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Abstract

We propose and analyze a single-interval Legendre-Gauss-Radau (LGR) spectral col-

location method for nonlinear second-order initial value problems of ordinary differential

equations. We design an efficient iterative algorithm and prove spectral convergence for

the single-interval LGR collocation method. For more effective implementation, we pro-

pose a multi-interval LGR spectral collocation scheme, which provides us great flexibility

with respect to the local time steps and local approximation degrees. Moreover, we com-

bine the multi-interval LGR collocation method in time with the Legendre-Gauss-Lobatto

collocation method in space to obtain a space-time spectral collocation approximation for

nonlinear second-order evolution equations. Numerical results show that the proposed

methods have high accuracy and excellent long-time stability. Numerical comparison be-

tween our methods and several commonly used methods are also provided.
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1. Introduction

The initial value problems (IVPs) of second-order ordinary differential equations (ODEs)

appear in many fields of science and engineering. In addition, a large number of second-order

evolution equations, especially nonlinear wave equations, such as the Klein-Gordon and sine-

Gordon equations, are often transformed into IVPs of second-order ODEs after appropriate

spatial discretization methods. In the past few decades, great progress has been made in the

study of numerical methods for the IVPs of (second-order) ODEs. Traditional and frequently

used approaches for the numerical integration of (second-order) ODEs are mainly based on

implicit and explicit finite difference, Runge-Kutta and Newmark-type schemes. We refer the

reader to the monographs [8, 25, 26, 28, 29, 36, 41] for a comprehensive review.

As we all know, spectral methods have become important numerical methods for solving

partial differential equations (PDEs), and have a wide range of applications in many fields

of scientific and engineering computation, see, e.g., [6, 7, 10, 16, 18, 19, 40] and the references
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therein. Due to their high accuracy, spectral methods (including spectral collocation methods)

have been applied to the numerical integration of ODEs in recent years. For example, Guo et al.

developed several Laguerre spectral collocation methods [20, 23, 51, 52] and Legendre spectral

collocation methods [21,22,24,47] for nonlinear first and second-order IVPs of ODEs. In [1,2],

several spectral Galerkin and collocation methods were introduced for the numerical solutions

of nonlinear Hamiltonian (ODE) systems. For some other high order methods (including the

hp-version continuous and discontinuous Galerkin methods) for IVPs of ODEs, we refer the

reader to [3, 39, 48, 49, 53] and the references therein.

The main purpose of the present paper is to introduce and analyze a new spectral collocation

method based on Legendre-Gauss-Radau (LGR) points for the second-order ODEs of the form

{
u′′(t) = f(u′(t), u(t), t), t ∈ (0, T ],

u′(0) = v0, u(0) = u0,
(1.1)

where the values v0 and u0 describe the initial states of u(t) and f is a given function. For ease

of statement, we sometimes use the notations ∂tu and ∂2t u instead of u′ and u′′, respectively.

We first design a single-interval spectral collocation scheme for problem (1.1) based on N+1

LGR points (see (2.21)). We then construct a simple but efficient iterative algorithm for nu-

merical implementation of the single-interval collocation scheme by using Legendre polynomial

expansion. We carry out a rigorous error analysis for the proposed scheme. Theoretical results

show that the single-interval LGR collocation scheme has spectral accuracy, namely, for any

fixed mode N , the smoother the exact solution is, the more accurate the numerical solution

is. We also note that a Legendre-Gauss (LG) spectral collocation method has been proposed

and analyzed in [24] for second-order ODEs. The main differences between the present paper

and [24] are as follows: 1) Our collocation scheme is based on the LGR points, while the scheme

in [24] is based on the LG points, this brings us different considerations in the theoretical anal-

ysis; 2) Due to different choices of the collocation points and different analysis approaches, the

convergence of our method in N is half order higher than the method developed in [24] (see

also Remark 2.2); 3) We design a new fixed-point iterative algorithm, which is much simpler

and faster than that in [24] (see numerical comparison in subsection 2.5.2).

In order to improve the computational efficiency, we further propose a multi-interval LGR

collocation method based on domain decomposition. Roughly speaking, we divide the solution

interval (0, T ] into a series of non-overlapping subintervals, and then adopt the single-interval

LGR collocation scheme and the corresponding iterative algorithm to obtain local approx-

imation on each subinterval. The multi-interval LGR collocation scheme has the following

advantages:

• For large T , we can obtain the numerical solution by the single-interval LGR collocation

method on each subinterval step by step. In particular, the corresponding nonlinear al-

gebraic system on each subinterval usually contains only a small number of unknowns.

Therefore, the multi-interval collocation scheme can be implemented efficiently and eco-

nomically. At the same time, it keeps the global spectral accuracy.

• The multi-interval LGR collocation scheme has great flexibility with respect to the lo-

cal time steps and local approximation degrees. It is a variable-step and variable-order

scheme. This feature makes it easy for us to deal with solutions with complex dynamic

behaviors, such as oscillatory, singular and long-time behaviors.
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• We use the LGR points (with right endpoint) instead of LG points as collocation points,

and thus we can obtain the initial values of the local problem to be solved on the current

subinterval from the computed results on the previous subinterval directly. This feature

simplifies actual calculations and saves some works.

• The multi-interval LGR collocation scheme produces global numerical solutions, which

can provide more information about the structures of the exact solutions. However, the

usual difference methods do not have such merit.

As an application, we apply the multi-interval LGR method to the time discretization of

nonlinear second-order evolution equations. More specifically, we combine the Legendre-Gauss-

Lobatto (LGL) collocation method in space with the multi-interval LGR method in time to

obtain a fully discrete space-time spectral collocation approximation. We also take two typical

nonlinear wave equations, such as Klein-Gorden and sine-Gorden equations as examples. Nu-

merical results show that the proposed space-time collocation scheme has excellent long-time

stability and spectral accuracy in both space and time. By the way, it is worth mentioning

that such space-time high order methods for time dependent PDEs have received considerable

attention in recent years, see, e.g., the space-time spectral Galerkin and collocation methods

[30, 31, 35, 42–45, 54, 55, 57, 58], the space-time hp-finite element methods [4, 5, 9, 13, 32, 38] and

the references therein. We would like to emphasize that our purpose is not to compare with

those existing space-time high order methods, but to develop a new and available space-time

collocation method for nonlinear second-order evolution equations.

The paper is organized as follows. In Section 2, we introduce and analyze a single-interval

LGR collocation method for nonlinear second-order IVPs of ODEs. We further propose a multi-

interval LGR collocation method for more effective implementation. We also provide some

numerical examples and comparison to show the high accuracy and efficiency of the single and

multi-interval LGR collocation methods. In Section 3, we design a space-time spectral collo-

cation scheme for the nonlinear second-order evolution equations based on the multi-interval

LGR collocation method in time and the LGL collocation method in space. We take two typical

nonlinear wave equations as examples, numerical results show that the space-time collocation

scheme has long-time stability and high accuracy in both space and time. Finally, we give some

concluding remarks in Section 4.

2. Legendre-Gauss-Radau Spectral Collocation Method for

Second-Order IVPs

In this section, we introduce and analyze a single-interval LGR collocation method for the

model problem (1.1).

2.1. Preliminaries

Let Ll(x) be the Legendre polynomial of degree l on Λ := [−1, 1]. The Legendre polynomials

satisfy the recursion relation

(l + 1)Ll+1(x) = (2l + 1)xLl(x) − lLl−1(x), l ≥ 1, (2.1)
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where L0(x) = 1 and L1(x) = x. We recall that the Legendre polynomials also satisfy the

orthogonality relation

∫ 1

−1

Ll(x)Lm(x)dx =
2

2l + 1
δlm, ∀ n,m ≥ 0. (2.2)

For any u, v ∈ L2(Λ), we denote by (·, ·) the inner product and by ‖ · ‖ the L2-norm of the

space L2(Λ), i.e.,

(u, v) =

∫

Λ

uvdx, ‖v‖ = (v, v)
1

2 . (2.3)

Let {xNj }Nj=0 be the set of LGR quadrature nodes (arranged in ascending order with fixed

right endpoint xNN = 1) and {ωN
j }Nj=0 be the corresponding weights. We recall that {xNj }Nj=0

are the distinct zeros of LN+1(x) − LN(x), x ∈ Λ. For any u, v ∈ L2(Λ), we define the discrete

inner product (·, ·)N and the discrete norm ‖ · ‖N by

(u, v)N =

N∑

j=0

u(xNj )v(xNj )ωN
j , ‖v‖N = (v, v)

1

2

N .

Let PN (Λ) be the set of polynomials of degree at most N . Due to the exactness of the LGR

quadrature (cf. [40]), for any φψ ∈ P2N (Λ) and ϕ ∈ PN (Λ), there hold

(φ, ψ) = (φ, ψ)N , ‖ϕ‖ = ‖ϕ‖N . (2.4)

In addition, for any v ∈ C(−1, 1], we define the standard LGR interpolation INv ∈ PN (Λ) by

INv(xNj ) = v(xNj ), 0 ≤ j ≤ N.

For our purpose, we now define the shifted Legendre polynomials LT,l(t) by

LT,l(t) = Ll

(
2t

T
− 1

)
, t ∈ [0, T ], l ≥ 0.

Due to (2.1), the shifted Legendre polynomials also satisfy the recursion relation

(l + 1)LT,l+1(t) = (2l + 1)

(
2t

T
− 1

)
LT,l(t)− lLT,l−1(t), l ≥ 1. (2.5)

By (2.2), there holds ∫ T

0

LT,l(t)LT,m(t)dt =
T

2l+ 1
δlm, (2.6)

which implies that the set of {LT,l(t), l ≥ 0} forms a complete L2(0, T )-orthogonal system.

Hence, for any v ∈ L2(0, T ), we have

v(t) =

∞∑

l=0

v̂lLT,l(t) with v̂l =
2l+ 1

T

∫ T

0

v(t)LT,l(t)dt. (2.7)

Similar to (2.3), we denote by (·, ·)T the continuous inner product and by ‖ · ‖T the L2-norm

of the space L2(0, T ). Clearly, we have ‖v‖T = (v, v)
1

2

T for any v ∈ L2(0, T ).

Furthermore, we define the shifted LGR nodes and weights {tNT,j , ω
N
T,j}Nj=0 by

tNT,j =
T

2
(xNj + 1), ωN

T,j =
T

2
ωN
j , 0 ≤ j ≤ N.
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Analogously, for any u, v ∈ L2(0, T ), we define the discrete inner product (·, ·)T,N and norm

‖ · ‖T,N by

(u, v)T,N =

N∑

j=0

ωN
T,ju(t

N
T,j)v(t

N
T,j), ‖v‖T,N = (v, v)

1

2

T,N .

Thanks to (2.4), for any φψ ∈ P2N (0, T ) and ϕ ∈ PN (0, T ), there hold

(φ, ψ)T = (φ, ψ)T,N , ‖ϕ‖T = ‖ϕ‖T,N . (2.8)

For any v ∈ C(0, T ], we then define the shifted LGR interpolation IT,Nv ∈ PN (0, T ) by

IT,Nv(t
N
T,j) = v(tNT,j), 0 ≤ j ≤ N. (2.9)

From (2.8), we find that

(IT,Nv, φ)T = (IT,Nv, φ)T,N = (v, φ)T,N , ∀φ ∈ PN(0, T ). (2.10)

Obviously, the shifted LGR interpolation IT,Nv can be expanded as

IT,Nv(t) =

N∑

l=0

ṽlLT,l(t) (2.11)

with

ṽl =
2l+ 1

T
(IT,Nv, LT,l)T =

2l + 1

T
(v, LT,l)T,N , 0 ≤ l ≤ N. (2.12)

For any nonnegative integer r, let Hr(0, T ) be the usual Sobolev space. For simplicity, we

also denote by ‖ · ‖r,T and | · |r,T the norm and semi-norm of the space Hr(0, T ), respectively.

In particular, we set ‖ · ‖0,T = ‖ · ‖T for r = 0.

In view of (5.4.33) and (5.4.34) of [10], for any u ∈ Hr(Λ) with integer 1 ≤ r ≤ N + 1 and

1 ≤ m ≤ r, there hold

‖u− INu‖L2(Λ) ≤ CN−r|u|Hr(Λ),

|u− INu|Hm(Λ) ≤ CN2m− 1

2
−r|u|Hr(Λ)

for the standard LGR interpolation INu. Then, we can easily obtain the following scaled

estimates for the shifted LGR interpolation.

Lemma 2.1. Let u ∈ Hr(0, T ) with integer 1 ≤ r ≤ N + 1. For 1 ≤ m ≤ r, there hold

‖u− IT,Nu‖T ≤ CT rN−r|u|r,T , (2.13)

|u− IT,Nu|m,T ≤ CT r−mN2m− 1

2
−r|u|r,T . (2.14)

For analysis, we need to bound the discrete norm by the continuous norm as stated below

([56, Lemma 2.1]).

Lemma 2.2. For any ψ ∈ PN+1(0, T ), there holds

‖ψ‖T,N ≤ γ1‖ψ‖T , (2.15)

where γ1 =
√
2 + 2

2N+1 .

The following estimate can be proved by using similar techniques as in Lemma 2.2.
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Lemma 2.3. For any ψ ∈ PN+2(0, T ), there holds

‖ψ‖T,N ≤ γ2‖ψ‖T , (2.16)

where γ2 =
√
3 + 78

2N−1 .

Proof. Let ϕ(x) = ψ
(
T
2 (x+ 1)

)
with x ∈ Λ, then ϕ ∈ PN+2(Λ). We shall show that

‖ϕ‖N ≤ γ2‖ϕ‖. (2.17)

To this end, we expand ϕ and its LGR interpolation as

ϕ(x) =
N+2∑

l=0

ϕ̂lLl(x), INϕ(x) =
N∑

l=0

ϕ̃lLl(x). (2.18)

Clearly, INϕLl ∈ PN+l(−1, 1), by (2.4) we have

ϕ̃l =
2l+ 1

2
(INϕ,Ll) =

2l+ 1

2
(INϕ,Ll)N

=
2l+ 1

2
(ϕ,Ll)N = ϕ̂l, 0 ≤ l ≤ N − 2. (2.19)

Noting that LN+1(x
N
j ) − LN (xNj ) = 0 for 0 ≤ j ≤ N , then using (2.1), (2.2), (2.4) and (2.18)

gives

ϕ̃N−1 =
2N − 1

2
(INϕ,LN−1) =

2N − 1

2
(INϕ,LN−1)N =

2N − 1

2
(ϕ,LN−1)N

=
2N − 1

2
(ϕ̂N−1LN−1, LN−1) +

2N − 1

2
(ϕ̂N+2LN+2, LN−1)N

= ϕ̂N−1 +
2N − 1

2

(
ϕ̂N+2

(
2N + 3

N + 2
xLN+1 −

N + 1

N + 2
LN

)
, LN−1

)

N

= ϕ̂N−1 +
2N − 1

2

(
ϕ̂N+2

2N + 3

N + 2
x (LN+1 − LN) + ϕ̂N+2

2N + 3

N + 2
xLN , LN−1

)

N

= ϕ̂N−1 +
2N − 1

2

(
ϕ̂N+2

2N + 3

N + 2
xLN , LN−1

)

N

= ϕ̂N−1 +
2N − 1

2

(
ϕ̂N+2

2N + 3

N + 2

(
N + 1

2N + 1
LN+1 +

N

2N + 1
LN−1

)
, LN−1

)

N

= ϕ̂N−1 +
N(2N + 3)

(N + 2)(2N + 1)
ϕ̂N+2

and

ϕ̃N =
2N + 1

2
(INϕ,LN ) =

2N + 1

2
(ϕ,LN )N

=
2N + 1

2
(ϕ̂NLN , LN) +

2N + 1

2
(ϕ̂N+1LN+1 + ϕ̂N+2LN+2, LN )N

= ϕ̂N + ϕ̂N+1 +
2N + 1

2
(ϕ̂N+2LN+2, LN)N

= ϕ̂N + ϕ̂N+1 +
2N + 1

2

(
ϕ̂N+2

(
2N + 3

N + 2
x(LN+1 − LN + LN)− N + 1

N + 2
LN

)
, LN

)

N

= ϕ̂N + ϕ̂N+1 +
2N + 1

2

(
ϕ̂N+2

(
2N + 3

N + 2
xLN − N + 1

N + 2
LN

)
, LN

)

N
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= ϕ̂N + ϕ̂N+1 −
N + 1

N + 2
ϕ̂N+2 +

2N + 1

2

(
(2N + 3)(N + 1)

(2N + 1)(N + 2)
ϕ̂N+2LN+1, LN

)

N

= ϕ̂N + ϕ̂N+1 +
2(N + 1)

(2N + 1)(N + 2)
ϕ̂N+2,

which together with (2.18) and (2.19) leads to

‖INϕ‖2 =

N∑

l=0

2

2l+ 1
ϕ̃2
l ≤

N−2∑

l=0

2

2l + 1
ϕ̂2
l +

2

2N − 1

(
ϕ̂N−1 +

N(2N + 3)

(N + 2)(2N + 1)
ϕ̂N+2

)2

+
2

2N + 1

(
ϕ̂N + ϕ̂N+1 +

2(N + 1)

(2N + 1)(N + 2)
ϕ̂N+2

)2

≤
N−2∑

l=0

2

2l + 1
ϕ̂2
l +

4

2N − 1
ϕ̂2
N−1 +

4

2N − 1

(
N(2N + 3)

(N + 2)(2N + 1)

)2

ϕ̂2
N+2

+
6

2N + 1
ϕ̂2
N +

6

2N + 1
ϕ̂2
N+1 +

6

2N + 1

(
2(N + 1)

(N + 2)(2N + 1)

)2

ϕ̂2
N+2

≤
N+2∑

l=0

2

2l+ 1
ϕ̂2
l +

N+2∑

l=N−1

2

2l + 1
ϕ̂2
l +

N+1∑

l=N

2

2l+ 1
ϕ̂2
l +

6

(2N + 1)

2

(2N + 3)
ϕ̂2
N+1

+ 12

(
1

2N − 1
+

2N + 5

(2N + 1)3

)
2

(2N + 5)
ϕ̂2
N+2

≤
(
3 +

6

2N + 1
+ 12

(
1

2N − 1
+

2N + 5

(2N + 1)3

))
‖ϕ‖2,

and thus

‖INϕ‖ ≤
√
3 +

78

2N − 1
‖ϕ‖. (2.20)

Moreover, by (2.4) we have

‖ϕ‖N = ‖INϕ‖N = ‖INϕ‖,

which together with (2.20) implies (2.17). Thus, a simple variable transformation of (2.17)

leads to (2.16). This completes the proof. �

2.2. Single-interval Legendre-Gauss-Radau collocation scheme

The single-interval LGR collocation scheme for solving (1.1) is to find uN(t) ∈ PN+2(0, T )

such that {
∂2t u

N (tNT,j) = f
(
∂tu

N (tNT,j), u
N (tNT,j), t

N
T,j

)
, 0 ≤ j ≤ N,

∂tu
N(0) = v0, uN (0) = u0.

(2.21)

Due to (2.9), we observe that

IT,Nf
(
∂tu

N (tNT,j), u
N (tNT,j), t

N
T,j

)
= f

(
∂tu

N(tNT,j), u
N(tNT,j), t

N
T,j

)
.

Then, by (2.21) we have

∂2t u
N
(
tNT,j

)
= IT,Nf

(
∂tu

N(tNT,j), u
N(tNT,j), t

N
T,j

)
, 0 ≤ j ≤ N.
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Since both functions ∂2t u
N and IT,Nf belong to the polynomial space PN (0, T ), and they have

same values at the N + 1 distinct collocation points. Then, the collocation scheme (2.21) can

be reformulated as: Find uN(t) ∈ PN+2(0, T ) such that

∂2t u
N (t) = IT,Nf

(
∂tu

N (t), uN (t), t
)
, t ∈ (0, T ]. (2.22)

We expand the LGR collocation approximation and its derivative by

uN (t) =

N+2∑

k=0

ûkLT,k(t), ∂tu
N(t) =

N+2∑

k=1

ûk∂tLT,k(t) (2.23)

and let

IT,Nf
(
∂tu

N (t), uN (t), t
)
=

N∑

k=0

f̂kLT,k(t). (2.24)

Due to (2.12), there holds

f̂k =
2k + 1

T

N∑

j=0

f
(
∂tu

N(tNT,j), u
N (tNT,j), t

N
T,j

)
LT,k

(
tNT,j

)
ωN
T,j , 0 ≤ k ≤ N. (2.25)

Using (2.22)-(2.24) and properties of the shifted Legendre polynomials, a direct computation

reveals that ([54])

∂2t u
N(t) =

N+2∑

k=2

ûk∂
2
t LT,k(t) =

N∑

k=0

f̂kLT,k(t) =
N+1∑

k=1

f̃k∂tLT,k(t)

=
T f̃N+1

2(2N + 3)
∂2t LT,N+2(t) +

T f̃N
2(2N + 1)

∂2t LT,N+1(t)

+
T

2

N∑

k=2

(
f̃k−1

2k − 1
− f̃k+1

2k + 3

)
∂2t LT,k(t), (2.26)

where

f̃N+1 =
T f̂N

2(2N + 1)
, f̃N =

T f̂N−1

2(2N − 1)
, f̃k =

T

2

(
f̂k−1

2k − 1
− f̂k+1

2k + 3

)
, 1 ≤ k ≤ N − 1.

(2.27)

In view of (2.26), comparing the expansion coefficients in terms of ∂2t LT,k(t) leads to

ûN+2 =
T f̃N+1

2(2N + 3)
, ûN+1 =

T f̃N
2(2N + 1)

, ûk =
T

2

(
f̃k−1

2k − 1
− f̃k+1

2k + 3

)
, 2 ≤ k ≤ N.

(2.28)

Inserting (2.27) into (2.28), we further obtain

ûN+2 =
T 2

4(2N + 3)(2N + 1)
f̂N , (2.29a)

ûN+1 =
T 2

4(2N + 1)(2N − 1)
f̂N−1, N ≥ 1, (2.29b)

ûN =
T 2

4(2N − 1)(2N − 3)
f̂N−2 −

T 2

2(2N + 3)(2N − 1)
f̂N , N ≥ 2, (2.29c)

ûN−1 =
T 2

4(2N − 3)(2N − 5)
f̂N−3 −

T 2

2(2N + 1)(2N − 3)
f̂N−1, N ≥ 3, (2.29d)
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ûk =
T 2

4(2k − 1)(2k − 3)
f̂k−2 −

T 2

2(2k + 3)(2k − 1)
f̂k +

T 2

4(2k + 5)(2k + 3)
f̂k+2 (2.29e)

for 2 ≤ k ≤ N − 2. Moreover, substituting t = 0 into the second equality of (2.23), then using

(2.21) and the fact ∂tLT,k(0) =
1
T (−1)k−1k(k + 1) gives

û1 =
T

2
v0 +

1

2

N+2∑

k=2

(−1)kk(k + 1)ûk. (2.30)

On the other hand, inserting t = 0 into (2.23), using (2.21), (2.30) and the fact LT,k(0) = (−1)k,

we obtain

û0 = u0 −
N+2∑

k=1

(−1)kûk = u0 +
T

2
v0 +

1

2

N+2∑

k=2

(−1)k(k − 1)(k + 2)ûk. (2.31)

Thanks to (2.29)-(2.31), we can compute the expansion coefficients {ûk}N+2
k=0 of the LGR collo-

cation approximation uN by a simple iterative algorithm, as described in Algorithm 2.1.

Algorithm 2.1. A Simple Iterative Algorithm

1: Input: initial guess of {ûk}N+2
k=0 and tolerance.

2: while the maximum absolute difference between two consecutive coefficients of {ûk}N+2
k=0

is bigger than the desired tolerance do

3: Compute the coefficients {f̂k}Nk=0 by (2.23) and (2.25).

4: Update the coefficients {ûk}N+2
k=0 by (2.29), (2.30) and (2.31).

5: end while

6: Output: quantities of interest, such as uN (tNT,j), ∂tu
N(tNT,j) and u

N(T ).

2.3. Convergence analysis

The aim of this subsection is to analyze the convergence of the single-interval LGR colloca-

tion scheme (2.21). To this end, we set

EN (t) = IT,Nu(t)− uN(t).

We further define

GN
T,1(t) = ∂2t IT,Nu(t)− IT,N∂

2
t u(t),

GN
T,2(t) = f(∂tIT,Nu(t), u

N(t), t)− f(∂tu
N (t), uN (t), t),

GN
T,3(t) = f(∂tIT,Nu(t), IT,Nu(t), t)− f(∂tIT,Nu(t), u

N (t), t),

GN
T,4(t) = f(IT,N∂tu(t), IT,Nu(t), t)− f(∂tIT,Nu(t), IT,Nu(t), t).

Due to (1.1) and the definition of IT,Nu, there holds

IT,N∂
2
t u(t

N
T,j) = ∂2t u(t

N
T,j) = f

(
∂tu(t

N
T,j), u(t

N
T,j), t

N
T,j

)
= f

(
IT,N∂tu(t

N
T,j), IT,Nu(t

N
T,j), t

N
T,j

)

for 0 ≤ j ≤ N , and then we have

∂2t IT,Nu(t
N
T,j) = f

(
∂tu(t

N
T,j), u(t

N
T,j), t

N
T,j

)
+GN

T,1(t
N
T,j), 0 ≤ j ≤ N. (2.32)
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Combining (2.21) and (2.32) yields





∂2tE
N (tNT,j) =

4∑

j=1

GN
T,j(t

N
T,j), 0 ≤ j ≤ N,

∂tE
N (0) = ∂tIT,Nu(0)− v0, EN (0) = IT,Nu(0)− u0.

(2.33)

For our purpose, we assume that f in (1.1) is continuous and satisfies uniform Lipschitz

conditions, i.e., there exist positive constants L1 and L2 such that

|f(z1, s, t)− f(z2, s, t)| ≤ L1|z1 − z2|, |f(z, s1, t)− f(z, s2, t)| ≤ L2|s1 − s2| (2.34)

for t ∈ (0, T ], |zi| <∞ and |si| <∞ (i = 1, 2).

The following estimates will be used to deal with the term EN .

Lemma 2.4. Let u ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1. Then we have

‖GN
T,1‖T,N ≤ CT r−2N

7

2
−r|u|r,T , (2.35)

‖GN
T,2‖T,N ≤ L1γ1‖∂tEN‖T , (2.36)

‖GN
T,3‖T,N ≤ L2γ2‖EN‖T , (2.37)

‖GN
T,4‖T,N ≤ CL1T

r−1N
3

2
−r|u|r,T (2.38)

with C > 0 independent on T and N .

Proof. In view of (2.13), there holds for any integer 3 ≤ r ≤ N + 3,

‖∂2t u− IT,N∂
2
t u‖T ≤ CT r−2N2−r|u|r,T .

This together with (2.8) and (2.14) gives

‖GN
T,1‖T,N = ‖GN

T,1‖T ≤ ‖∂2t (IT,Nu− u)‖T + ‖∂2t u− IT,N∂
2
t u‖T ≤ CT r−2N

7

2
−r|u|r,T

for any integer 3 ≤ r ≤ N + 1. Thus the proof of (2.35) is complete.

Combining (2.34) and (2.15) gives

‖GN
T,2‖T,N ≤ L1‖∂tIT,Nu− ∂tu

N‖T,N = L1‖∂tEN‖T,N ≤ L1γ1‖∂tEN‖T

upon noting that ∂tE
N ∈ PN+1(0, T ). This proves (2.36).

Since EN ∈ PN+2(0, T ), applying (2.34) and (2.16) yields

‖GN
T,3‖T,N ≤ L2‖IT,Nu− uN‖T,N = L2‖EN‖T,N ≤ L2γ2‖EN‖T ,

which implies (2.37).

Moreover, using (2.34), (2.13) and (2.14) we deduce that

‖GN
T,4‖T,N ≤ L1‖IT,N∂tu− ∂tIT,Nu‖T,N

≤ L1 (‖IT,N∂tu− ∂tu‖T,N + ‖∂tu− ∂tIT,Nu‖T,N)

≤ CL1T
r−1N

3

2
−r|u|r,T .

This completes the proof of (2.38). �
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We now estimate EN .

Lemma 2.5. Let u ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1. Then we have

‖∂tEN (t)− ∂tE
N (0)‖T ≤ 2T

(
L1γ1‖∂tEN‖T + L2γ2‖EN‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
, (2.39)

|∂tEN (T )− ∂tE
N (0)| ≤ 2T

1

2

(
L1γ1‖∂tEN‖T + L2γ2‖EN‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
, (2.40)

where C∗ = 1 + L1TN
−2 and C > 0 is independent on T and N .

Proof. For simplicity, we denote E1(t) = ∂tE
N (t)− ∂tE

N (0) and C∗ = 1+L1TN
−2. Then,

we have E1 ∈ PN+1(0, T ), t
−1E1 ∈ PN (0, T ) and ∂t(t

−1E1) ∈ PN−1(0, T ). By (2.8) and

integration by parts, we get

2
(
E1, ∂t(t

−1E1)
)
T,N

= 2
(
E1, ∂t(t

−1E1)
)
T

= −2
(
E1, t

−2E1

)
T
+ 2

(
E1, t

−1∂tE1

)
T

= −2‖t−1E1‖2T +
(
t−1, ∂t(E

2
1 )
)
T

= −‖t−1E1‖2T + T−1|E1(T )|2. (2.41)

On the other hand, by (2.8) and (2.33) we obtain

2
(
E1, ∂t(t

−1E1)
)
T,N

= −2(E1, t
−2E1)T,N + 2(E1, t

−1∂2tE
N )T,N

= −2‖t−1E1‖2T + 2


t−1E1,

4∑

j=1

GN
T,j




T,N

. (2.42)

Combining (2.41) and (2.42) gives

‖t−1E1‖2T + T−1|E1(T )|2 =

4∑

j=1

2
(
t−1E1, G

N
T,j

)
T,N

=:

4∑

j=1

AN
T,j . (2.43)

Since t−1E1 ∈ PN (0, T ), applying (2.8) yields

|AN
T,j | = 2

∣∣∣
(
t−1E1, G

N
T,j

)
T,N

∣∣∣ ≤ 2‖t−1E1‖T‖GN
T,j‖T,N , 1 ≤ j ≤ 4. (2.44)

Thus, by (2.43) and (2.44) we get

‖t−1E1‖2T ≤
4∑

j=1

AN
T,j ≤ 2‖t−1E1‖T

4∑

j=1

‖GN
T,j‖T,N . (2.45)

Applying Lemma 2.4 to (2.45) gives

‖t−1E1‖T ≤ 2

4∑

j=1

‖GN
T,j‖T,N

≤ 2
(
L1γ1‖∂tEN‖T + L2γ2‖EN‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
, (2.46)

which implies that

‖E1‖T ≤ T ‖t−1E1‖T ≤ 2T
(
L1γ1‖∂tEN (t)‖T + L2γ2‖EN(t)‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
.

This completes the proof of (2.39).
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Moreover, thanks to (2.43), (2.45) and (2.46), we find that

T−1|E1(T )|2 ≤
4∑

j=1

AN
T,j ≤ 2‖t−1E1‖T

4∑

j=1

‖GN
T,j‖T,N ≤ 4




4∑

j=1

‖GN
T,j‖T,N




2

,

which together with Lemma 2.4 leads to

|E1(T )| ≤ 2T
1

2

(
L1γ1‖∂tEN (t)‖T + L2γ2‖EN(t)‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
.

This completes the proof of (2.40). �

We are ready to present the main results of this section.

Theorem 2.1. Let u ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1. Assume that T is suitably small

and there exist positive constants α and β such that

2TL1γ1 ≤ α < 1 and
4T 2L2γ2

1− 2TL1γ1
≤ β < 1. (2.47)

Then, we have

‖u− uN‖T ≤ Cα,βC∗T
rN

7

2
−r|u|r,T , (2.48)

‖∂tu− ∂tu
N‖T ≤ Cα,βC∗T

r−1N
7

2
−r|u|r,T , (2.49)

|u(T )− uN (T )| ≤ Cα,βC∗T
r−1

2N
7

2
−r|u|r,T , (2.50)

|∂tu(T )− ∂tu
N(T )| ≤ Cα,βC∗T

r− 3

2N
7

2
−r|u|r,T , (2.51)

where C∗ > 0 is defined as in Lemma 2.5 and Cα,β > 0 depends on α, β but not on T,N .

Proof. Noting that for any v ∈ H1(0, T ), there holds (page 279 of [21]),

max
t∈[0,T ]

|v(t)| ≤ T− 1

2 ‖v‖T + T
1

2 ‖∂tv‖T . (2.52)

This together with (2.33) and (2.14) yields

|∂tEN (0)| = |∂tIT,Nu(0)− ∂tu(0)|
≤ T− 1

2 ‖∂t(IT,Nu− u)‖T + T
1

2 ‖∂2t (IT,Nu− u)‖T
≤ CT r−3

2N
7

2
−r|u|r,T . (2.53)

Similarly, applying Lemma 2.1 we obtain

|EN (0)| = |IT,Nu(0)− u(0)|
≤ T− 1

2 ‖IT,Nu− u‖T + T
1

2 ‖∂t(IT,Nu− u)‖T
≤ CT r− 1

2N
3

2
−r|u|r,T . (2.54)

Combining (2.39) and (2.53) gives

‖∂tEN‖T ≤ ‖∂tEN (t)− ∂tE
N (0)‖T + ‖∂tEN (0)‖T

= ‖∂tEN (t)− ∂tE
N (0)‖T + T

1

2 |∂tEN (0)|

≤ 2T
(
L1γ1‖∂tEN‖T + L2γ2‖EN‖T + CC∗T

r−2N
7

2
−r|u|r,T

)
,
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or equivalently,

(1− 2TL1γ1)‖∂tEN‖T ≤ 2TL2γ2‖EN‖T + CC∗T
r−1N

7

2
−r|u|r,T . (2.55)

Suppose that T is suitably small and there is a positive constant α such that

2TL1γ1 ≤ α < 1. (2.56)

Then, we can rewrite (2.55) as

‖∂tEN‖T ≤ 2TL2γ2
1− 2TL1γ1

‖EN‖T + CC∗
1

1− 2TL1γ1
T r−1N

7

2
−r|u|r,T . (2.57)

Upon observing that

|EN (t)|2 − |EN (0)|2 = 2

∫ t

0

∂tE
NENdt ≤ 2‖EN‖T ‖∂tEN‖T

and integrating the above inequality with respect to t over the interval (0, T ), we get

‖EN‖2T ≤ T |EN(0)|2 + 2T ‖EN‖T‖∂tEN‖T ≤ T |EN(0)|2 + 1

2
‖EN‖2T + 2T 2‖∂tEN‖2T ,

which implies that

‖EN‖T ≤
√
2T

1

2 |EN (0)|+ 2T ‖∂tEN‖T . (2.58)

Inserting (2.54) and (2.57) into (2.58) gives

‖EN‖T ≤ CT rN
3

2
−r|u|r,T +

4T 2L2γ2
1− 2TL1γ1

‖EN‖T + CC∗
1

1− 2TL1γ1
T rN

7

2
−r|u|r,T ,

or equivalently, thanks to (2.56), we have
(
1− 4T 2L2γ2

1− 2TL1γ1

)
‖EN‖T ≤ CαC∗T

rN
7

2
−r|u|r,T , (2.59)

where Cα > 0 depends on α and possibly having different values in each occurrence. Suppose

that T is suitably small and there is a positive constant β such that

4T 2L2γ2
1− 2TL1γ1

≤ β < 1. (2.60)

Then, (2.59) can be read as

‖EN‖T ≤ Cα,βC∗T
rN

7

2
−r|u|r,T . (2.61)

Here, Cα,β > 0 depends on α, β and possibly having different values in each occurrence. Ap-

plying the triangle inequality, using (2.13) and (2.61), we obtain

‖u− uN‖T ≤ ‖u− IT,Nu‖T + ‖EN‖T ≤ Cα,βC∗T
rN

7

2
−r|u|r,T .

This completes the proof of (2.48). Inserting (2.61) into (2.57), then using (2.56) and (2.60)

gives

‖∂tEN‖T ≤ 2TL2γ2
1− 2TL1γ1

Cα,βC∗T
rN

7

2
−r|u|r,T + CC∗

1

1− 2TL1γ1
T r−1N

7

2
−r|u|r,T

≤ 2T 2L2γ2
1− 2TL1γ1

Cα,βC∗T
r−1N

7

2
−r|u|r,T + CαC∗T

r−1N
7

2
−r|u|r,T
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≤ β

2
Cα,βC∗T

r−1N
7

2
−r|u|r,T + CαC∗T

r−1N
7

2
−r|u|r,T

≤ Cα,βC∗T
r−1N

7

2
−r|u|r,T . (2.62)

Applying the triangle inequality, using (2.14) and (2.62), we get

‖∂tu− ∂tu
N‖T ≤ ‖∂t(u− IT,Nu)‖T + ‖∂tEN‖T ≤ Cα,βC∗T

r−1N
7

2
−r|u|r,T .

This proves (2.49). Since u(T ) = IT,Nu(T ), there holds u(T )−uN(T ) = EN (T ). Then, thanks

to (2.52), combining (2.61) and (2.62), we obtain

|u(T )− uN(T )| = |EN (T )| ≤ T− 1

2 ‖EN‖T + T
1

2 ‖∂tEN‖T ≤ Cα,βC∗T
r−1

2N
7

2
−r|u|r,T ,

which implies (2.50).

Moreover, inserting (2.61) and (2.62) into (2.40), then using (2.56) and (2.60), we obtain

|∂tEN (T )− ∂tE
N (0)| ≤ 2T

1

2

(
T 2L2γ2

1− 2TL1γ1
(1 − 2TL1γ1)Cα,βC∗T

r−2N
7

2
−r|u|r,T

+ TL1γ1Cα,βC∗T
r−2N

7

2
−r|u|r,T + CC∗T

r−2N
7

2
−r|u|r,T

)

≤ 2T
1

2

(β
4
Cα,βC∗T

r−2N
7

2
−r|u|r,T + TL1γ1Cα,βC∗T

r−2N
7

2
−r|u|r,T

+ CC∗T
r−2N

7

2
−r|u|r,T

)

≤ Cα,βC∗T
r−3

2N
7

2
−r|u|r,T ,

which together with (2.53) gives

|∂tEN (T )| ≤ |∂tEN (T )− ∂tE
N (0)|+ |∂tEN (0)| ≤ Cα,βC∗T

r−3

2N
7

2
−r|u|r,T . (2.63)

Applying the triangle inequality, using (2.52), (2.14) and (2.63), we deduce that

|∂tu(T )− ∂tu
N(T )| ≤ |∂tu(T )− ∂tIT,Nu(T )|+ |∂tEN (T )|

≤ T− 1

2 ‖∂t(u− IT,Nu)‖T + T
1

2 ‖∂2t (u− IT,Nu)‖T + |∂tEN (T )|
≤ Cα,βC∗T

r− 3

2N
7

2
−r|u|r,T .

This proves (2.51). �

Remark 2.1. The error estimates (2.48)-(2.51) imply that the convergence rate of the single-

interval LGR collocation method is of the order O(N
7

2
−r) for fixed T . Clearly, the errors decay

rapidly as N and r increase. In other words, the single-interval LGR collocation method can

yield arbitrary high-order algebraic convergence rate (i.e., spectral convergence), provided that

the solution u is smooth enough.

Remark 2.2. We note that the LG spectral collocation method was developed in [24] for

second-order ODEs, where the convergence rate of the numerical errors is of the order O(N4−r)

for fixed T provided that ∂ru ∈ L∞(0, T ) (see [24, Remarks 3.3 and 3.6]). Although both meth-

ods can achieve spectral convergence, the convergence of our method in N is half order higher

than the method proposed in [24]. Moreover, it is well-known that the Gauss-type quadrature

formulas provide powerful tools for evaluating integrals and inner products in spectral collo-

cation methods. Since the degrees of precision of the LGR and LG quadrature formulas with
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N + 1 points are 2N and 2N + 1, respectively, this leads to different consideration in the error

analysis for the spectral collocation methods based on LGR and LG points, and some new

technique results (see, e.g., Lemma 2.3) are also needed in our situation for the LGR case.

Remark 2.3. If ∂ru ∈ L∞(0, T ) and T < 1, then from (2.48)-(2.51) we deduce that

‖u− uN‖T = O(T r+ 1

2N
7

2
−r), ‖∂tu− ∂tu

N‖T = O(T r− 1

2N
7

2
−r),

|u(T )− uN(T )| = O(T rN
7

2
−r), |∂tu(T )− ∂tu

N(T )| = O(T r−1N
7

2
−r).

2.4. Multi-interval Legendre-Gauss-Radau collocation scheme

In the last section, we proposed and analyzed a single-interval LGR collocation method,

and the theoretical results show that the numerical errors decay rapidly as N and r increase.

However, the length of the interval (0, T ) is sometimes limited due to the condition (2.47). On

the other hand, it is not convenient for us to solve the resulted discrete system with large N .

To remedy these deficiencies, we introduce a multi-interval LGR collocation scheme as follows.

For this purpose, we first divide the interval (0, T ] intoM subintervals {Im :=(Tm−1, Tm]}Mm=1

with nodes given by

0 = T0 < T1 < · · · < TM = T.

Let τm := Tm − Tm−1, 1 ≤ m ≤ M . We further set um(t) := u(Tm−1 + t) for 0 ≤ t ≤ τm. In

view of (1.1), there holds





∂2t um(t) = f(∂tum(t), um(t), Tm−1 + t), 0 < t ≤ τm, 1 ≤ m ≤M,

∂tum(0) = ∂tum−1(τm−1), um(0) = um−1(τm−1), 2 ≤ m ≤M,

∂tu1(0) = v0, u1(0) = u0.

(2.64)

By replacing T and N by τ1 and N1 in (2.21), respectively, we can obtain a local approxi-

mation uN1

1 (t) ∈ PN1+2(0, τ1) for u1(t) with ∂tu
N1

1 (0) = v0 and uN1

1 (0) = u0. Similarly, we can

obtain the local numerical solutions uNm

m (t) ∈ PNm+2(0, τm) for 2 ≤ m ≤M by using the time

stepping scheme




∂2t u
Nm

m (tNm

τm,j) = f
(
∂tu

Nm

m (tNm

τm,j), u
Nm

m (tNm

τm,j), Tm−1 + tNm

τm,j

)
, 2 ≤ m ≤M, 0 ≤ j ≤ Nm,

∂tu
Nm

m (0) = ∂tu
Nm−1

m−1 (τm−1), uNm

m (0) = u
Nm−1

m−1 (τm−1), 2 ≤ m ≤M,

(2.65)

where {tNm

τm,k}Nm

k=0 are the shifted LGR quadrature nodes on the interval (0, τm]. Then, the global

numerical solution of (1.1) is given by

uN(Tm−1 + t) = uNm

m (t), 0 ≤ t ≤ τm, 1 ≤ m ≤M. (2.66)

Clearly, uNm

m (t) is an approximation to the local exact solution um(t) for 1 ≤ m ≤M .

We now turn to the error analysis. For simplicity, we consider the case with uniform mode

Nm = N and uniform step-size τm = τ . To this end, we set

EN
m(t) = Iτ,Num(t)− uNm(t), 1 ≤ m ≤M.

We further define

mG
N
τ,1(t) = ∂2t Iτ,Num(t)− Iτ,N∂2t um(t),

mG
N
τ,2(t) = f(∂tIτ,Num(t), uNm(t), t)− f(∂tu

N
m(t), uNm(t), t),
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mG
N
τ,3(t) = f(∂tIτ,Num(t), Iτ,Num(t), t)− f(∂tIτ,Num(t), uNm(t), t),

mG
N
τ,4(t) = f(Iτ,N∂tum(t), Iτ,Num(t), t)− f(∂tIτ,Num(t), Iτ,Num(t), t).

Following the same line as in the derivation of (2.33), we obtain from (2.64) and (2.65) with

Nm = N and τm = τ that





∂2tE
N
m(tNτ,j) =

4∑

j=1

mG
N
τ,j(t

N
τ,j), 0 ≤ j ≤ N, 1 ≤ m ≤M,

∂tE
N
m(0) = ∂tIτ,Num(0)− ∂tu

N
m−1(τ),

EN
m(0) = Iτ,Num(0)− uNm−1(τ), 2 ≤ m ≤M,

∂tE
N
1 (0) = ∂tIτ,Nu1(0)− v0, EN

1 (0) = Iτ,Nu1(0)− u0.

(2.67)

Similar to the proof of Lemma 2.5, we can easily deduce the following results.

Lemma 2.6. Assume that f satisfies (2.34). Let um ∈ Hr(0, τ) with integer 3 ≤ r ≤ N + 1.

Then we have

‖∂tEN
m(t)− ∂tE

N
m(0)‖τ ≤ Cτ

(
‖∂tEN

m‖τ + ‖EN
m‖τ + τr−2N

7

2
−r|um|r,τ

)
, (2.68)

|∂tEN
m(τ) − ∂tE

N
m(0)| ≤ Cτ

1

2

(
‖∂tEN

m‖τ + ‖EN
m‖τ + τr−2N

7

2
−r|um|r,τ

)
, (2.69)

where the constant C > 0 is independent of τ and N .

The following theorem establishes the spectral convergence of the multi-interval LGR collo-

cation scheme for the problem (1.1).

Theorem 2.2. Assume that f satisfies (2.34). Let u ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1.

Then, for sufficiently small τ > 0, there hold

‖u− uN‖L2(0,mτ) ≤ CmτrN
7

2
−r|u|Hr(0,mτ), (2.70)

‖∂tu− ∂tu
N‖2L2(0,mτ) ≤ Cmτr−1N

7

2
−r|u|Hr(0,mτ), (2.71)

|u(mτ)− uN(mτ)| ≤ Cm
1

2 τr−
1

2N
7

2
−r|u|Hr(0,mτ), (2.72)

|∂tu(mτ)− ∂tu
N (mτ)| ≤ Cm

1

2 τr−
3

2N
7

2
−r|u|Hr(0,mτ) (2.73)

for 1 ≤ m ≤M , where the constant C > 0 is independent of τ and N .

Proof. According to (2.48)-(2.51), there hold

‖u− uN‖L2(0,τ) = ‖u1 − uN1 ‖τ ≤ CτrN
7

2
−r|u1|r,τ , (2.74)

‖∂tu− ∂tu
N‖L2(0,τ) = ‖∂tu1 − ∂tu

N
1 ‖τ ≤ Cτr−1N

7

2
−r|u1|r,τ , (2.75)

|u(τ)− uN (τ) = |u1(τ) − uN1 (τ)| ≤ Cτr−
1

2N
7

2
−r|u1|r,τ , (2.76)

|∂tu(τ)− ∂tu
N(τ)| = |∂tu1(τ) − ∂tu

N
1 (τ)| ≤ Cτr−

3

2N
7

2
−r|u1|r,τ (2.77)

for sufficiently small τ .

We next estimate the term EN
m for m = 2. Noting the fact that

EN
2 (0) = Iτ,Nu2(0)− uN1 (τ) = (Iτ,Nu2(0)− u2(0)) +

(
u1(τ) − uN1 (τ)

)
,
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then using (2.54) and (2.76) gives

|EN
2 (0)| ≤ Cτr−

1

2N
3

2
−r|u2|r,τ + Cτr−

1

2N
7

2
−r|u1|r,τ

≤ Cτr−
1

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) . (2.78)

Similarly, due to (2.53) and (2.77), we have

|∂tEN
2 (0)| ≤ Cτr−

3

2N
7

2
−r|u2|r,τ + Cτr−

3

2N
7

2
−r|u1|r,τ

= Cτr−
3

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) . (2.79)

Using (2.79) and (2.68) with m = 2, we obtain

‖∂tEN
2 ‖τ ≤ ‖∂tEN

2 (t)− ∂tE
N
2 (0)‖τ + ‖∂tEN

2 (0)‖τ

= ‖∂tEN
2 (t)− ∂tE

N
2 (0)‖τ + τ

1

2 |∂tEN
2 (0)|

≤ Cτ
(
‖∂tEN

2 ‖τ + ‖EN
2 ‖τ + τr−2N

7

2
−r (|u1|r,τ + |u2|r,τ )

)
. (2.80)

Then (2.80) can be rewritten as

‖∂tEN
2 ‖τ ≤ Cτ‖EN

2 ‖τ + Cτr−1N
7

2
−r (|u1|r,τ + |u2|r,τ ) (2.81)

for sufficiently small τ . Similar to the derivation of (2.58), we deduce that

‖EN
2 ‖τ ≤

√
2τ

1

2 |EN
2 (0)|+ 2τ‖∂tEN

2 ‖τ . (2.82)

Inserting (2.78) and (2.81) into (2.82) yields

‖EN
2 ‖τ ≤ Cτ2‖EN

2 ‖τ + CτrN
7

2
−r (|u1|r,τ + |u2|r,τ ) ,

which implies that

‖EN
2 ‖T ≤ CτrN

7

2
−r (|u1|r,τ + |u2|r,τ ) (2.83)

for sufficiently small τ . Inserting (2.83) into (2.81) gives

‖∂tEN
2 ‖τ ≤ Cτr−1N

7

2
−r (|u1|r,τ + |u2|r,τ ) . (2.84)

Moreover, inserting (2.83) and (2.84) into (2.84), leads to

|∂tEN
2 (τ)− ∂tE

N
2 (0)| ≤ Cτr−

3

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) ,

which together with (2.79) yields

|∂tEN
2 (τ)| ≤ |∂tEN

2 (τ) − ∂tE
N
2 (0)|+ |∂tEN

2 (0)|
≤ Cτr−

3

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) . (2.85)

Combining (2.13) and (2.83), we obtain

‖u2 − uN2 ‖τ ≤ ‖u2 − Iτ,Nu2‖τ + ‖EN
2 ‖τ ≤ CτrN

7

2
−r (|u1|r,τ + |u2|r,τ ) .

Similarly, combining (2.14) and (2.84), we get

‖∂tu2 − ∂tu
N
2 ‖τ ≤ ‖∂t(u2 − Iτ,Nu2)‖τ + ‖∂tEN

2 ‖τ ≤ Cτr−1N
7

2
−r (|u1|r,τ + |u2|r,τ ) .
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Noting the fact that u2(τ) = Iτ,Nu2(τ), then using (2.52), (2.61) and (2.62), we find

|u2(τ) − uN2 (τ)| = |EN
2 (τ)| ≤ τ−

1

2 ‖EN
2 ‖τ + τ

1

2 ‖∂tEN
2 ‖τ

≤ Cτr−
1

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) .

Combining (2.14) and (2.85), we deduce that

|∂tu2(τ) − ∂tu
N
2 (τ)| ≤ |∂tu2(τ) − ∂tIτ,Nu2(τ)| + |∂tEN

2 (τ)|
≤ Cτr−

3

2N
7

2
−r (|u1|r,τ + |u2|r,τ ) .

Repeating the above process, we conclude that for 1 ≤ m ≤M , there hold

‖um − uNm‖τ ≤ CτrN
7

2
−r

m∑

j=1

|uj |r,τ , (2.86)

‖∂tum − ∂tu
N
m‖τ ≤ Cτr−1N

7

2
−r

m∑

j=1

|uj|r,τ , (2.87)

|um(τ) − uNm(τ)| ≤ Cτr−
1

2N
7

2
−r

m∑

j=1

|uj |r,τ , (2.88)

|∂tum(τ) − ∂tu
N
m(τ)| ≤ Cτr−

3

2N
7

2
−r

m∑

j=1

|uj|r,τ . (2.89)

Consequently, using (2.86) and the Cauchy-Schwarz inequality gives

‖u− uN‖L2(0,mτ) =

(
m∑

k=1

‖uk − uNk ‖2τ

) 1

2

≤ CτrN
7

2
−r

(
m∑

k=1

k|u|2Hr(0,kτ)

) 1

2

≤ CmτrN
7

2
−r|u|Hr(0,mτ),

which implies (2.70). Similarly, using (2.87) and the Cauchy-Schwarz inequality gives

‖∂tu− ∂tu
N‖2L2(0,mτ) =

(
m∑

k=1

‖∂tuk − ∂tu
N
k ‖2τ

) 1

2

≤ Cτ2(r−1)N7−2r

(
m∑

k=1

k|u|2Hr(0,kτ)

) 1

2

≤ Cmτr−1N
7

2
−r|u|Hr(0,mτ),

which implies (2.71). Moreover, using (2.88), (2.89) and the Cauchy-Schwarz inequality yields

|u(mτ)− uN (mτ)| = |um(τ) − uNm(τ)| ≤ Cm
1

2 τr−
1

2N
7

2
−r|u|Hr(0,mτ),

|∂tu(mτ)− ∂tu
N(mτ)| = |∂tum(τ) − ∂tu

N
m(τ)| ≤ Cm

1

2 τr−
3

2N
7

2
−r|u|Hr(0,mτ).

This proves (2.72) and (2.73). �

Remark 2.4. If ∂ru ∈ L∞(0, T ), then the error estimates in Theorem 2.2 imply that

‖u− uN‖L2(0,T ) = O(τr−
1

2N
7

2
−r), ‖∂tu− ∂tu

N‖L2(0,T ) = O(τr−
3

2N
7

2
−r),

|u(T )− uN (T )| = O(τr−1N
7

2
−r), |∂tu(T )− ∂tu

N (T )| = O(τr−2N
7

2
−r).

Thus, the multi-interval LGR collocation scheme converges either as the step-size τ is decreased

or as N is increased.
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The multi-interval LGR collocation scheme can also be applied to system of second-order

ODEs of the form
{
∂2t ~u(t) =

~f(∂t~u(t), ~u(t), t), 0 < t ≤ T,

∂t~u(0) = ~v0, ~u(0) = ~u0,
(2.90)

where

~u(t) =
(
u1(t), u2(t), · · · , un(t)

)T
,

~f(∂t~u(t), ~u(t), t) =
(
f1(∂t~u(t), ~u(t), t), f

2(∂t~u(t), ~u(t), t), · · · , fn(∂t~u(t), ~u(t), t)
)T

are vector valued functions, ~v0 and ~u0 are given vectors.
Then, the multi-interval LGR collocation scheme for (2.90) can be read as: Find ~uNm

m (t) ∈
(PNm+2(0, τm))n such that















∂2
t ~u

Nm

m (tNm

τm,k) = f(∂t~u
Nm

m (tNm

τm,k), ~u
Nm

m (tNm

τm,k), Tm−1 + tNm

τm,k), 0 ≤ k ≤ Nm, 1 ≤ m ≤ M,

∂t~u
Nm

m (0) = ∂t~u
N

m−1

m−1 (τm−1), ~uNm

m (0) = ~u
N

m−1

m−1 (τm−1), 2 ≤ m ≤ M,

∂t~u
N1

1 (0) = ~v0, ~u
N1

1 (0) = ~u0.

(2.91)

Clearly, the global numerical solution ~uN (t) of (2.90) is given by

~uN(Tm−1 + t) = ~uNm

m (t), 0 ≤ t ≤ τm, 1 ≤ m ≤M. (2.92)

2.5. Numerical examples

In this section, we present some numerical examples to illustrate the performance of the

single and multi-interval LGR collocation methods.

2.5.1. Oscillating solution

Consider the linear problem ([33])

{
u′′(t) = −ω2u(t) + (ω2 − 1) sin t, 0 < t ≤ T,

u′(0) = ω + 1, u(0) = 1
(2.93)

with oscillating solution given by u(t) = cosωt+ sinωt+ sin t.

We first consider the performance of the single-interval LGR collocation scheme (2.21) for

problem (2.93) with T = 1 and different ω. In Figs. 2.1 and 2.2, we plot the absolute function

value error EN (T ) := |u(T ) − uN (T )| and derivative error ∂tE
N (T ) := |∂tu(T ) − ∂tu

N (T )|
against N in a semi-log scale, respectively. It can be seen that the numerical errors decay

exponentially as N increases.

We next test the multi-interval LGR collocation scheme (2.65) (with uniform step-size τm ≡
τ) for problem (2.93) with T = 100 and different ω. In Figs. 2.3 and 2.4, we plot the absolute

errors EN (T ) and ∂tE
N (T ) of the multi-interval scheme (2.65) with N = 12 and different τ .

Clearly, the multi-interval LGR collocation scheme is stable and accurate for large T .

Finally, we compare our method with some commonly used numerical methods for solving

oscillatory problems. To this end, we denote these methods as follows:

• ARKN: The six-stage adapted Runge-Kutta-Nyström method of fifth-order developed by

Franco [14].
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Fig. 2.1. Function value error: single-interval

scheme (2.21) for problem (2.93).
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Fig. 2.2. Derivative error: single-interval scheme

(2.21) for problem (2.93).
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Fig. 2.3. Function value error: multi-interval

scheme (2.65) for problem (2.93).
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Fig. 2.4. Derivative error: multi-interval scheme

(2.65) for problem (2.93).

• Trig-1: The trigonometric fitted integrator developed by Gautschi [17].

• Trig-2: The trigonometric fitted integrator developed by Deuflhard [12].

• Trig-3: The trigonometric fitted integrator developed by Hairer and Lubich [27].

• MLGRC: The multi-interval LGR collocation method proposed in this paper.

We solve the problem (2.93) with T = 100 and different ω, by using the ARKN method

and MLGRC method with N = 5, respectively. In Table 2.1, we list the CPU elapsed times

(CPUT) and errors EN (T ) for different ω and step-size τ . It can be seen that although the

MLGRC method requires more CPU time, it provides much more accurate results than the

ARKN method.

We also make a simple comparison between the Trig-1, Trig-2, Trig-3 methods (see the

methods (A), (B) and (E) in Section XIII.2.2 of [28]) and the MLGRC method (with N = 1

and 2) for solving the problem (2.93) with T = 10. In Figs. 2.5 and 2.6, we plot the errors

EN (T ) against 1/τ in a log-log scale for ω = 5 and 15, respectively. Here, τ is the uniform

time step-size. It can be seen that the MLGRC method exhibits higher convergence orders and

provides much more accurate results than the Trig-1, Trig-2, and Trig-3 methods.
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Table 2.1: Numerical comparison of the ARKN and MLGRC methods for problem (2.93).

ω τ
ARKN MLGRC

CPUT EN(T ) CPUT EN (T )

0.05 0.0258 1.0968 E-06 0.1967 1.0769 E-13

5 0.10 0.0252 3.7403 E-05 0.1126 1.6475 E-13

0.25 0.0169 4.3402 E-03 0.0652 5.0199 E-09

0.025 0.0444 5.7196 E-07 0.3407 1.1413 E-13

10 0.05 0.0275 2.0454 E-05 0.2460 3.9435 E-13

0.10 0.0239 8.5573 E-04 0.1222 8.7454 E-10

0.025 0.0429 3.3092 E-06 0.3639 8.1934 E-14

15 0.05 0.0258 1.4367 E-04 0.2544 4.3870 E-11

0.10 0.0241 7.4586 E-03 0.1487 8.3910 E-08
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Fig. 2.5. Comparison of different methods for

problem (2.93) with T = 10 and ω = 5.
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Fig. 2.6. Comparison of different methods for

problem (2.93) with T = 10 and ω = 15.

2.5.2. Hamilton system

Consider the two-body problem ([50])





q′′1 (t) = − q1(t)

(q21(t) + q22(t))
3/2

, 0 < t ≤ T,

q′′2 (t) = − q2(t)

(q21(t) + q22(t))
3/2

, 0 < t ≤ T,

q1(0) = 1− e, q′1(0) = 0,

q2(0) = 0, q′2(0) =

√
1 + e

1− e
,

(2.94)

where e ∈ [0, 1) is the eccentricity of elliptical orbit. It is well-known that the Hamiltonian

function of the system is defined as

H(t) :=
1

2

(
p21(t) + p22(t)

)
− 1

(q21(t) + q22(t))
1

2

,

where p1(t) = q′1(t) and p2(t) = q′2(t).
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For description of the numerical errors, we denote by qN1 (t) and qN2 (t) the LGR collocation

approximations to q1(t) and q2(t), respectively. We further denote by HN (t) the numerical

energy of the Hamiltonian, and by EN (t) the energy error at t, namely,

EN (t) = |HN (t)−H(0)|. (2.95)

Here, H(0) is the initial energy of the Hamiltonian.

We first consider the performance of the multi-interval LGR collocation scheme (2.91) with

uniform step-size τ = 1 and uniform mode N = 15 for problem (2.94) with e = 0.2. In Fig. 2.7,

we plot the point-wise energy errors EN (t) for t ∈ [0, 107]. It can be seen that the multi-interval

scheme (2.91) is stable and accurate for long-time computation. In Fig. 2.8, we also plot the

numerical orbit (qN1 (t), qN2 (t)) for t ∈ [0, 107]. Clearly, the long-time behaviour of the numerical

orbit is highly stable.

We next compare the multi-interval LGR collocation (MLGRC) method (2.91) with some

existing numerical methods for solving the problem (2.94). For simplicity, we denote these

methods as follows:

• TSHM: The eighth-order standard two-step hybrid method derived by Tsitouras [46].

• EFMTSH: The eighth-order exponentially fitted modified two-step hybrid method with

seven-stage derived by Franco and Rández [15].

• MLGC-1: The multi-interval Legendre-Gauss collocation method with Newton-Raphson

iteration developed by Guo and Yan [24].

• MLGC-2: The multi-interval Legendre-Gauss collocation method with simple fixed-point

iteration developed by Yi and Wang [54].

We solve the problem (2.94) with e = 0.2, by using the TSHM method, EFMTSH method

and MLGRC method with N = 8, respectively. In Table 2.2, we list the CPU elapsed times

and energy errors EN (t) at different time t. It can be seen that although our method requires

more CPU time at each time step, it provides much more accurate results than the TSHM and

EFMTSH methods. In particular, the MLGRC method is valid for large step-size τ . However,
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Fig. 2.7. Multi-interval scheme (2.91) for problem

(2.94) with τ = 1 and N = 15.
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Fig. 2.8. Numerical orbit (qN1 (t), qN2 (t)) of prob-

lem (2.94) for 0 ≤ t ≤ 107.



LGR Spectral Collocation Method for Second-Order IVPs 239

Table 2.2: Comparison of different numerical methods for problem (2.94).

τ t
TSHM EFMTSH MLGRC

CPUT EN(t) CPUT EN(t) CPUT EN (t)

1000 0.1118 6.4189 E-03 0.1044 1.4908 E-03 1.2742 8.8818 E-15

0.25 1500 0.1669 1.4453 E-02 0.1270 3.3536 E-03 1.8976 1.1435 E-14

2000 0.2135 2.5703 E-02 0.1714 5.9612 E-03 2.5593 1.1102 E-14

1500 0.0879 4.2660 E-01 0.0833 1.5620 E-00 0.9612 1.3323 E-14

0.5 2000 0.0993 7.3980 E-01 0.1206 1.9970 E-00 1.2499 1.0103 E-14

2500 0.1468 5.7285 E-01 0.1258 1.1844 E-00 1.5728 1.5876 E-14

2000 0.0531 2.2719 E-00 0.0637 7.8570 E+03 0.6479 1.4834 E-10

1 2500 0.0811 1.4269 E-00 0.0994 9.9634 E+03 0.8254 1.8521 E-10

3000 0.0826 1.6254 E-00 0.0764 1.2073 E+04 0.9835 2.2212 E-10

Table 2.3: Comparison of different spectral collocation methods for problem (2.94).

t
MLGC-1 MLGC-2 MLGRC

CPUT EN(t) CPUT EN (t) CPUT EN (t)

2000 4.6666 5.8842 E-15 2.0419 1.3212 E-14 2.0010 5.6066 E-15

4000 9.0601 3.5638 E-14 3.8171 1.5321 E-14 3.8759 5.2736 E-15

8000 17.9995 7.4274 E-14 7.8588 3.4417 E-15 7.9151 1.7653 E-14

16000 35.8767 1.4355 E-13 16.8501 6.4226 E-14 15.9260 3.6637 E-15

32000 72.0180 2.2515 E-13 31.5332 6.8612 E-14 31.9837 1.5321 E-14

64000 143.8829 4.5464 E-13 64.4375 1.2845 E-13 64.3382 7.3941 E-14

this is not the case for the other two methods. Hence, we can save the total computational

time if we use bigger time step-size.

We also compare the performances of the MLGRC, MLGC-1 and MLGC-2 methods for

solving the problem (2.94) with e = 0.2. For these three methods, we use uniform step-size

τ = 1 and uniform mode N = 14. In Table 2.3, we list the CPU elapsed times and energy

errors EN (t) at different time t. It can be observed that although the three methods show high

accuracy, the MLGRC and MLGC-2 methods require much less CPU time than the MLGC-1

method.

2.5.3. Singular solution

Consider the nonlinear problem

{
u′′(t) = sin(u′(t)) + cos(u(t)) + g(t), 0 < t ≤ T,

u′(0) = 0, u(0) = 0,
(2.96)

where g(t) is chosen such that u(t) = tr with r > 1 be a non-integer. Clearly, the solution u

has an singularity at t = 0.

We first consider the multi-interval LGR collocation scheme (2.65) (with uniform step-size

τ = 0.1) for problem (2.96) with T = 1. For our purpose, we denote by “Err” the maximum
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Fig. 2.9. Multi-interval scheme (2.65) for problem

(2.96) with uniform step-size τ = 0.1.

1 5 9 13 17 21 25

DOF1/2

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g 10

E
rr

r=1.5
r=2.5
r=3.5

Fig. 2.10. Multi-interval scheme (2.65) for prob-

lem (2.96) with geometrically refined time-steps.

nodal error. In Fig. 2.9, we plot the maximum nodal errors against N in a log-log scale for

r = 1.5, 2.5 and 3.5, respectively. Clearly, we only obtain algebraic convergence rate for each r.

We next consider the multi-interval LGR collocation scheme (2.65) with non-uniform step-

sizes and non-uniform approximation degrees. More specifically, we use the concepts of geo-

metrically refined time-steps and linearly increasing approximation degrees from the hp-version

Galerkin methods (see, e.g., [39, 49]). To this end, we divide the interval (0, T ] into M subin-

tervals {Im := (Tm−1, Tm]}Mm=1 with nodal points given by

T0 = 0, Tm := TσM−m, 1 ≤ m ≤M,

where σ ∈ (0, 1) is called the geometric refinement factor. For each subinterval Im, we use

Nm + 1 LGR collocation points with N1 = 1 and Nm = max(1, ⌊µm⌋) for 2 ≤ m ≤ M . Here,

µ > 0 and ⌊µm⌋ denotes the biggest integer smaller than or equal to µm. Let “DOF” be the

total number of degrees of freedom. In Fig. 2.10, we plot the maximum nodal errors against the

square root of DOF for fixed µ = 1.5 and σ = 0.2. Clearly, each straight error curve indicates

exponential convergence with respect to DOF1/2 for each r.

3. Application to Nonlinear Wave Equations

In this section, we apply the multi-interval LGR spectral collocation method to the simu-

lation of the second-order time dependent PDEs. More specifically, we will adopt the multi-

interval LGR spectral collocation method to handle the time integration of the second-order

differential system arising after space discretization obtained with the LGL spectral collocation

method. Furthermore, we will take two typical nonlinear wave equations as examples to test

the high accuracy of the proposed space-time spectral collocation scheme.

3.1. Space-time collocation scheme for second-order evolution equations

Consider the nonlinear second-order evolution equations of the form




∂2t u = ∂2xu+ f(u, ∂tu, ∂xu, x, t), (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = α(t), u(1, t) = β(t), t ∈ (0, T ],

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), x ∈ [−1, 1]

(3.1)

with suitable consistent initial and boundary conditions.
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Let {xk}Mk=0 be the LGL points with x0 = −1 and xM = 1. We denote by {φk}Mk=0 the

corresponding Lagrange basis functions associated with the points {xk}Mk=0. Then, the LGL

spectral collocation method in space for problem (3.1) is to find UM (x, t) such that





∂2tU
M (xk, t) = ∂2xU

M (xk, t) + f(UM (xk, t), ∂tU
M (xk, t), ∂xU

M (xk, t), xk, t),

1 ≤ k ≤M − 1, t ∈ (0, T ],

UM (−1, t) = α(t), UM (1, t) = β(t), t ∈ (0, T ],

UM (xk, 0) = ϕ(xk), ∂tU
M (xk, 0) = ψ(xk), 0 ≤ k ≤M.

(3.2)

Let

UM (x, t) =

M∑

j=0

uj(t)φj(x). (3.3)

Obviously, there holds uk(t) = UM (xk, t) for 0 ≤ k ≤ M . In particular, we have u0(t) = α(t)

and uM (t) = β(t). Inserting (3.3) into (3.2) results into the following nonlinear second-order

differential system:





∂2t uk(t) =
M∑

j=0

uj(t)∂
2
xφj(xk) + f

(
uk(t), ∂tuk(t),

M∑

j=0

uj(t)∂xφj(xk), xk, t
)
,

uk(0) = ϕ(xk), ∂tuk(0) = ψ(xk), 1 ≤ k ≤M − 1.

(3.4)

Then, we can solve the nonlinear second-order differential system (3.4) by using the multi-

interval LGR spectral collocation scheme (2.91). Accordingly, we denote by uNk (t) the LGR

spectral collocation approximation of uk(t) for 1 ≤ k ≤ M − 1. Then, we obtain the fully

discrete space-time collocation approximation of problem (3.1), denoted by

UM,N(x, t) =
M∑

j=0

uNj (t)φj(x)

with uN0 (t) = α(t) and uNM (t) = β(t).

3.2. Numerical examples

In this section we present a number of numerical experiments to illustrate the performance

of the space-time collocation method for nonlinear wave equations.

For checking the numerical accuracy, we define the numerical error at T by

EM,N (T ) = max
1≤k≤M−1

|u(xk, T )− uNk (T )|.

Here, {uNk (t)}M−1
k=1 is the multi-interval LGR collocation approximation (based on N + 1 collo-

cation points on each time step) of the nonlinear second-order differential system (3.4).

3.2.1. Sine-Gordon equation

Consider the nonlinear sine-Gordon equation





∂2t u = ∂2xu− sinu, (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = α(t), u(1, t) = β(t), t ∈ (0, T ],

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), x ∈ [−1, 1].

(3.5)
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We choose suitable initial and boundary conditions such that the exact solution of the

problem (3.5) is given by

u(x, t) = 4 tan−1(e(x−ct)/
√
1−c2) (3.6)

and

u(x, t) = 4 tan−1(sech(x)t), (3.7)

respectively. Here, c is the velocity of the solitary wave and we take c = 0.5 in the following

tests.

We first use the space-time collocation method proposed in Section 3.1 to solve problem (3.5)

with T = 1000 and the exact solutions give by (3.6) and (3.7), respectively. More precisely,

we combine the LGL collocation method (with M + 1 collocation points) in space with the

multi-interval LGR collocation method (with uniform N) in time. In Figs. 3.1 and 3.2, we plot

the errors EM,N(T ) for the space-time collocation method with different M,N and uniform

time step-size τ = 0.1. Clearly, the space-time collocation method gives accurate and stable

numerical results for both test solutions.

We next consider the convergence rates of the space-time collocation method in space and

time, respectively. To this end, we keep the errors in time small by using the multi-interval

LGR collocation method with τ = 0.1 and N = 10. Fig. 3.3 shows that the numerical errors
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Fig. 3.1. Numerical errors for problem (3.5) with

u(x, t) = 4 tan−1(e(x−ct)/
√

1−c2).
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Fig. 3.2. Numerical errors for problem (3.5) with

u(x, t) = 4 tan−1(sech(x)t) .
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Fig. 3.3. Convergence in space for solution u(x, t)
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Fig. 3.5. Convergence in space for solution u(x, t)

= 4 tan−1(sech(x)t).
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Fig. 3.6. Convergence in time for solution u(x, t)

= 4 tan−1(sech(x)t).

for solution (3.6) decay exponentially as M increases. On the other hand, we keep the errors

in space small by using the LGL collocation method with M = 20. It can be seen from Fig. 3.4

that the numerical errors for solution (3.6) decay exponentially as N increases. In Figs. 3.5 and

3.6, we plot the numerical errors for solution (3.7). It is clearly to see that the numerical errors

decay exponentially both in space and time.

3.2.2. Klein-Gordon equation

Consider the Klein-Gordon equation with quadratic nonlinearity ([37])





∂2t u = ∂2xu− u2 − x cos t+ x2 cos2 t, (x, t) ∈ (−1, 1)× (0, T ],

u(−1, t) = − cos t, u(1, t) = cos t, t ∈ (0, T ],

u(x, 0) = x, ∂tu(x, 0) = 0, x ∈ [−1, 1].

(3.8)

The exact solution is given by u(x, t) = x cos t.

We use the space-time collocation method to solve problem (3.8) with T = 1000. In Fig. 3.7,

we plot the errors EM,N (T ) for the space-time collocation method with different M,N and

uniform time step-size τ = 0.1. It can be seen that the space-time collocation method gives
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Fig. 3.7. Numerical errors for problem (3.8) with

u(x, t) = x cos t.
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accurate and stable numerical results again. Since the exact solution is a linear polynomial in

space, we only consider the convergence rates of the space-time collocation method in time.

Fig. 3.8 shows that the numerical errors decay exponentially as N increases.

We next compare the space-time collocation method presented in Section 3.1 with some

existing numerical methods for solving the problem (3.8). For simplicity, we denote these

methods as follows:

• RBF: Numerical method based on radial basis functions developed by Dehghan and

Shokri [11].

• TSF-1: Numerical method based on tension spline functions developed by Rashidinia and

Mohammadi (see method-1 of [37]).

• TSF-2: Numerical method based on tension spline functions developed by Rashidinia and

Mohammadi (see method-2 of [37]).

• DQM: Differential quadrature method developed by Pekmen and Tezer-Sezgin [34].

• STSC: Space-time spectral collocation method developed by Yi and Wang [54].

In Table 3.1, we list the L∞-errors at different time t for different numerical methods.

It can be seen that our method and the STSC method with considerably small number of

collocation points both in time and space directions (i.e., τ = 0.1, M = 2 and N = 4) provides

much more accurate results than the other methods, which implies that the space-time spectral

collocation methods are good choices for numerical solutions of time dependent PDEs with

smooth solutions.

Table 3.1: Comparison of different numerical methods for problem (3.8).

t
RBF TSF-1 TSF-2 DQM STSC Present

L∞-error L∞-error L∞-error L∞-error L∞-error L∞-error

1 1.25E-05 1.30E-09 7.68E-10 1.74E-13 1.94E-16 1.66E-16

3 1.56E-05 1.00E-09 7.52E-10 2.68E-12 1.11E-16 2.22E-16

5 3.38E-05 2.56E-10 1.76E-10 3.19E-12 5.00E-16 3.33E-16

7 3.78E-05 1.13E-09 7.63E-10 2.89E-12 4.44E-16 2.22E-16

10 1.31E-05 9.46E-10 6.55E-10 3.60E-12 1.11E-15 6.66E-16

4. Concluding Remarks

In this paper we have presented a single-interval LGR spectral collocation method for non-

linear second-order IVPs of ODEs. We have designed a simple but efficient iterative algorithm

based on Legendre polynomial expansion and shown that the single-interval LGR collocation

scheme has spectral accuracy. We have also proposed a flexible multi-interval LGR collocation

method with variable local time steps and local approximation degrees. A series of numeri-

cal experiments show that the multi-interval LGR collocation method exhibits global spectral

accuracy and long-time stability. As an application, we have adopted the multi-interval LGR

collocation method to handle the time integration of the second-order differential system arising

after space discretization of the second-order evolution equation obtained by the LGL colloca-

tion method. The numerical simulation results for two typical nonlinear wave equations show
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that the space-time collocation scheme possesses high accuracy in both space and time. Error

analysis of the proposed space-time collocation method for second-order evolution equations

will be a topic for our future research.
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