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Abstract. In this paper, first we introduce the notion of an omni-representation
of a Leibniz algebra g on a vector space V as a Leibniz algebra homomor-
phism from g to the omni-Lie algebra gl(V)@® V. Then we introduce the omni-
cohomology theory associated to omni-representations and establish the re-
lation between omni-cohomology groups and Loday-Pirashvili cohomology
groups.
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1 Introduction

Leibniz algebras were first discovered by Bloh [5] who called them D-algebras.
Then Loday [18] rediscovered this algebraic structure and called them Leibniz
algebras. A Leibniz algebra is a vector space g, endowed with a linear map [-,-]:
g®g— g satisfying

[x,[y,2]] .= [[x,y]g,2] .t [y, [x,2]4] o TxyzED. (1.1)

In particular, if the bracket [-,-]4 is skew-symmetric, then it is a Lie algebra. Leib-
niz algebras have important applications in both mathematics and mathematical
physics, e.g. the section space of a Courant algebroid is a Leibniz algebra [19]
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and the underlying algebraic structure of an embedding tensor is also a Leibniz
algebra which further leads to applications in higher gauge theories [15].

The theory of representations of Leibniz algebras was introduced and studied
in [18].

Definition 1.1. A representation of a Leibniz algebra (g,[-,-|4) is a triple (V,1,r), where
V is a vector space equipped with two linear maps 1:g— gl(V') and r:g— gl(V') such
that the following equalities hold:

l[x,y]g: [lx,ly], r[x,y]g: [lx,ry], VyOZXZ—VyOVx, vx,yeg. (1.2)

Especially, faithful representations of Leibniz algebras were studied by Bar-
nes [3], conformal representations of Leibniz algebras were studied by Kolesni-
kov [13], dual representations of Leibniz algebras were given in [21] in their study
of Leibniz bialgebras. Representations of symmetric Leibniz algebras were stud-
ied by Benayadi [4].

Note that a representation of a Lie algebra g on a vector space V is a Lie alge-
bra homomorphism from g to the Lie algebra gl(V'), which realizes an abstract Lie
algebra as a subalgebra of the general linear Lie algebra. While the above repre-
sentation of a Leibniz algebra does not have this advantage. The purpose of this
paper is to introduce a new representation theory so that it can realize an abstract
Leibniz algebra as a subalgebra of a concrete Leibniz algebra. The omni-Lie alge-
bra gl(V)®V introduced by Weinstein [22] is naturally a Leibniz algebra and the
main ingredient in our study. We introduce the notion of an omni-representation
of a Leibniz algebra g on a vector space V which is a homomorphism from g to
the Leibniz algebra gl(V)@® V. We show that a usual representation (V,1,r) gives
rise to an omni-representation p=(I*®1+1®I)+rof gon V*®V.

The cohomology theory of Leibniz algebras was also developed by Loday and
Pirashvili [18]. See [1,6-9,11] for more applications of Loday-Pirashvili coho-
mologies. We also develop the omni-cohomology theory for omni-representa-
tions introduced above, and give the relation between omni-cohomology groups
and Loday-Pirashvili cohomology groups.

The paper is organized as follows. In Section 2, we restudy representation of
Leibniz algebras and the corresponding semidirect products. In Section 3, we in-
troduce the notion of omni-representations of Leibniz algebras and study the re-
lation between omni-representations and the usual representations. In Section 4,
we introduce omni-cohomology groups for Leibniz algebras with coefficients
in omni-representations, and establish the relation between omni-cohomology
groups and Loday-Pirashvili cohomology groups.
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2 Representations of Leibniz algebras

Let (V,1,r) be a representation of a Leibniz algebra (g,[-,-]4)-

Definition 2.1. The Loday-Pirashvili cohomology of g with coefficients in V is the co-
homology of the cochain complex C¥(g,V)=Hom(®g,V), (k>0) with the coboundary
operator

2:Cx(g, V) — CHl(g,V)

defined by

k
ack(x1,..., X1 =Z ’“l xl,...,o’c},...,xk+1))-|—(—1)k+11ka+1 (ck(xl,...,xk))

+ Z (—1)1 k(xl,...,y?i,...,x]-_l,[xi,x]-]g,xjﬂ,...,xk“). (2.1)
1<i<j<k+1

The resulting cohomology is denoted by H®(g;1,7).

Obviously, (IR,0,0) is a representation of a Leibniz algebra (g,[,-]4), which is
called the trivial representation. Denote the corresponding cohomology by H*(g).
Another important representation is the adjoint representation (g,ad;,adg), whe-
re ady :g— gl(g) and adg:g— gl(g) are defined as follows:

ady (x)(y)=[xylg, adr(x)(y)=[v,x]g, Yxy€g. (2.2)

The corresponding cohomology is denoted by H®(g;adr,adR).

A permutation 0 €S, is called an (i,n—i)-shuffle if r(1) <--- <o (i) and o(i+1)
<---<0o(n). If i=0 or n we assume o =id. The set of all (i,n—i)-shuffles will
be denoted by S(; ,_;). The notion of an (i1,--,i)-shuffle and the set S;, ... ;) are
defined analogously.

Let g be a vector space. We consider the graded vector space

C*(9,8) =©n>1C"(9,9) = Bn>1Hom(&"g,g).
The Balavoine bracket on the graded vector space C*(g,g) is given by
[P,Qlg=PsQ—(—-1)"QaP (2.3)
for all P€ CP*1(g,g),Qe Ci171(g,g), where P5Q € CPT1T1(g,g) is defined by

p+1

P5Q=Y Po,Q, (2.4)
k=1
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and oy is defined by

(Por Q) (x1,++,Xp1g+1)

— L (1 (-nk

TES 1)
X P (%o (1), 1 Xe(k—1) QXe (k)™ Xer(kt-qg—1)rXk4q)
Xktq+1s rxp+q+1) . (2.5)
It is well known that
Theorem 2.1 ([2,10]). With the above notations, (C*(g,9),[-,-|8) is a graded Lie algebra.

In particular, for « € C?(g,g), we have

[a,a]g(x,y,z) =2a0a(x,y,z)
=2(a(a(x,y),z) —a(xa(yz))+a(y,a(xz))). (2.6)
Thus, « defines a Leibniz algebra structure if and only if [a,a]g =0.
For a representation (V,1,r) of g, it is obvious that (V,1,0) is also a represen-
tation of g. Thus, we have two semidirect product Leibniz algebras g ,)V and
g% (1) V with the brackets [,-]; ,y and [+,-] ;) given respectively by

[x+u,y+0] ) =[XYlg+1x0+ryu,
[x+u,y+0],0)=[x,y]g+1x0.
The right action r induces a linear map 7: (g V) ® (g® V) — g&V as follows:
7(x+uy+v)=ryu, Vxycg uvcV.
The adjoint representations ad; and adg of the Leibniz algebra gx o)V are
given by
adp (x+u)(y+v) =[xyl +1v,
adg (x+u)(y+v)=[y,x]g+1,u.

Theorem 2.2. With the above notations, 7 satisfies the following Maurer-Cartan equa-
tion on the Leibniz algebra g x ;) V:
1

o7 —5 [ 7s =0,

where 0 is the coboundary operator for the Leibniz algebra gx o)V with coefficients in
the adjoint representation. Consequently, the Leibniz algebra g ; .V is a deformation
of the Leibniz algebra g ; 5) V via the Maurer-Cartan element 7.
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Proof. By direct computation, we have

or(x+u,y+v,z+w)

=adp (x+u)7(y+v,z+w)—ady(y+0)r(x+u,z+w)
—adg (z+w)7 (x+u,y+0) =7 ([x+u,y+0] 0,2 +w)
+7(x+u,[y+o,z+w] 1 0)) —F(y+o, [x+u,z+w]( )

:Zxrzv—Zyrzu—rzlxv—i—r[yrz]gu—r[xlz}gv.

On the other hand, we have
7, 7]s(x+u,y+v,z+w)
=2(7(r(x+u,y+v),z+w)—7(x+u,7(y+v,z+w))
+7(y+o,7(x+u,z+w))) =2r,ryu.

Thus, by (1.2), we have

(E)?— % [?,7]3) (x4+u,y+v,z4+w)

=1, r,0— lyrzu —rzlxv—e—r[ylz]gu x0Tyl

=Lr;o—lyru _Vzle—H’[ 1o ¥ —V[X,Z}QYJ—H’Zlyu =0.

Y,z
The proof is complete. 0
Define I*:g — gl(V*) by
(3(&)uy=—(Clxu), Vxeg, Ce€V*, ueV.

It is straightforward to see that (V*®V,I*®1+1®1,0) is also a representation of
g, where I*®1+1®1:g— gl(V*®V) is given by

(FR1+11)(C@u)=(I:0)@u+i®lu, VeeV*, ueV.

Since V*®@V =gl(V), an element {®@u in V*®V can be identified with a linear
map A €gl(V) via A(v) = (§,v)u.

Proposition 2.1. With the above notations, for all Ac V*®@V =gl(V), we have
(l* ®1+1®l)xA: [lx,A] = leA_Aolx.

Moreover, the right action r: g — gl(V') is a 1-cocycle on g with coefficients in the
representation (V*QV,I*®1+1®1,0).
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Proof. Write A=_{®u, then we have

(IF@1+1e1) A(v) ="@1+1®1)(E@u)(v)
(ZE)@u+E®lu)(v)
(IZ&,0)u+(¢,v)lyu

=— (&, Lxo)u+(Z,0)lxu
:[lx/A](U)'

Therefore, by (1.2), we have

or(xy)=(I"@1+1@1)r(y) —r([x,ylg) = [lx,1y] =[xy, =0,

which implies that r is a 1-cocycle. O

3 Omni-representations of Leibniz algebras

It is known that the aim of a representation is to realize an abstract algebraic
structure as a class of linear transformations on a vector space. Such as a Lie
algebra representation is a homomorphism from g to the general linear Lie alge-
bra gl(V). Unfortunately, the representation of a Leibniz algebra discussed above
does not realize a Leibniz algebra as a subalgebra of certain explicit Leibniz alge-
bra. Therefore, it is reasonable for us to provide an alternative definition for the
representation of a Leibniz algebra. It is lucky that there is a god-given Leibniz
algebra worked as a general linear algebra defined as follows:

Given a vector space V, then (V,I =id,r =0) is a natural representation of
gl(V), which is viewed as a Leibniz algebra. The corresponding semidirect prod-
uct Leibniz algebra structure on gl(V)®V is given by

{A+u,B+v}=[AB|+Av, VABegl(V), uveV.

This Leibniz algebra is called an omni-Lie algebra and denoted by ol(V'). The no-
tion of an omni-Lie algebra was introduced by Weinstein [22] as the linearization
of a Courant algebroid. The notion of a Courant algebroid was introduced in [17],
which has been widely applied in many fields both for mathematics and physics
(see [14] for more details). Its Leibniz algebra structure also played an important
role when studying the integrability of Courant brackets [12,16].

Notice that the skew-symmetric bracket,

[A+u,B+0)=[A,B]+5 (Av—Bu), (3.1)
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which is obtained via the skew-symmetrization of {-,-}, is used in Weinstein’s
original definition. Even though an omni-Lie algebra is not a Lie algebra, all Lie
algebra structures on V can be characterized by the Dirac structures in ol(V). In
fact, the next proposition will show that every Leibniz algebra structure on V can
be realized as a Leibniz subalgebra of ol(V'). For any ¢:V — gl(V), consider its
graph

Go={pu)+uecgl(V)®V |VuecV}.

Proposition 3.1. With the above notations, G, is a Leibniz subalgebra of ol(V') if and
only if

[p(u) (0)] =9 (p(u)0), VuoeV. (3:2)
Furthermore, under this condition, (V,[-,-]¢) is a Leibniz algebra, where the linear map
[ ]g: VRV —V is given by

[u,v]g=@(u)v, YuovecV. (3.3)

Proof. Since ol(V) is a Leibniz algebra, we only need to show that G,, is closed if
and only if (3.2) holds. The conclusion follows from

{o(u)+u,9(0) +v}=[p(u), ()] +¢(u)o.
The other conclusion is straightforward. The proof is complete. O

Remark 3.1. The condition (3.2) actually means that ¢ is an embedding tensor.
See [20] for more details about embedding tensors.

Recall that a representation of a Lie algebra g on a vector space V is a Lie alge-
bra homomorphism from g to the Lie algebra gl(V'), which realizes an abstract Lie
algebra as a subalgebra of the general linear Lie algebra. Similarly, for a Leibniz
algebra, we suggest the following definition.

Definition 3.1. An omni-representation of a Leibniz algebra (g,[-,-|4) on a vector space V
is a Leibniz algebra homomorphism p:g—ol(V).

According to the two components of gl(V)@V, every linear map p:g—ol(V)
splits to two linear maps: ¢:g— gl(V) and 6:g— V. Then, we have

Proposition 3.2. A linear map p=¢+6:9— gl(V) @V is an omni-representation of
a Leibniz algebra (g,[,-|4) if and only if (V,¢,0) is a representation of the Leibniz algebra
(9,[-,-]g) and 6:9—V is a 1-cocycle on the Leibniz algebra (g,[-,-|4) with coefficients
in the representation (V,$,0).
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Proof. On one hand, we have

o([xyle) =¢([x.yls) +0([x.¥lo)-
On the other hand, we have

{p(x),0(y)} ={p(x)+6(x),p(y)+6(y)}
=[0(x), ()] +(x)0(y).

Thus, p is a homomorphism if and only if

¢([xylg) = [¢(x),0(y)], (3.4)
0([xylg) =0(x)0(y)- (3.5)

Eq. (3.4) implies that (V,¢,0) is a representation of the Leibniz algebra (g,[-,-|4),
and Eq. (3.5) implies that 6:g— V is a 1-cocycle on the Leibniz algebra (g,[-,-]4)
with coefficients in the representation (V,¢,0). O

A usual representation in the sense of Definition 1.1 gives rise to an omni-
representation naturally.

Theorem 3.1. Let (V,1,r) be a representation of a Leibniz algebra (g,[-,-]4). Then
p=I"@1+1x)+r:g — ol(V'®V)
is an omni-representation of gon V*@V.

Proof. By Proposition 2.1, r:g— gl(V) is a 1-cocycle on g with coefficients in the
representation (V*®V,I*®1+1®1,0). By Proposition 3.2, p= (I ®1+1®1)+r is
a homomorphism from g to ol(V*®V), which implies that p is an omni-represen-
tationof gon V*®V. ]

A trivial omni-representation of a Leibniz algebra (g,[-,-];) on R is defined to
be a homomorphism
pr=¢p+60:9g — gl(R)®R

such that ¢ =0. By Proposition 3.2, we have

Proposition 3.3. Trivial omni-representations of a Leibniz algebra (g,[-,-]4) are in one-
to-one correspondence to ¢ € g* such that {| l0,0]; =Y

The adjoint omni-representation ad of a Leibniz algebra (g,[-,-]5) on g is de-
fined to be the homomorphism

ad=ad; +id: g — gl(g)Dg.
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4 Omni-cohomologies of Leibniz algebras

In this section, we introduce omni-cohomologies of Leibniz algebras associated
to omni-representations, and show that omni-cohomology groups and Loday-
Pirashvili cohomology groups are isomorphic for the trivial representations and
adjoint representations.

Let p:g—>0l(V) be an omni-representation of a Leibniz algebra (g, [-,-]4). Itis
obvious that im(p) C o[(V) is a Leibniz subalgebra so that one can define the set
of k-cochains by

CHgip)={f: g — im(p)}
and an operator §: C*(g;0) — C**1(g;p) by

k .
6ck (21, k1) = Y_ (1) p(x;), F (a1, Ty X)) }
i=1
+ (-1

)k+1 {Ck(xl,...,xk)/p(xk+1)}

+ ) (—=1)ick (X1seee Xy X1, (X0 X g X1 Xieg1 ) - (1)
1<i<j<k+1

Lemma 4.1. With the above notations, we have 6> =0.

Proof. For all x€gand u€im(p), define

Le(u)={p(x),u},  re(u)={up(x)}.

By the fact that ol(V) is a Leibniz algebra, we can deduce that (im(p);l,7) is a rep-
resentation of g on im(p) in the sense of Definition 1.1, and ¢ is just the usual
coboundary operator for this representation so that 52 =0. O

Thus, we have a well-defined cochain complex (C*(g;p),6). The correspond-
ing cohomology is called the omni-cohomology of the Leibniz algebra (g,[-,-]q)
with coefficients in the omni-representation p, and denoted by H}, .(g;p0). In par-
ticular, H? .(g) and H? .(g;a0) denote the omni-cohomologies with coefficients

omni omni
in trivial omni-representation and adjoint omni-representation of g respectively.

Theorem 4.1. With the above notations, we have H, .(g)=H"*(g).

Proof. If [g,9]g =g, there is only one trivial omni-representation p =0 by Proposi-
tion 3.3. In this case, all the cochains are also 0. Thus, H?, .(g)=0. On the other

omni

hand, under the condition [g,g], =g, it is straightforward to deduce that for any
&eCk(g), 9¢=0if and only if ¢=0. Thus, H*(g) =0.
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If [g,0]g # 9, any 0 # ¢ € g* such that ¢ |[g,g}g =0 gives rise to a trivial omni-

representation pr. Furthermore, we have im(p7) =R and C*(g) =®*g*. Thus, the
sets of cochains are the same associated to two kinds of representations. Since V
is an abelian subalgebra in ol(V'), for any & € C*(g), we have

(_1)i+1{pT(xi)/Ck(xlr---/@/-'-/xk-i-l)}

01~
— =

5§(x1,...,xk+1) =
i

+ (=D K (e, xi), o1 (xk41) }
+ Z (_]-)lck(xlr'-'/-@I"'/xj—ll[xi/xj]g/xj+1l"'/xk+l)
1<i<j<k+1
= Z (—1)ick(x1,...,3?i,...,x]-_l,[xi,xj]g,xjﬂ,...,xk“)
1<i<j<k+1
=09¢(X1,.. ., X1 1)-
Thus, we have HS .(g)=H"*(g). O

For the adjoint omni-representation ad=ad; +id:g— gl(g) ®g, any k-cochain
f is uniquely determined by a linear map f: ®*g — g such that

f=(adrof,f): ®*g — im(ad). (4.2)

Theorem 4.2. With the above notations, we have H? .(g;a0)=H?*(g;adr,adR).

omni

Proof. Since any k-cochain f: ®*g—s im(ad) is uniquely determined by a linear
map f: ®kg — g via (4.2). Thus, there is a one-to-one correspondence between
the sets of cochains associated to the two kinds representations via f «w f. Fur-
thermore, we have

SF(x1, ) Xps1)
= Z(—l)i+1{a0(xi),f(x1/'-'IJ/C\i/"'/xk—Fl)}

+ (=D f (31, 0), 00 (011)}

+ Z (_1)if(X1,...,5C\l‘,...,Xj_l,[xi,Xj]g,Xj+1,...,Xk+1)
1<i<j<k+1

k .
= 2(—1)1+1{adL(xi)—i—xi,ade(xl,...,J?i,...,ka)—|—f(x1,...,3?i,...,xk+1)}

+(=1)Yadrf(xr,.p20) (21,0, 5),ad L (Y1) +Xesr }
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+ Z (—1)i(ade(xl,...,J?i,...,xj_l,[xi,xj]g,xj+1,...,xk+1)
1<i<j<k+1

+f(X1,. "/J/C\l'/'- 'Ixj—ll [xi/xj]g/xj+1/'- '/xk-‘rl))
k .
= Z(—1)1+1 ([adL(xi),ade(xl,...,o’c\,-,...,ka)] —|—adL(xi)f(x1,...,J?i,...,xk+1))

(=1 (fadf(x1,-.., xk),ad (xes1)] +adrf(x1, .. ) Xes1)

+
+ (—1)i (ade(xl,...,J?i,...,xj_l, [xi,xj]g,xj+1,...,xk+1)
—i—f(xl,...,3?1',...,x]'_l,[xi,x]']g,xjﬂ,...,xk+1))
k .
— 2(—1)1“ (adyp [x;, f(x1,- o Xiyee s Xpe1)] g+ (X0 F (X0, 0o, Xy k1) |g)

+ (—1)k+1 (adL [f(xl,...,xk),xk+1]g+ [f(xl,...,xk),ka]g)

+ Z (—1)i(ade(xl,...,J?i,...,xj_l,[xi,xj]g,xj+1,...,xk+1)
1<i<j<k+1

+f(X1,...,.7/(\1‘,...,x]‘_l,[Xi,Xj]g,Xj+1,...,Xk+1))
:adLaf(xl,...,ka)—|—af(x1,...,xk+1).
Thus, we have 6 f =0 if and only if of =0. Similarly, we can prove that f is exact

if and only if | is exact. Thus, the corresponding cohomology groups are isomor-
phic. The proof is complete. O

At last, we consider an omni-representation p such that the image of p is con-
tained in the graph G, for some linear map ¢:V — gl(V) satisfying Eq. (3.2). In
this case, p is of the form p=@o6+-6, where 8:g— V is a linear map. A k-cochain
f:@kg—=im(p) is of the form f=g@of-+§, where §:®*g— V is a linear map.

Define left and right actions in the sense of Definition 1.1 by

Lu=prip(x),¢(u)+u}=(0(x))u, (4.3)

rett=pr{g(u) +u,0(x)} = 9(u)6(x), (4.4
where pr is the projection from gl(V)@®V to V. Similar to Theorem 4.2, it is easy
to prove that

Theorem 4.3. Let p be an omni-representation such that the image of p is contained in
the graph Gy for some linear map ¢:V — gl(V') satisfying Eq. (3.2). Then we have

Ho.mm' (Q}P) =H* (g;l,r),
where | and r are given by (4.3) and (4.4), respectively.



Z.Liu and Y. Sheng / Commun. Math. Res., 40 (2024), pp. 30-42 41

Acknowledgements

This research is supported by the NSFC (Grant No. 12071241).

References

[1] J. Adashev, M. Ladra, and B. Omirov, The second cohomology group of simple Leibniz
algebras, ]. Algebra Appl. 17(12) (2018), 1850222.
[2] D. Balavoine, Deformation of algebras over a quadratic operad, Contemporary Mathe-
matics 202 (1997), 167-205.
[3] D.W. Barnes, Faithful representations of Leibniz algebras, Proc. Amer. Math. Soc. 141(9)
(2013), 2991-2995.
[4] S. Benayadi, On representations of symmetric Leibniz algebras, Glasg. Math. J. 62(S1)
(2020), S99-5107.
[5] A.Bloh, Ona generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165(3)
(1965), 471-473.
[6] L. M. Camacho, I. Kaygorodov, B. Omirov, and G. Solijanova, Some cohomologically
rigid solvable Leibniz algebras, J. Algebra 560 (2020), 502-520.
[7] Y. Cheng, L. Wu, and P. Wang, Rota-Baxter operators on 3-dimensional Lie algebras and
solutions of the classical Yang-Baxter equation, Commun. Math. Res. 35 (2019), 81-96.
[8] J. Feldvoss and F. Wagemann, On Leibniz cohomology, ]J. Algebra 569 (2021), 276-317.
[9] A. Fialowski, L. Magnin, and A. Mandal, About Leibniz cohomology and deformations
of Lie algebras, ]. Algebra 383 (2013), 63-77.
[10] A. Fialowski and A. Mandal, Leibniz algebra deformations of a Lie algebra, ]J. Math.
Phys. 49(9) (2008), 093511.
[11] N. Hu, Y. Pei, and D. Liu, A cohomological characterization of Leibniz central extensions
of Lie algebras, Proc. Amer. Math. Soc. 136(2) (2008), 437-447.
[12] M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and multiplica-
tions on reductive homogeneous spaces, Amer. J. Math. 123 (2001), 525-550.
[13] P. S. Kolesnikov, Conformal representations of Leibniz algebras, Sib. Math. J. 49(3)
(2008), 429-435.
[14] Y. Kosmann-Schwarzbach, Courant algebroids. A short history, SSIGMA Symmetry In-
tegrability Geom. Methods Appl. 9 (2013), Paper 014.
[15] A. Kotov and T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher
gauge theories, Comm. Math. Phys. 376(1) (2020), 235-258.
[16] C. Laurent-Gengoux and F. Wagemann, Lie rackoids integrating Courant algebroids,
Ann. Global Anal. Geom. 57(2) (2020), 225-256.
[17] Z.-]. Liu, A. Weinstein, and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45
(1997), 547-574.



42 Z.Liu and Y. Sheng / Commun. Math. Res., 40 (2024), pp. 30-42

[18] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and
(co)homology, Math. Ann. 296 (1993), 139-158.

[19] D. Roytenberg, Courant Algebroids, Derived Brackets and Even Symplectic Supermani-
folds, PhD Thesis, UC Berkeley, 1999.

[20] Y.Sheng, R. Tang, and C. Zhu, The controlling Le.-algebras, cohomologies and homotopy
of embedding tensors and Lie-Leibniz triples, Comm. Math. Phys. 386 (2021), 269-304.

[21] R.Tang and Y. Sheng, Leibniz bialgebras, relative Rota-Baxter operators and the classical
Leibniz Yang-Baxter equation, J. Noncommut. Geom. 16 (4) (2022), 1179-1211.

[22] A. Weinstein, Omni-Lie algebras, microlocal analysis of the Schrodinger equation and re-
lated topics, Strikaisekikenkytisho Kokytiroku No. 1176 (2000), 95-102. (in Japanese)



