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Abstract. In this paper, first we introduce the notion of an omni-representation
of a Leibniz algebra g on a vector space V as a Leibniz algebra homomor-
phism from g to the omni-Lie algebra gl(V)⊕V. Then we introduce the omni-
cohomology theory associated to omni-representations and establish the re-
lation between omni-cohomology groups and Loday-Pirashvili cohomology
groups.
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1 Introduction

Leibniz algebras were first discovered by Bloh [5] who called them D-algebras.
Then Loday [18] rediscovered this algebraic structure and called them Leibniz
algebras. A Leibniz algebra is a vector space g, endowed with a linear map [·,·]g :
g⊗g−→g satisfying

[
x,[y,z]g

]
g
=
[
[x,y]g,z

]
g
+
[
y,[x,z]g

]
g
, ∀x,y,z∈g. (1.1)

In particular, if the bracket [·,·]g is skew-symmetric, then it is a Lie algebra. Leib-
niz algebras have important applications in both mathematics and mathematical
physics, e.g. the section space of a Courant algebroid is a Leibniz algebra [19]
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and the underlying algebraic structure of an embedding tensor is also a Leibniz
algebra which further leads to applications in higher gauge theories [15].

The theory of representations of Leibniz algebras was introduced and studied
in [18].

Definition 1.1. A representation of a Leibniz algebra (g,[·,·]g) is a triple (V,l,r), where

V is a vector space equipped with two linear maps l :g−→gl(V) and r :g−→gl(V) such

that the following equalities hold:

l[x,y]g=[lx,ly], r[x,y]g=[lx,ry], ry◦lx=−ry◦rx, ∀x,y∈g. (1.2)

Especially, faithful representations of Leibniz algebras were studied by Bar-
nes [3], conformal representations of Leibniz algebras were studied by Kolesni-
kov [13], dual representations of Leibniz algebras were given in [21] in their study
of Leibniz bialgebras. Representations of symmetric Leibniz algebras were stud-
ied by Benayadi [4].

Note that a representation of a Lie algebra g on a vector space V is a Lie alge-
bra homomorphism from g to the Lie algebra gl(V), which realizes an abstract Lie
algebra as a subalgebra of the general linear Lie algebra. While the above repre-
sentation of a Leibniz algebra does not have this advantage. The purpose of this
paper is to introduce a new representation theory so that it can realize an abstract
Leibniz algebra as a subalgebra of a concrete Leibniz algebra. The omni-Lie alge-
bra gl(V)⊕V introduced by Weinstein [22] is naturally a Leibniz algebra and the
main ingredient in our study. We introduce the notion of an omni-representation
of a Leibniz algebra g on a vector space V which is a homomorphism from g to
the Leibniz algebra gl(V)⊕V. We show that a usual representation (V,l,r) gives
rise to an omni-representation ρ=(l∗⊗1+1⊗ l)+r of g on V∗⊗V.

The cohomology theory of Leibniz algebras was also developed by Loday and
Pirashvili [18]. See [1, 6–9, 11] for more applications of Loday-Pirashvili coho-
mologies. We also develop the omni-cohomology theory for omni-representa-
tions introduced above, and give the relation between omni-cohomology groups
and Loday-Pirashvili cohomology groups.

The paper is organized as follows. In Section 2, we restudy representation of
Leibniz algebras and the corresponding semidirect products. In Section 3, we in-
troduce the notion of omni-representations of Leibniz algebras and study the re-
lation between omni-representations and the usual representations. In Section 4,
we introduce omni-cohomology groups for Leibniz algebras with coefficients
in omni-representations, and establish the relation between omni-cohomology
groups and Loday-Pirashvili cohomology groups.
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2 Representations of Leibniz algebras

Let (V,l,r) be a representation of a Leibniz algebra (g,[·,·]g).

Definition 2.1. The Loday-Pirashvili cohomology of g with coefficients in V is the co-

homology of the cochain complex Ck(g,V)=Hom(⊗kg,V), (k≥0) with the coboundary

operator

∂ : Ck(g,V) −→ Ck+1(g,V)

defined by

∂ck(x1,. . .,xk+1)=
k

∑
i=1

(−1)i+1lxi

(
ck(x1,. . ., x̂i,. . .,xk+1)

)
+(−1)k+1rxk+1

(
ck(x1,. . .,xk)

)

+ ∑
1≤i<j≤k+1

(−1)ick(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1). (2.1)

The resulting cohomology is denoted by H•(g;l,r).

Obviously, (R,0,0) is a representation of a Leibniz algebra (g,[·,·]g), which is
called the trivial representation. Denote the corresponding cohomology by H•(g).
Another important representation is the adjoint representation (g,adL,adR), whe-
re adL :g−→gl(g) and adR :g−→gl(g) are defined as follows:

adL(x)(y)=[x,y]g , adR(x)(y)=[y,x]g, ∀x,y∈g. (2.2)

The corresponding cohomology is denoted by H•(g;adL,adR).
A permutation σ∈Sn is called an (i,n−i)-shuffle if σ(1)<···<σ(i) and σ(i+1)

< ···< σ(n). If i = 0 or n we assume σ = id. The set of all (i,n−i)-shuffles will
be denoted by S(i,n−i). The notion of an (i1,··· ,ik)-shuffle and the set S(i1,···,ik)

are
defined analogously.

Let g be a vector space. We consider the graded vector space

C∗(g,g)=⊕n≥1Cn(g,g)=⊕n≥1Hom(⊗ng,g).

The Balavoine bracket on the graded vector space C∗(g,g) is given by

[P,Q]B=P◦̄Q−(−1)pqQ◦̄P (2.3)

for all P∈Cp+1(g,g), Q∈Cq+1(g,g), where P◦̄Q∈Cp+q+1(g,g) is defined by

P◦̄Q=
p+1

∑
k=1

P◦k Q, (2.4)
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and ◦k is defined by

(P◦k Q)(x1,··· ,xp+q+1)

= ∑
σ∈S(k−1,q)

(−1)σ(−1)(k−1)q

×P
(

xσ(1),··· ,xσ(k−1),Q(xσ(k),··· ,xσ(k+q−1),xk+q),

xk+q+1,··· ,xp+q+1

)
. (2.5)

It is well known that

Theorem 2.1 ([2,10]). With the above notations, (C∗(g,g),[·,·]B) is a graded Lie algebra.

In particular, for α∈C2(g,g), we have

[α,α]B(x,y,z)=2α◦α(x,y,z)

=2
(
α
(
α(x,y),z

)
−α

(
x,α(y,z)

)
+α

(
y,α(x,z)

))
. (2.6)

Thus, α defines a Leibniz algebra structure if and only if [α,α]B=0.
For a representation (V,l,r) of g, it is obvious that (V,l,0) is also a represen-

tation of g. Thus, we have two semidirect product Leibniz algebras g⋉(l,r)V and

g⋉(l,0)V with the brackets [·,·](l,r) and [·,·](l,0) given respectively by

[x+u,y+v](l,r)=[x,y]g+ lxv+ryu,

[x+u,y+v](l,0)=[x,y]g+ lxv.

The right action r induces a linear map r : (g⊕V)⊗(g⊕V)−→g⊕V as follows:

r(x+u,y+v)= ryu, ∀x,y∈g, u,v∈V.

The adjoint representations adL and adR of the Leibniz algebra g⋉(l,0)V are
given by

adL(x+u)(y+v)=[x,y]g+ lxv,

adR(x+u)(y+v)=[y,x]g+ lyu.

Theorem 2.2. With the above notations, r satisfies the following Maurer-Cartan equa-

tion on the Leibniz algebra g⋉(l,0)V:

∂r−
1

2
[r,r]B=0,

where ∂ is the coboundary operator for the Leibniz algebra g⋉(l,0)V with coefficients in

the adjoint representation. Consequently, the Leibniz algebra g⋉(l,r)V is a deformation

of the Leibniz algebra g⋉(l,0)V via the Maurer-Cartan element r.
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Proof. By direct computation, we have

∂r(x+u,y+v,z+w)

=adL(x+u)r(y+v,z+w)−adL(y+v)r(x+u,z+w)

−adR(z+w)r(x+u,y+v)−r
(
[x+u,y+v](l,0),z+w

)

+r
(

x+u,[y+v,z+w](l,0)
)
−r

(
y+v,[x+u,z+w](l,0)

)

= lxrzv− lyrzu−rzlxv+r[y,z]gu−r[x,z]gv.

On the other hand, we have

[r,r]B(x+u,y+v,z+w)

=2
(
r(r(x+u,y+v),z+w)−r(x+u,r(y+v,z+w))

+r(y+v,r(x+u,z+w))
)
=2rzryu.

Thus, by (1.2), we have

(
∂r−

1

2
[r,r]B

)
(x+u,y+v,z+w)

= lxrzv− lyrzu−rzlxv+r[y,z]gu−r[x,z]gv−rzryu

= lxrzv− lyrzu−rzlxv+r[y,z]gu−r[x,z]gv+rzlyu=0.

The proof is complete.

Define l∗ :g−→gl(V∗) by
〈
l∗x(ξ),u

〉
=−

〈
ξ,lxu

〉
, ∀x ∈g, ξ∈V∗, u∈V.

It is straightforward to see that (V∗⊗V, l∗⊗1+1⊗ l,0) is also a representation of
g, where l∗⊗1+1⊗ l :g−→gl(V∗⊗V) is given by

(l∗⊗1+1⊗ l)x(ξ⊗u)=(l∗x ξ)⊗u+ξ⊗ lxu, ∀ξ∈V∗, u∈V.

Since V∗⊗V∼=gl(V), an element ξ⊗u in V∗⊗V can be identified with a linear
map A∈gl(V) via A(v)= 〈ξ,v〉u.

Proposition 2.1. With the above notations, for all A∈V∗⊗V∼=gl(V), we have

(l∗⊗1+1⊗ l)xA=[lx,A]= lx◦A−A◦lx.

Moreover, the right action r : g−→ gl(V) is a 1-cocycle on g with coefficients in the

representation (V∗⊗V,l∗⊗1+1⊗ l,0).
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Proof. Write A= ξ⊗u, then we have

(l∗⊗1+1⊗ l)xA(v)=(l∗⊗1+1⊗ l)x(ξ⊗u)(v)

=
(
(l∗xξ)⊗u+ξ⊗ lxu

)
(v)

= 〈l∗xξ,v〉u+〈ξ,v〉lx u

=−〈ξ,lxv〉u+〈ξ,v〉lxu

=[lx,A](v).

Therefore, by (1.2), we have

∂r(x,y)=(l∗⊗1+1⊗ l)xr(y)−r([x,y]g)=[lx ,ry]−r[x,y]g=0,

which implies that r is a 1-cocycle.

3 Omni-representations of Leibniz algebras

It is known that the aim of a representation is to realize an abstract algebraic
structure as a class of linear transformations on a vector space. Such as a Lie
algebra representation is a homomorphism from g to the general linear Lie alge-
bra gl(V). Unfortunately, the representation of a Leibniz algebra discussed above
does not realize a Leibniz algebra as a subalgebra of certain explicit Leibniz alge-
bra. Therefore, it is reasonable for us to provide an alternative definition for the
representation of a Leibniz algebra. It is lucky that there is a god-given Leibniz
algebra worked as a general linear algebra defined as follows:

Given a vector space V, then (V, l = id,r = 0) is a natural representation of
gl(V), which is viewed as a Leibniz algebra. The corresponding semidirect prod-
uct Leibniz algebra structure on gl(V)⊕V is given by

{A+u,B+v}=[A,B]+Av, ∀A,B∈gl(V), u,v∈V.

This Leibniz algebra is called an omni-Lie algebra and denoted by ol(V). The no-
tion of an omni-Lie algebra was introduced by Weinstein [22] as the linearization
of a Courant algebroid. The notion of a Courant algebroid was introduced in [17],
which has been widely applied in many fields both for mathematics and physics
(see [14] for more details). Its Leibniz algebra structure also played an important
role when studying the integrability of Courant brackets [12, 16].

Notice that the skew-symmetric bracket,

JA+u,B+vK=[A,B]+
1

2
(Av−Bu), (3.1)
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which is obtained via the skew-symmetrization of {·,·}, is used in Weinstein’s
original definition. Even though an omni-Lie algebra is not a Lie algebra, all Lie
algebra structures on V can be characterized by the Dirac structures in ol(V). In
fact, the next proposition will show that every Leibniz algebra structure on V can
be realized as a Leibniz subalgebra of ol(V). For any ϕ : V−→gl(V), consider its
graph

Gϕ=
{

ϕ(u)+u∈gl(V)⊕V | ∀u∈V
}

.

Proposition 3.1. With the above notations, Gϕ is a Leibniz subalgebra of ol(V) if and

only if

[ϕ(u),ϕ(v)]= ϕ
(

ϕ(u)v
)

, ∀u,v∈V. (3.2)

Furthermore, under this condition, (V,[·,·]ϕ) is a Leibniz algebra, where the linear map

[·,·]ϕ :V⊗V−→V is given by

[u,v]ϕ = ϕ(u)v, ∀u,v∈V. (3.3)

Proof. Since ol(V) is a Leibniz algebra, we only need to show that Gϕ is closed if

and only if (3.2) holds. The conclusion follows from

{ϕ(u)+u,ϕ(v)+v}=[ϕ(u),ϕ(v)]+ϕ(u)v.

The other conclusion is straightforward. The proof is complete.

Remark 3.1. The condition (3.2) actually means that ϕ is an embedding tensor.

See [20] for more details about embedding tensors.

Recall that a representation of a Lie algebra g on a vector space V is a Lie alge-
bra homomorphism from g to the Lie algebra gl(V), which realizes an abstract Lie
algebra as a subalgebra of the general linear Lie algebra. Similarly, for a Leibniz
algebra, we suggest the following definition.

Definition 3.1. An omni-representation of a Leibniz algebra (g,[·,·]g) on a vector space V

is a Leibniz algebra homomorphism ρ :g−→ol(V).

According to the two components of gl(V)⊕V, every linear map ρ :g−→ol(V)
splits to two linear maps: φ :g−→gl(V) and θ :g−→V. Then, we have

Proposition 3.2. A linear map ρ=φ+θ :g−→gl(V)⊕V is an omni-representation of

a Leibniz algebra (g,[·,·]g) if and only if (V,φ,0) is a representation of the Leibniz algebra

(g,[·,·]g) and θ :g−→V is a 1-cocycle on the Leibniz algebra (g,[·,·]g) with coefficients

in the representation (V,φ,0).
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Proof. On one hand, we have

ρ
(
[x,y]g

)
=φ

(
[x,y]g

)
+θ

(
[x,y]g).

On the other hand, we have

{ρ(x),ρ(y)}={φ(x)+θ(x),φ(y)+θ(y)}

=[φ(x),φ(y)]+φ(x)θ(y).

Thus, ρ is a homomorphism if and only if

φ
(
[x,y]g

)
=
[
φ(x),φ(y)

]
, (3.4)

θ
(
[x,y]g

)
=φ(x)θ(y). (3.5)

Eq. (3.4) implies that (V,φ,0) is a representation of the Leibniz algebra (g,[·,·]g),
and Eq. (3.5) implies that θ :g−→V is a 1-cocycle on the Leibniz algebra (g,[·,·]g)
with coefficients in the representation (V,φ,0).

A usual representation in the sense of Definition 1.1 gives rise to an omni-
representation naturally.

Theorem 3.1. Let (V,l,r) be a representation of a Leibniz algebra (g,[·,·]g). Then

ρ=(l∗⊗1+1⊗ l)+r : g −→ ol(V∗⊗V)

is an omni-representation of g on V∗⊗V.

Proof. By Proposition 2.1, r :g−→gl(V) is a 1-cocycle on g with coefficients in the

representation (V∗⊗V, l∗⊗1+1⊗ l,0). By Proposition 3.2, ρ=(l∗⊗1+1⊗ l)+r is

a homomorphism from g to ol(V∗⊗V), which implies that ρ is an omni-represen-

tation of g on V∗⊗V.

A trivial omni-representation of a Leibniz algebra (g,[·,·]g) on R is defined to
be a homomorphism

ρT =φ+θ : g −→ gl(R)⊕R

such that φ=0. By Proposition 3.2, we have

Proposition 3.3. Trivial omni-representations of a Leibniz algebra (g,[·,·]g) are in one-

to-one correspondence to ξ∈g∗ such that ξ|[g,g]g=0.

The adjoint omni-representation ad of a Leibniz algebra (g,[·,·]g) on g is de-
fined to be the homomorphism

ad=adL+id : g −→ gl(g)⊕g.
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4 Omni-cohomologies of Leibniz algebras

In this section, we introduce omni-cohomologies of Leibniz algebras associated
to omni-representations, and show that omni-cohomology groups and Loday-
Pirashvili cohomology groups are isomorphic for the trivial representations and
adjoint representations.

Let ρ :g−→ol(V) be an omni-representation of a Leibniz algebra (g,[·,·]g). It is
obvious that im(ρ)⊂ol(V) is a Leibniz subalgebra so that one can define the set
of k-cochains by

Ck(g;ρ)=
{

f :⊗kg−→ im(ρ)
}

and an operator δ : Ck(g;ρ)−→Ck+1(g;ρ) by

δck(x1,. . .,xk+1)=
k

∑
i=1

(−1)i+1
{

ρ(xi),c
k(x1,. . ., x̂i,. . .,xk+1)

}

+(−1)k+1
{

ck(x1,. . .,xk),ρ(xk+1)
}

+ ∑
1≤i<j≤k+1

(−1)ick
(

x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1

)
. (4.1)

Lemma 4.1. With the above notations, we have δ2=0.

Proof. For all x∈g and u∈ im(ρ), define

lx(u)={ρ(x),u}, rx(u)={u,ρ(x)}.

By the fact that ol(V) is a Leibniz algebra, we can deduce that (im(ρ);l,r) is a rep-

resentation of g on im(ρ) in the sense of Definition 1.1, and δ is just the usual

coboundary operator for this representation so that δ2=0.

Thus, we have a well-defined cochain complex (C•(g;ρ),δ). The correspond-
ing cohomology is called the omni-cohomology of the Leibniz algebra (g,[·,·]g)
with coefficients in the omni-representation ρ, and denoted by H•

omni(g;ρ). In par-
ticular, H•

omni(g) and H•
omni(g;ad) denote the omni-cohomologies with coefficients

in trivial omni-representation and adjoint omni-representation of g respectively.

Theorem 4.1. With the above notations, we have H•
omni(g)=H•(g).

Proof. If [g,g]g=g, there is only one trivial omni-representation ρ=0 by Proposi-

tion 3.3. In this case, all the cochains are also 0. Thus, H•
omni(g)=0. On the other

hand, under the condition [g,g]g= g, it is straightforward to deduce that for any

ξ∈Ck(g), ∂ξ=0 if and only if ξ=0. Thus, H•(g)=0.
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If [g,g]g 6= g, any 0 6= ξ ∈ g∗ such that ξ|[g,g]g = 0 gives rise to a trivial omni-

representation ρT. Furthermore, we have im(ρT)=R and Ck(g)=⊗kg∗. Thus, the

sets of cochains are the same associated to two kinds of representations. Since V

is an abelian subalgebra in ol(V), for any ξ∈Ck(g), we have

δξ(x1,. . .,xk+1)=
k

∑
i=1

(−1)i+1
{

ρT(xi),c
k(x1,. . ., x̂i,. . .,xk+1)

}

+(−1)k+1
{

ck(x1,. . .,xk),ρT(xk+1)
}

+ ∑
1≤i<j≤k+1

(−1)ick
(

x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1

)

= ∑
1≤i<j≤k+1

(−1)ick
(

x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1

)

=∂ξ(x1,. . .,xk+1).

Thus, we have H•
omni(g)=H•(g).

For the adjoint omni-representation ad=adL+id:g−→gl(g)⊕g, any k-cochain
f is uniquely determined by a linear map f :⊗kg−→g such that

f =(adL◦f,f) : ⊗kg −→ im(ad). (4.2)

Theorem 4.2. With the above notations, we have H•
omni(g;ad)=H•(g;adL,adR).

Proof. Since any k-cochain f :⊗kg−→ im(ad) is uniquely determined by a linear

map f :⊗kg−→ g via (4.2). Thus, there is a one-to-one correspondence between

the sets of cochains associated to the two kinds representations via f ! f. Fur-

thermore, we have

δ f (x1,. . .,xk+1)

=
k

∑
i=1

(−1)i+1{ad(xi), f (x1,. . ., x̂i,. . .,xk+1)}

+(−1)k+1{ f (x1,. . .,xk),ad(xk+1)}

+ ∑
1≤i<j≤k+1

(−1)i f
(

x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1

)

=
k

∑
i=1

(−1)i+1{adL(xi)+xi,adLf(x1,. . ., x̂i,. . .,xk+1)+f(x1,. . ., x̂i,. . .,xk+1)}

+(−1)k+1{adLf(x1,. . .,xk)+f(x1,. . .,xk),adL(xk+1)+xk+1}
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+ ∑
1≤i<j≤k+1

(−1)i
(
adLf(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)

+f(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)
)

=
k

∑
i=1

(−1)i+1
(
[adL(xi),adLf(x1,. . ., x̂i,. . .,xk+1)]+adL(xi)f(x1,. . ., x̂i,. . .,xk+1)

)

+(−1)k+1
(
[adLf(x1,. . .,xk),adL(xk+1)]+adLf(x1,. . .,xk)xk+1

)

+ ∑
1≤i<j≤k+1

(−1)i
(
adLf(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)

+f(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)
)

=
k

∑
i=1

(−1)i+1
(
adL[xi,f(x1,. . ., x̂i,. . .,xk+1)]g+[xi,f(x1,. . ., x̂i,. . .,xk+1)]g

)

+(−1)k+1
(
adL[f(x1,. . .,xk),xk+1]g+[f(x1,. . .,xk),xk+1]g

)

+ ∑
1≤i<j≤k+1

(−1)i
(
adLf(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)

+f(x1,. . ., x̂i,. . .,xj−1,[xi,xj]g,xj+1,. . .,xk+1)
)

=adL∂f(x1,. . .,xk+1)+∂f(x1,. . .,xk+1).

Thus, we have δ f =0 if and only if ∂f=0. Similarly, we can prove that f is exact

if and only if f is exact. Thus, the corresponding cohomology groups are isomor-

phic. The proof is complete.

At last, we consider an omni-representation ρ such that the image of ρ is con-
tained in the graph Gϕ for some linear map ϕ : V−→gl(V) satisfying Eq. (3.2). In
this case, ρ is of the form ρ=ϕ◦θ+θ, where θ :g−→V is a linear map. A k-cochain
f :⊗kg−→ im(ρ) is of the form f = ϕ◦f+f, where f :⊗kg−→V is a linear map.

Define left and right actions in the sense of Definition 1.1 by

lxu=pr{ρ(x),ϕ(u)+u}= ϕ(θ(x))u, (4.3)

rxu=pr{ϕ(u)+u,ρ(x)}= ϕ(u)θ(x), (4.4)

where pr is the projection from gl(V)⊕V to V. Similar to Theorem 4.2, it is easy
to prove that

Theorem 4.3. Let ρ be an omni-representation such that the image of ρ is contained in

the graph Gφ for some linear map ϕ :V−→gl(V) satisfying Eq. (3.2). Then we have

H•
omni(g;ρ)=H•(g;l,r),

where l and r are given by (4.3) and (4.4), respectively.
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