationary AR(1) model with t-distributed errors

Xt =φXt−1+εt, {εt} iid∼ t(ν), |φ|<1.
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Table 1: Values of h1(φ) and h2(φ) defined in Case 3 of Section 2.

φ −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

h1(φ) 39.8613 22.6312 17.6158 15.5423 14.5787 14.1162 13.8994 13.819 13.8407 13.9741

h2(φ) 36.9212 19.2272 14.0085 11.849 10.8523 10.3789 10.16 10.0801 10.1022 10.2354

φ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

h1(φ) 14.2577 14.7562 15.5692 16.8589 18.9139 22.3128 28.4138 41.3179 81.6488 826.772

h2(φ) 10.5202 11.0256 11.8584 13.1903 15.3225 18.849 25.1498 38.3603 79.1593 823.213

The equation above has a stationary solution

Xt=
t

∑
i=−∞

φt−iεi =
∞

∑
i=0

φiεt−i.

Define Yk = εk+1+φεk+···+φk−1ε2, then

X1+k =Yk+φk
∞

∑
i=0

φiε1−i =Yk+φkX1.

Since the distribution of a linear combination of independent Student’s t random
variables is very difficult to obtain, we have to compute the covariances approxi-
mately.

There are two methods in the literature to approximate the distribution of
weighted sums of Student’s t random variables, see [21]. We follow the idea
of [12] to approximate the distribution of Yk with a single random variable ckTk,
where Tk is a Student’s t random variable. By setting Yk and ckTk have the same
variance and kurtosis, we have

νk =4+

(
1

ν−4

(1+φ2k)(1−φ2)

(1−φ2k)(1+φ2)
+

2

3

φ2k−φ2

(1−φ2k)(1+φ2)

)−1

, (2.1)

ck =

√
νk−2

νk

ν

ν−2

1−φ2k

1−φ2
, (2.2)

where the degree ν is required to be larger than 4. To approximate random series
X1=∑

∞
i=0φiε1−i, we use ∑

n0
i=0φiε1−i with a large n0, which can be further approx-

imated by cn0 Tn0 as above. Then F−(p) in the formula of asymptotic variance can
be approximated by the p-th quantile of cn0Tn0 , which is cn0t−νn0

(p).
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For k≥1, we have

E
[

I
(
X1≤F−(p)

)
I
(
X1+k ≤F−(p)

)]

=P
(

X1≤F−(p),X1+k ≤F−(p)
)

=P
(

X1≤F−(p),Yk+φkX1≤F−(p)
)

≈P
(
cn0 Tn0 ≤ cn0t−νn0

(p),ckTk+φkcn0Tn0 ≤ cn0t−νn0
(p)
)

=
∫ t−νn0

(p)

−∞
pn0(x)

(∫ (t−νn0
(p)−φkx)cn0

/ck

−∞
pk(t)dt

)
dx,

where

pk(t)=
1√

νkB(νk/2,1/2)

(
1+

t2

νk

)− νk+1
2

.

Hence,

σ2
1 (p)=

1
(

F′(F−(p)
))2

∞

∑
k=−∞

Cov
[
I
(
X1≤F−(p)

)
, I
(
X1+k ≤F−(p)

)]

=
p(1−p)

(
F′(F−(p)

))2
+

2
(

F′(F−(p)
))2

∞

∑
k=1

Cov
[
I
(
X1≤F−(p)

)
, I
(
X1+k≤F−(p)

)]

≈ p(1−p)c2
n0

νn0

[
B

(
νn0

2
,
1

2

)]2
(

1+
[t−νn0

(p)]2

νn0

)νn0
+1

+2c2
n0

νn0

[
B

(
νn0

2
,
1

2

)]2
(

1+
[t−νn0

(p)]2

νn0

)νn0
+1

×
∞

∑
k=1

{
−p

∫ ∞

t−νn0
(p)

pn0(x)

(∫ (t−νn0
(p)−φkx)cn0

/ck

−∞
pk(t)dt

)
dx

+(1−p)
∫ t−νn0

(p)

−∞
pn0(x)

(∫ (t−νn0
(p)−φkx)cn0

/ck

−∞
pk(t)dt

)
dx

}
.

Similarly, we have

E
[(

X1−F−(p)
)

I
(
X1>F−(p)

)]
≈ cn0

∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)

pn0(x)dx,
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E
[(

X1+k−F−(p)
)

I
(
X1+k >F−(p)

)]

≈ cn0

∫ ∞

−∞
pn0(x)

(∫ ∞

(t−νn0
(p)−φkx)cn0

/ck

(
ck

cn0

t+φkx−t−νn0
(p)

)
pk(t)dt

)
dx,

E
[(

X1−F−(p)
)(

X1+k−F−(p)
)

I
(
X1>F−(p)

)
I
(
X1+k >F−(p)

)]

≈ c2
n0

∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)

pn0(x)

×
(∫ ∞

(t−νn0
(p)−φkx)cn0

/ck

(
ck

cn0

t+φkx−t−νn0
(p)

)
pk(t)dt

)
dx.

Finally,

σ2
2 (p)=

1

(1−p)2

∞

∑
k=−∞

Cov
[(

X1−F−(p)
)

I
(
X1>F−(p)

)
,

(
X1+k−F−(p)

)
I
(
X1+k>F−(p)

)]

=
1

(1−p)2

{
E
[(

X1−F−(p)
)2

I
(
X1>F−(p)

)]

−
(

E
[(

X1−F−(p)
)

I
(
X1>F−(p)

)])2
}

+
2

(1−p)2

∞

∑
k=1

Cov
[(

X1−F−(p)
)

I
(
X1>F−(p)

)
,

(
X1+k−F−(p)

)
I
(
X1+k >F−(p)

)]

≈
c2

n0

(1−p)2

(∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)2

pn0(x)dx

−
{∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)

pn0(x)dx

}2
)

+
2c2

n0

(1−p)2

∞

∑
k=1

{∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)

pn0(x)

×
(∫ ∞

(t−νn0
(p)−φkx)cn0

/ck

µ(x,t)dt

)
dx

−
∫ ∞

t−νn0
(p)

(
x−t−νn0

(p)
)

pn0(x)dx
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×
∫ ∞

−∞
pn0(x)

(∫ ∞

(t−νn0
(p)−φkx)cn0

/ck

µ(x,t)dt

)
dx

}
,

where
µ(t,x)=

(
ckt/cn0+φkx−t−νn0

(p)
)

pk(t).

To compare σ2
1 (0.99) with σ2

2 (0.975), we have to compute the integrals above
numerically. Since some integrals converge rather slowly, we truncate integrals’
lower and upper limits to −50 and 50, respectively. We present the numerical
comparison of σ2

1 (0.99) and σ2
2 (0.975) for the case of φ = 0.5 in Table 2, where

we set n0 = 1,000 and take the sum of the first 100 items in the series of covari-
ances. These results indicate that, as the degree of freedom ν increases from 4.5,
both σ2

1 (0.99) and σ2
2 (0.975) decrease. Moreover, σ2

1 (0.99) < σ2
2 (0.975) when

4<ν≤5.3, σ2
1 (0.99)>σ2

2 (0.975) when ν≥5.4, and the cross point falls in (5.3,5.4).
Although the value of the cross point may not be accurate due to several approx-
imations, the results above indicate that VaR at 99% level is preferred when the
underlying distribution has a heavier tail.

Table 2: Values of σ2
1 (0.99) and σ2

2 (0.975) for φ=0.5 and Case 4 of Section 2.

ν 4.5 4.8 5 5.2 5.3 5.4

σ2
1 (0.99) 168.053 136.355 119.985 106.578 100.769 95.3964

σ2
2 (0.975) 204.858 153.397 129.058 110.175 102.308 95.2992

ν 5.5 5.6 5.8 6 7 8

σ2
1 (0.99) 90.2913 85.856 77.9886 71.2308 48.4993 36.1985

σ2
2 (0.975) 89.0311 83.4062 73.7671 65.8558 41.6872 29.9891

In summary, our theoretical and numerical analyses above suggest that VaR
at 99% level is better than ES at 97.5% level when the loss distribution has a heav-
ier tail, and the concern is statistical efficiency. This conflicts with the preference
of using ES as it is argued that ES takes more extremes into account. We con-
clude that employing more extremes in measuring risk may lead to an inefficient
nonparametric inference when the loss distribution has a heavier tail.

3 Simulation study

Section 2 compares VaR at 99% level with ES at 97.5% in terms of the asymp-
totic variance of the nonparametric estimation. This section will report results
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from a simulation study designed to evaluate the finite sample performance of
the nonparametric estimation for VaR at 99% level and ES at 97.5% level. We
consider various scenarios below.

• Model 1. Independent observations with normal distribution: Xi
iid∼N(0,1).

• Model 2. Independent observations with t-distribution: Xi
iid∼ t(v).

• Model 3. AR(1) model with normally distributed errors: Xt = 0.5Xt−1 + εt,

εt
iid∼N(0,1).

• Model 4. AR(2) model with normally distributed errors: Xt = 0.9Xt−1−
0.2Xt−2+εt, εt

iid∼N(0,1).

• Model 5. MA(2) model (moving average with order two) with normally

distributed errors: Xt = εt+0.65εt−1+0.24εt−2, εt
iid∼N(0,1).

• Model 6. AR(1) model with t-distributed errors: Xt =0.5Xt−1+εt, εt
iid∼ t(v).

• Model 7. MA(1) model with t-distributed errors: Xt = εt+0.5εt−1, εt
iid∼ t(v).

• Model 8. MA(2) model with t-distributed errors: Xt=εt+0.65εt−1+0.24εt−2,

εt
iid∼ t(v).

We generate 5,000 random samples for each model above using package stats
in the R software. The sample size ranges from 125 to 2,000 to 5,000, representing
six months to eight years to twenty years. We compute the true risk measures
of VaR at 99% level and ES at 97.5% level for Models 1 and 2 using qnorm, qt,
ESnorm, and ESst functions in the R software. To obtain the true risk measures
of VaR at 99% level and ES at 97.5% level in Models 3-8, we approximate them
by the averages of estimators based on 200,000 repetitions with a sample size
of 100,000. The simulation results are reported in Tables 3-10, including bias,
standard deviation (SD), and root of mean squared error (RMSE).

We conclude from the above tables that, for models with normal distribu-
tions, the standard deviation of VaR at 99% level is always greater than that of
ES at 97.5% level, which is in line with findings in Section 2. For models with t-
distributions, the difference of the standard errors of the nonparametric estimator
for VaR at 99% level and ES at 97.5% level changes sign as the degree of freedom
and sample size change. When the sample size is smaller, σ1(0.99)< σ2(0.975)
under different degrees of freedom. However, when the sample size increases,
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Table 3: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 1 of Section 3,
where the corresponding true risk measures are 2.326 and 2.338.

N
VaR ES

Bias SD RMSE Bias SD RMSE

125 −0.139552 0.276416 0.309622 0.464425 0.324709 0.566662

250 −0.078575 0.213509 0.227489 0.192338 0.219466 0.291804

500 −0.040661 0.159185 0.164281 0.059472 0.144663 0.156397

1000 −0.020869 0.115238 0.117101 −0.008487 0.100648 0.100995

2000 −0.009727 0.084555 0.085105 −0.003447 0.073491 0.073565

5000 −0.003711 0.051956 0.052083 −0.002232 0.045138 0.045188

Table 4: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 2 of Section 3.

N df
VaR ES

Bias SD RMSE Bias SD RMSE

5 −0.237249 0.669247 0.709992 0.5766088 0.881272 1.053073

125 6 −0.232140 0.590901 0.634810 0.538394 0.743998 0.918308

7 −0.205614 0.522319 0.561284 0.546558 0.649491 0.848811

5 −0.1242035 0.524350 0.538808 0.254494 0.623335 0.673228

250 6 −0.109883 0.449115 0.462318 0.240566 0.506711 0.560872

7 −0.102595 0.403137 0.415948 0.235267 0.451725 0.509279

5 −0.077497 0.390841 0.398411 0.065558 0.421042 0.426073

500 6 −0.070065 0.332313 0.339586 0.067042 0.347884 0.354251

7 −0.060380 0.306190 0.312056 0.068385 0.304289 0.311849

5 −0.035039 0.283916 0.286042 −0.017435 0.299563 0.300040

1000 6 −0.034714 0.237461 0.239961 −0.017136 0.240302 0.240889

7 −0.035169 0.215366 0.218197 −0.017258 0.209577 0.210266

5 −0.012556 0.204709 0.205074 −0.002282 0.213002 0.212993

2000 6 −0.022766 0.175191 0.176646 −0.007530 0.175790 0.175933

7 −0.019036 0.152541 0.153709 −0.006684 0.148601 0.148736

5 −0.004520 0.130911 0.130976 −0.001842 0.134486 0.134485

5000 6 −0.007967 0.108652 0.108933 −0.005533 0.108762 0.108892

7 −0.006228 0.099708 0.099892 −0.001588 0.095667 0.095671
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Table 5: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 3 of Section 3,
where the corresponding true risk measures are 2.686 and 2.699.

N
VaR ES

Bias SD RMSE Bias SD RMSE

125 −0.188089 0.380002 0.423970 0.496774 0.455696 0.674093

250 −0.100794 0.287636 0.304758 0.207522 0.300532 0.365194

500 −0.052604 0.215710 0.222010 0.062923 0.205286 0.214693

1000 −0.026012 0.156756 0.158884 −0.013247 0.142963 0.143561

2000 −0.013938 0.109880 0.110749 −0.006863 0.100179 0.100404

5000 −0.003876 0.071951 0.072048 −0.001710 0.064796 0.064812

Table 6: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 4 of Section 3,
where the corresponding true risk measures are 3.589 and 3.607.

N
VaR ES

Bias SD RMSE Bias SD RMSE

125 −0.300552 0.610722 0.680616 0.573992 0.741722 0.937821

250 −0.167875 0.466000 0.495272 0.229342 0.493971 0.544567

500 −0.084923 0.353010 0.363047 0.059402 0.345601 0.350635

1000 −0.042575 0.251710 0.255260 −0.029489 0.236234 0.238044

2000 −0.019674 0.177976 0.179042 −0.012105 0.168573 0.168990

5000 −0.004442 0.114627 0.114702 −0.002853 0.108621 0.108647

Table 7: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 5 of Section 3,
where the corresponding true risk measures are 2.830 and 2.844.

N
VaR ES

Bias SD RMSE Bias SD RMSE

125 −0.185919 0.402933 0.443721 0.537040 0.481291 0.721115

250 −0.104865 0.308878 0.326164 0.219996 0.321131 0.389234

500 −0.055459 0.222439 0.229227 0.065244 0.211636 0.221445

1000 −0.027949 0.162173 0.164548 −0.015750 0.149494 0.150306

2000 −0.013661 0.113985 0.114789 −0.006886 0.103537 0.103756

5000 −0.004400 0.073039 0.073164 −0.002088 0.066252 0.066279
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Table 8: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 6 of Section 3,
where the corresponding true risk measures of VaR are 2.912 (df=5), 2.874 (df=6), 2.846 (df=7) and
the corresponding true risk measures of ES are 3.025 (df=5), 2.959 (df=6), 2.913 (df=7).

N df
VaR ES

Bias SD RMSE Bias SD RMSE

5 −0.228424 0.638608 0.678172 0.458566 0.823759 0.942722

125 6 −0.216832 0.585460 0.624269 0.474249 0.738349 0.877476

7 −0.221829 0.541025 0.584686 0.479191 0.676520 0.828982

5 −0.122225 0.482702 0.497889 0.190024 0.584571 0.614625

250 6 −0.118548 0.426595 0.442720 0.193092 0.496332 0.532523

7 −0.111046 0.402305 0.417311 0.206490 0.458142 0.502484

5 −0.073441 0.358464 0.365875 0.046205 0.400397 0.403014

500 6 −0.071989 0.319986 0.327952 0.048871 0.342263 0.345700

7 −0.066271 0.298616 0.305852 0.051722 0.312041 0.316268

5 −0.035051 0.250517 0.252933 −0.021506 0.276190 0.276999

1000 6 −0.034133 0.232010 0.234485 −0.023574 0.240107 0.241238

7 −0.030519 0.217403 0.219514 −0.015984 0.218812 0.219373

5 −0.020921 0.184896 0.186058 −0.011881 0.201663 0.201992

2000 6 −0.019362 0.164056 0.165178 −0.012998 0.169946 0.170426

7 −0.020564 0.156072 0.157405 −0.013357 0.155064 0.155622

5 −0.007811 0.115766 0.116018 −0.004477 0.126095 0.126162

5000 6 −0.008566 0.104952 0.105290 −0.006908 0.106802 0.107014

7 −0.006934 0.097940 0.098175 −0.003105 0.097173 0.097213

σ1(0.99)> σ2(0.975) for t(7), supporting our conjecture that VaR at 99% level is
more efficient than ES at 97.5% level for heavier tails.

4 Empirical study

This section compares VaR at 99% level with ES at 97.5% for two insurance data-
sets, in which asymptotic variances are estimated using the bootstrap method.
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Table 9: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 7 of Section 3,
where the corresponding true risk measures of VaR are 2.844 (df=5), 2.804 (df=6), 2.774 (df=7) and
the corresponding true risk measures of ES are 2.959 (df=5), 2.890 (df=6), 2.843 (df=7).

N df
VaR ES

Bias SD RMSE Bias SD RMSE

5 −0.208311 0.610577 0.645076 0.456630 0.782493 0.905916

125 6 −0.193162 0.549093 0.582027 0.490074 0.690228 0.846458

7 −0.198238 0.495273 0.533427 0.481318 0.617209 0.782648

5 −0.116698 0.450089 0.464928 0.189179 0.540787 0.572871

250 6 −0.108587 0.402984 0.417318 0.200123 0.469609 0.510429

7 −0.102911 0.374642 0.388483 0.207938 0.427419 0.475278

5 −0.067903 0.339257 0.345952 0.049885 0.381576 0.384786

500 6 −0.062915 0.300237 0.306729 0.056284 0.319666 0.324552

7 −0.059551 0.278040 0.284319 0.059328 0.287280 0.293314

5 −0.032620 0.245560 0.247693 −0.017177 0.267102 0.267628

1000 6 −0.025250 0.219425 0.220851 −0.007900 0.227431 0.227545

7 −0.030569 0.204917 0.207164 −0.013997 0.204881 0.205338

5 −0.014379 0.175032 0.175604 −0.006470 0.192913 0.193003

2000 6 −0.015883 0.156326 0.157115 −0.011777 0.161254 0.161668

7 −0.008719 0.146591 0.146835 −0.003618 0.145882 0.145913

5 −0.006191 0.110273 0.110435 −0.004504 0.119546 0.119618

5000 6 −0.007714 0.099971 0.100258 −0.002680 0.102189 0.102213

7 −0.004051 0.092636 0.092715 −0.002109 0.092049 0.092064

4.1 Data analysis on Danish fire losses

The first dataset is Danish fire losses, including 2,167 Danish fire loss records from
January 1980 through December. The mean and standard deviation are 3.385088
and 8.507452, respectively. The minimum loss is 1, and the maximum loss is
263.2504.

After standardizing the losses (i.e. minus mean and divided by standard de-
viation), we compute the nonparametric estimators for VaR at 99% level and ES
at 97.5% level. Then we use the bootstrap method to get the standard errors of
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Table 10: Nonparametric estimates for VaR at 99% level and ES at 97.5% for Model 8 of Section 3,
where the corresponding true risk measures of VaR are 3.063 (df=5), 3.021 (df=6), 2.991 (df=7) and
the corresponding true risk measures of ES are 3.175 (df=5), 3.105 (df=6), 3.057 (df=7).

N df
VaR ES

Bias SD RMSE Bias SD RMSE

5 −0.197257 0.725665 0.751927 0.506359 0.884032 1.018703

125 6 −0.21698 0.624433 0.660998 0.491469 0.766491 0.910457

7 −0.209216 0.583419 0.619743 0.510358 0.704984 0.870269

5 −0.108069 0.518758 0.529844 0.208089 0.613358 0.647637

250 6 −0.100246 0.461206 0.471930 0.228431 0.536682 0.583224

7 −0.119081 0.421002 0.437479 0.204927 0.472534 0.515014

5 −0.067563 0.372968 0.379001 0.051132 0.412241 0.415359

500 6 −0.066322 0.342134 0.348469 0.060447 0.366892 0.371802

7 −0.069283 0.321774 0.329117 0.0559418 0.338578 0.343135

5 −0.033550 0.274321 0.276338 −0.022785 0.302044 0.302872

1000 6 −0.033444 0.247684 0.249908 −0.020491 0.257882 0.258670

7 −0.031736 0.226929 0.229115 −0.017844 0.228250 0.228924

5 −0.016413 0.194878 0.195548 −0.006453 0.215618 0.215693

2000 6 −0.013529 0.174801 0.175306 −0.007450 0.182360 0.182494

7 −0.015090 0.164075 0.164751 −0.009030 0.163444 0.163677

5 −0.002412 0.121419 0.121431 −0.001871 0.132954 0.132954

5000 6 −0.006953 0.109131 0.109342 −0.005452 0.112882 0.113003

7 −0.005499 0.104008 0.104143 −0.003330 0.103391 0.103434

these two estimators. More specifically, after drawing a random sample from the
original data with the same sample size, we compute the nonparametric estima-
tors for VaR at 99% level using the bootstrap sample. We repeat the procedure
500,000 times to get 500,000 bootstrap estimators for VaR and compute the sam-
ple standard deviation of these bootstrap estimators to get the standard error of
the nonparametric estimator for VaR at 99% level. Similarly, we compute the stan-
dard error of the nonparametric estimator for ES at 97.5% level. We also compute
the skewness and kurtosis of the data.

The VaR at 99% level and ES at 97.5% level for the standardized losses are
2.663246 and 3.829128, respectively. The bootstrap method with 500,000 repeti-
tions estimates the standard errors as 0.2956586 for VaR at 99% level and 0.7136469
for ES at 97.5%, implying that the nonparametric estimator of VaR at 99% level
is more efficient than that of ES at 97.5% level for this dataset. The kurtosis of
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these losses is 482.198, suggesting the losses have a heavier tail as found in the
literature. So, the conclusion of preferring VaR at 99% level to ES at 97.5% level is
in line with our analyses in Sections 2 and 3 when the efficiency of nonparametric
inference is concerned.

4.2 Data analysis on unemployment insurance initial claims

The second data set is the unemployment insurance initial claims statewide from
1971 to April 2021, including 604 monthly counts of initial claims for regular un-
employment insurance benefits. Initial claims include new claims as well as sub-
sequent additional claims filed. The mean and standard deviation are 114,121.3
and 65,678.67, respectively. The minimum is 49,263, and the maximum is 1,168
and 446.

As before, we find that VaR at 99% level and ES at 97.5% level are 2.745115 and
3.994838 for the standardized data. The bootstrap method estimates the standard
errors as 0.9180034 for Var at 99% level and 1.136914 for ES at 97.5% level. The
kurtosis of data is 119.7269, suggesting heavier tails. Hence, when the concern is
the nonparametric inference efficiency, one should prefer the use of VaR at 99%
level to ES at 97.5% level according to our theoretical and numerical analyses in
Sections 2 and 3, respectively.

5 Conclusions

It has been a hot debate comparing these two popular risk measures of Value-at-
Risk and expected shortfall. Because VaR at 99% level and ES at 97.5% level are
very close when the underlying distribution is the standard normal distribution,
this paper compares VaR at 99% level with ES at 97.5% level in terms of nonpara-
metric inference efficiency. We theoretically and numerically examine the effect of
heavy tails and serial dependence on the comparison of estimating these two risk
measures nonparametrically. We find that VaR at 99% is better than ES at 97.5%
when the loss distribution has a heavier tail, which conflicts with the preference
of ES in the literature as it is argued that ES takes more extremes into account.
A simulation study supports our theoretical and numerical findings. Applica-
tions to two insurance datasets align with our conjecture that VaR at 99% is better
than ES at 97.5% in statistical efficiency for losses with a heavier tail. Therefore,
we conclude that employing more extremes in measuring risk may lead to an
inefficient nonparametric inference when the loss distribution has a heavier tail.
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XARXA de Referència en Economia Aplicada XREAP 2012–19, (2012).
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