
Journal of Computational Mathematics

Vol.41, No.6, 2023, 1192–1221.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2112-m2021-0072

A STOCHASTIC NEWTON METHOD FOR NONLINEAR
EQUATIONS*

Jiani Wang

School of Mathematical Sciences, Dalian University of Technology, Dalian, China

Email: jianiwang@163.com

Xiao Wang1)

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China

Peng Cheng Laboratory, Shenzhen, China

Email: wangxiao@ucas.ac.cn; wangx07@pcl.ac.cn

Liwei Zhang

School of Mathematical Sciences, Dalian University of Technology, Dalian, China

Email: lwzhang@dlut.edu.cn

Abstract

In this paper, we study a stochastic Newton method for nonlinear equations, whose

exact function information is difficult to obtain while only stochastic approximations are

available. At each iteration of the proposed algorithm, an inexact Newton step is first

computed based on stochastic zeroth- and first-order oracles. To encourage the possible

reduction of the optimality error, we then take the unit step size if it is acceptable by an

inexact Armijo line search condition. Otherwise, a small step size will be taken to help

induce desired good properties. Then we investigate convergence properties of the proposed

algorithm and obtain the almost sure global convergence under certain conditions. We also

explore the computational complexities to find an approximate solution in terms of calls to

stochastic zeroth- and first-order oracles, when the proposed algorithm returns a randomly

chosen output. Furthermore, we analyze the local convergence properties of the algorithm

and establish the local convergence rate in high probability. At last we present preliminary

numerical tests and the results demonstrate the promising performances of the proposed

algorithm.

Mathematics subject classification: 49M37, 65K05, 90C30.

Key words: Nonlinear equations, Stochastic approximation, Line search, Global conver-

gence, Computational complexity, Local convergence rate.

1. Introduction

In this paper, we consider the following system of nonlinear equations:

F (x) = E[f(x, ξ)] = 0, (1.1)

where ξ : Ω → W is a random variable defined on a given probability space (Ω,F ,P) and

f : Rn × W → Rn. Here W is a measurable space, and E represents the expectation with

respect to the random variable. We assume that (1.1) has a solution and F : Rn → Rn

is continuously differentiable. As in (1.1) the probability distribution function may not be

* Received March 9, 2021 / Revised version received June 28, 2021 / Accepted December 7, 2021 /

Published online December 12, 2022 /
1) Corresponding author

A Stochastic Newton Method for Nonlinear Equations 1193

available or the expectation with respect to ξ may be difficult to calculate, we assume in this

paper that the exact function information such as function value and Jacobian matrix cannot

be obtained. The problem (1.1) covers a wide range of applications, such as stochastic dynamic

programming [27], and stochastic PDEs [16, 23]. Problem (1.1) can also be regarded as an

extension of finding a stationary point of minimization problems. Consider the well-known

expected risk minimization problem

min
x∈Rn

H(x) = E[h(x, ξ)],

where H : Rn → R is a smooth function. Referring to Theorem 7.44 [28], if the function h(x, ξ)

is differentiable at x with probability 1 and satisfies certain conditions, its local minimizer is

also the solution of the following system of equations:

E[∇xh(x, ξ)] = 0.

The classic Newton’s method, first presented by Newton in 1687 [34], for finding the root of

F (x) is to update iterates through

xk+1 = xk − (JF (xk))−1F (xk),

if the Jacobian matrix JF (xk) is non-singular. As is well-known, classic Newton’s method

owns a fast convergence rate when close to a solution of nonlinear equations. More specifically,

locally q-quadratic convergence rate can be achieved under certain conditions if JF (x∗) is non-

singular [7]. However, when solving nonlinear equations (1.1), as the exact function value F (x)

and its Jacobian JF (x) are not available, classic Newton’s method is not applicable any more.

Similar to [8,21,25], we assume that F (x) and Jacobian JF (x) can be approximated via calls to

stochastic zeroth-order oracles (SZO) and stochastic first-order oracles (SFO), respectively. In

this paper, we will employ those stochastic information to propose a stochastic approximation

method for solving (1.1).

Study on stochastic approximation (SA) methods for nonlinear optimization dates back to

the pioneer work [26]. In the past decade, along with the development of complexity theory,

profound research progress on SA methods for nonlinear optimization has been made, including

but not limited to [2, 9, 11, 13, 14]. Quite recently, Milzarek et al. [18] propose a stochastic

semismooth Newton method for nonsmooth nonconvex optimization by solving an equivalent

nonsmooth fixed point-type equation and study global and local convergence properties of the

proposed algorithm. However, to define proximal gradient steps and to set a growth condition

for trial steps, the objective function of original optimization problem needs to be utilized, thus

plays a crucial role in theoretical analysis. In [29], a stochastic Gauss-Newton method (SGN)

was proposed for solving compositional optimization problems. This method can be used to

solve stochastic nonlinear equations (1.1) by reformulating it into an optimization problem,

namely, minimizing a given norm of F (x). At each iteration, it solves an approximate prox-

linear model which is constructed based on stochastic oracles. In contrast, SA methods directly

designed for general nonlinear equations in the form of (1.1) are quite limited. In this paper,

motivated by the success of classic Newton’s method for deterministic nonlinear equations, we

will propose a stochastic Newton method for (1.1) based on stochastic oracles and investigate

its theoretical and numerical performances.

As is known, the step size has a great influence on both theoretical and numerical per-

formances of an SA method. It is quite popular to set step sizes as either constants [18] or

1194 J.N. WANG, X. WANG AND L.W. ZHANG

a diminishing sequence [4]. However, in practical computation it is normally not easy to choose

the best-tuned step sizes. In deterministic optimization line search strategy is usually incorpo-

rated to adaptively compute the step sizes by allowing a sufficient reduction of function values

at each iteration and to ensure the global convergence of an algorithm. Recently, researchers

consider to incorporate a line search strategy in SA methods for nonlinear optimization. For

example, paper [24] studies a stochastic line search algorithm for stochastic optimization. As

pointed in [24], due to the stochasticity when applying line search with stochastic estimates, it

may lead to false steps which make the objective value at next iterate arbitrarily larger than

current iterate. To deal with this challenge, in [24] it requires high probability with which the

random gradient and function estimates (including the function value at next iterate) are rep-

resentatives of their true counterparts. In [32], the use of the Armijo line search with stochastic

gradient is investigated. However, the proposed algorithm requires the objective function sat-

isfy the strong growth condition to achieve the desired convergence. Paper [12] studies SA

methods with line search for stochastic variational inequalities where the operator is required

to be pseudomonotone. Note that all aforementioned algorithms do not aim for general non-

linear equations of the form (1.1). Moreover, as the line search condition is designed based on

stochastic oracles, it seems unnecessary trying to find a step size satisfying line search condition

exactly.

Motivated by these points, we consider to incorporate an inexact Armijo line search strategy

in our stochastic Newton method for nonlinear equations (1.1), allowing some inexact tolerance

on the line search. In addition, to control the uncertainty of stochastic information, we only

check the line search condition once at each iteration to determine if the unit step size is accept-

able. Specifically, in this paper, we propose a stochastic Newton method for solving nonlinear

equations of the form (1.1). Considering the problems with an unknown distribution or online

data acquisition, sub-sampling strategy is applied to compute approximate function values and

Jacobians. At each iteration, the method computes an inexact Newton step within a given tol-

erance, where the Newton’s equation is built on stochastic zeroth- and first-order oracles. Then

the unit step size is taken if it satisfies the inexact line search condition. Otherwise, a preset

small step size is taken to secure good convergence properties of the proposed algorithm. We

next explore the global convergence properties of the proposed algorithm and show the global

convergence in expectation as well as almost-sure convergence under certain conditions. We

also analyze its computational complexities when the proposed algorithm returns a randomly

chosen iterate as the output. Furthermore, we study local convergence properties of proposed

algorithm and prove the local convergence rates with high probability if the sample sizes and

sampling rates are chosen appropriately and increase sufficiently fast. Numerical tests on some

large data sets show the promising performance of the proposed algorithm.

We summarize contributions of this paper in the following table, by showing a comparison

between our algorithm and those in related works. As we can always transform (1.1) into a mini-

mization problem through a given norm, many SA methods for nonlinear minimization problems

can be applied. Since the incorporation of an acceleration technique in our algorithm is out of

the scope of the paper, we only consider the pure randomized stochastic gradient method (RSG)

for nonconvex optimization and apply it to minimize h(x) := ‖F (x)‖22. By [9], RSG can find

an ǫ-stationary point x̄, i.e. E[‖∇h(x̄)‖2] ≤ ǫ, via O(ǫ−4) calls to stochastic first-order oracles.

Instead of directly solving (1.1), SGN [29] focuses on minimizing ‖F (x)‖ through a given norm

‖ · ‖. Without any variance reduction technique, SGN can establish SZO complexity in O(ǫ−6)

and SFO complexity in O(ǫ−4) to reach an ǫ-stationary point satisfying E[‖G̃M (xk)‖] ≤ ǫ,

A Stochastic Newton Method for Nonlinear Equations 1195

where G̃M (x) = M(x − T̃M (x)) with T̃M (x) = argminz{‖F̃ (x) + J̃(x)(z − x)‖ + M
2 ‖z − x‖2}

and F̃ (x) and J̃(x) are stochastic zeroth- and first-order oracles. However, different from both

RSG and SGN, our algorithm is designed directly for general nonlinear equations (1.1). Under

certain conditions, our algorithm can find an ǫ-approximate solution x̄, namely E[‖F (x̄)‖2] ≤ ǫ.

And it enjoys superlinear convergence rate in high probability. More comparison details are

given in the following table. Specifically, SFO for RSG means the stochastic first-order oracle

to the gradient of ‖F (x)‖22.

Table 1.1: Comparison between our algorithm with RSG and SGN.

Algorithm
Problem

to solve
Criticality measure Complexity

Local

convergence

RSG [9] min ‖F (x)‖22 E[‖J F (x̄)F (x̄)‖2] ≤ ǫ SFO ∼ O(ǫ−4)

SGN [29] min ‖F (x)‖ E[‖G̃M (x̄)‖] ≤ ǫ
SZO ∼ O(ǫ−6)

SFO ∼ O(ǫ−4)

Alg. 2.1

(this paper)
F (x) = 0 E[‖F (x̄)‖2] ≤ ǫ

(Thm 4.1)
SZO ∼ Õ(ǫ−6)

SFO ∼ Õ(ǫ−4) Superlinear

(Thm 4.2)
SZO ∼ Õ(ǫ−6)

SFO ∼ Õ(ǫ−2)

Organization The remainder of this paper is organized as follows. We present details of

a stochastic Newton method for solving problem (1.1) in Section 2. Then we analyze the the-

oretical properties of the proposed algorithm and establish its global convergence in Section 3.

In Section 4 we explore the computational complexity of the proposed algorithm with respect

to stochastic zeroth- and first-order oracles to find an approximate solution. In Section 5, we

analyze the local convergence and show the corresponding convergence rates under different

conditions. Finally, we report some preliminary numerical results in Section 6.

Notations We use the following notations throughout this paper. N and N+ denote the

set of nonnegative integers and positive integers, respectively. For any n ∈ N+, [n] denotes

the set {1, · · · , n} and for any x ∈ R, ⌈x⌉ denotes the smallest integer no less than x. We

use ‖ · ‖ to represent the Euclidean norm and its induced matrix norm. The superscript k

refers to an iteration number and (·k)k refers to a sequence. For a set S ⊆ Rn, the mapping

1S : Rn → {0, 1} is the associated characteristic function of S. Given a mapping Φ : Ω → Rn,

we set Φ−1(S) = {ω ∈ Ω : Φ(ω)
⋂

S 6= ∅}. The function Φ is called measurable if Φ−1(S) is

measurable for any closed set S ⊆ Rn. Let (Ω,F ,P) be a probability space. We say ξ ∈ F
if ξ is F -measurable. We use B(Rn) to denote the Borel σ-algebra of Rn and σ(ξ1, · · · , ξk) to
denote the σ-algebra generated by the family of random variables ξ1, · · · , ξk. We use E[ξ|H]

to denote the conditional expectation of a random variable ξ ∈ L1(Ω) given a sub-σ-algebra

H ⊆ F , where L1(Ω) := L1(Ω,P) denotes the L1 space in Ω. The conditional probability of

A ∈ F given H ⊆ F is defined as P(A|H) := E[1A|H]. The abbreviations “a.e.” and “a.s.”

stand for “almost everywhere” and “almost surely”, respectively. The space ℓ1+ consists of all

sequences (xk)k≥0 satisfying 0 ≤ xk ∈ R for any k ≥ 0 and
∑

k≥0 x
k < +∞.

2. A Stochastic Newton Method for (1.1)

Since computations of exact function value F (x) and the Jacobian matrix JF (x) of (1.1)

are difficult sometimes even impossible, traditional optimization methods for solving nonlinear

1196 J.N. WANG, X. WANG AND L.W. ZHANG

equations based on exact function information are not applicable any more. Motivated by this,

we next propose an SA method based on stochastic function values and Jacobians to solve (1.1).

We assume in this paper that stochastic function values of F and its Jacobians can be

obtained through calls to stochastic zeroth- and first-order oracles. Similar to [5, 18, 33], we

compute the mini-batch approximate function values and Jacobians. More specifically, given

an underlying probability space (Ω,F ,P) and a measurable space (Ξ,X), suppose that there

exist a zeroth-order oracle ̥ : Rn × Ξ → Rn and a first-order oracle G : Rn × Ξ → Rn×n,

where both ̥ and G are Carathéodory functions [28], namely both F and G are continuous

with respect to x ∈ Rn for fixed z ∈ Ξ and measurable with respect to z ∈ Ξ for fixed x ∈ Rn.

Suppose that the space Ω is rich enough such that for each k ∈ N, we can generate two mini-

batches of random samples

tk :=
{

tk1 , · · · , tknk
F

}

and sk :=
{

sk1 , · · · , sknk
G

}

, (2.1)

where tki , s
k
j : Ω → Ξ, i ∈ [nk

F], j ∈ [nk
G] are (F ,X)-measurable random mappings and mutually

independent and nk
F , n

k
G denote the sample size of tk, sk respectively. We can obtain the approx-

imate function value ̥(x, tki) and Jacobian matrix G(x, skj) for each i ∈ [nk
F], j ∈ [nk

G]. Then

we compute the mini-batch approximate function value Ftk(x) and Jacobian matrix Gsk(x)

through

Ftk(x) :=
1

nk
F

nk
F
∑

i=1

̥(x, tki), Gsk(x) :=
1

nk
G

nk
G
∑

j=1

G(x, skj), (2.2)

respectively. Based on these stochastic approximations we build the following approximate

Newton’s equation

Gsk(x
k)d = −Ftk(x

k). (2.3)

Given a tolerance ηk ∈ [0, 1), we look for a solution dk of (2.3) satisfying

‖Ftk(x
k) +Gsk(x

k)dk‖ ≤ ηk‖Ftk(x
k)‖. (2.4)

With the search direction dk, the next step is to determine the step size. As is well known, line

search strategies have been widely used in deterministic optimization. They help to realize the

global convergence of algorithms by forcing the objective function values decreasing sufficiently

at each iteration. One of the most popular line search conditions is the Armijo line search

[22]. Take general nonlinear equations F (x) = 0 for example. If F (xk) 6= 0 and JF (xk) is

nonsingular, the Newton’s direction is dkN = −(JF (xk))−1F (xk). Then the classic Armijo line

search condition (see also [3]) is to find the smallest nonnegative integer kj such that

‖F (xk + ρkjdkN)‖ ≤ (1− 0.5c1ρ
kj)‖F (xk)‖, (2.5)

where c1 ∈ (0, 1). However, we cannot apply (2.5) directly to problem (1.1) where only

stochastic approximations are available. Hence in our stochastic Newton method, we adopt the

following line search condition which is defined based on sub-sampled function values. Given

εk > 0 and a randomly chosen sample set tk+1, we check if the unit step size satisfies the

condition

‖Ftk+1(xk + dk)‖ ≤ (1 − c)‖Ftk(x
k)‖+ εk, (2.6)

where c ∈ (0, 0.5). To better control the stochasticity of the function value at xk + dk, the

randomly generated sample set tk+1 is independent of xk and dk, which plays a crucial role in

A Stochastic Newton Method for Nonlinear Equations 1197

theoretical analysis later. Whenever (2.6) is satisfied, the unit step size is taken. Otherwise,

we take a preset step size αk to generate xk+1.

We now summarize the stochastic Newton method for (1.1) in Algorithm 2.1 below.

Algorithm 2.1. A stochastic Newton method for (1.1)

Require: Parameters c ∈ (0, 0.5) and η ∈ [0, 1), initial iterate x0 ∈ Rn, initial sample sets

t0 and s0, two sequences of sample sizes (nk
F)k and (nk

G)k, non-negative sequences

(ηk)k ⊆ [0, η] and (εk)k, (α
k)k ⊆ (0, 1). Let k = 0.

1: for k = 0, 1, · · · do

2: If xk satisfies some termination criterion, then stop and return xk.

3: Compute Ftk(x
k) and Gsk(x

k) through (2.2) and solve (2.3) obtaining dk satisfying

(2.4).

4: Randomly choose a sample set tk+1 with size nk+1
F through (2.1) and compute Ftk+1

(xk + dk) through (2.2). If (2.6) is satisfied,

set xk+1 = xk + dk. Otherwise, set xk+1 = xk + αkdk.

5: Randomly choose the sample set sk+1 with sizes nk+1
G through (2.1). Let k = k + 1.

6: end for

Note that in Algorithm 2.1 we only present the pseudocode of the stochastic Newton method.

At the beginning of Algorithm 2.1, we first generate two sequences of sample sizes (nk
F)k and

(nk
G)k. For each k ∈ N, the sample size nk+1

F and the sampling set tk+1 is used to compute both

Ftk+1(xk + dk) and Ftk+1(xk+1). We do not set the termination criterion. It will be specified in

Section 6. Moreover, we do not specify the values of αk here. We will investigate the role that

step sizes play and analyze theoretical properties of Algorithm 2.1 with different settings of αk

in Section 3. Roughly speaking, we will discuss two cases where αk is diminishing and αk is

constant, then establish the global convergence and computational complexity accordingly.

Define the filtration

Fk := σ(t0, s0, · · · , tk, sk) and F̂k := σ(t0, s0, · · · , tk, sk, tk+1), k ≥ 0,

and F̂−1 := F̂0. We next show by induction that

xk ∈ F̂k−1 for any k ≥ 0. (2.7)

It is obvious that x0 ∈ F̂−1. Now assume that xk ∈ F̂k−1, then xk ∈ Fk. We next show that

xk+1 ∈ F̂k. Since the stochastic oracle G is a Carathéodory function, by Section 4.10 in [1],

G is jointly measurable with G ∈ B(Rn)⊗X , where B(Rn)⊗ X denotes the product σ-algebra

of the product space Rn × Ξ. Hence the functions ξki : Ω → Rn × Ξ, i ∈ [nk
G], defined as

ξki (ω) := (xk(ω), ski (ω)), are (Fk,B(Rn) ⊗ X)-measurable. For simplicity, we omit ω in above

notations. Hence, Gsk is a Fk-measurable mapping, which yields Gsk(x
k) ∈ Fk. Similarly, we

can obtain that Ftk is an F̂k−1-measurable mapping thus Ftk(x
k) ∈ F̂k−1. Then from (2.4) it

obviously holds that dk ∈ Fk. We now define

xk+1
1 = xk + dk, xk+1

2 = xk + αkdk. (2.8)

As xk ∈ F̂k−1 and dk ∈ Fk, we have

xk+1
1 , xk+1

2 ∈ Fk. (2.9)

1198 J.N. WANG, X. WANG AND L.W. ZHANG

Define Y k+1 by

Y k+1 =

{

1, if (2.6) is satisfied,

0, otherwise.

Then Y k+1 is a random variable and xk+1 can be expressed as

xk+1 = Y k+1xk+1
1 + (1− Y k+1)xk+1

2 . (2.10)

As Ftk+1(xk+1
1) ∈ F̂k, the indicator function Y k+1 is F̂k ⊗ B(Rn)-measurable. Therefore, it

follows from (2.10) that xk+1 ∈ F̂k.

We now give several assumptions used throughout this paper.

Assumption 2.1.

(A1) The function F : Rn → Rn is continuously differentiable on Rn.

(A2) The Jacobian matrix JF (·) : Rn → Rn×n is Lipschitz continuous with modulus L′ > 0.

(A3) There exist positive constants µk
F , µk

G, σ̄F and σ̄G such that for all k ∈ N, tki , skj ∈ Ξ,

i ∈ [nk
F], j ∈ [nk

G], and for any x ∈ Rn,

‖E[̥(x, tki)]− F (x)‖ ≤ µk
F , ‖E[G(x, skj)]− JF (x)‖ ≤ µk

G,

E[‖̥(x, tki)− E[̥(x, tki)]‖2] ≤ σ̄2
F , E[‖G(x, skj)− E[G(x, skj)]‖2] ≤ σ̄2

G.

It is worth noting that assumption (A1) is reasonable. Following Theorem 7.44 in [28], if F (·)
is well defined and finite valued at point x ∈ Rn and f(·, ξ) is differentiable at x for almost

every ξ ∈ Ω and Lipschitz continuous in a neighborhood of x, then F (·) is differentiable at x.

Moreover, following Theorem 7.43 in [28], if ∇f(x, ξ) is bounded by a P-integeable function for

all x in a neighborhood of x, then ∇F is continuous at x, thus F is continuously differentiable

at x.

Note that by the Lipschitz continuity of JF and the integral mean value theorem, we obtain

‖F (y)− F (x)− JF (x)(y − x)‖

=

∥

∥

∥

∥

∫ 1

0

JF (x+ t(y − x))(y − x)dt− JF (x)(y − x)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ 1

0

[JF (x+ t(y − x))− JF (x)](y − x)dt

∥

∥

∥

∥

≤
∫ 1

0

L′‖y − x‖2tdt = L′

2
‖y − x‖2 for any x, y ∈ R

n,

which further yields that

‖F (y)‖ ≤ ‖F (x) + JF (x)(y − x)‖ + L′

2
‖y − x‖2, ∀x, y ∈ R

n. (2.11)

It is popular that in the convergence analysis of SA methods, such as [9] and [18], stochastic

oracles are assumed unbiased. Different from these works in our algorithm we allow deviations

of stochastic oracles from the true values. That is, both stochastic zeroth- and first-order oracles

can provide biased estimates, as assumed in assumption (A3). We now define

Ek
F (x) = ‖Ftk(x)− F (x)‖, Ek

G(x) = ‖Gsk(x)− JF (x)‖. (2.12)

A Stochastic Newton Method for Nonlinear Equations 1199

Then it follows from (2.9), (2.10) and assumptions (A2) and (A3) that

E[(Ek
F (x

k))2|Fk−1]

=E[Y k‖Ftk(x
k
1)− F (xk

1)‖2|Fk−1] + E[(1 − Y k)‖Ftk(x
k
2)− F (xk

2)‖2|Fk−1]

≤E[‖Ftk(x
k
1)− F (xk

1)‖2|Fk−1] + E[‖Ftk(x
k
2)− F (xk

2)‖2|Fk−1]

≤ 2E[‖Ftk(x
k
1)− E[Ftk (x

k
1)]‖2|Fk−1] + 2E[‖E[Ftk(x

k
1)]− F (xk

1)‖2|Fk−1]

+ 2E[‖Ftk(x
k
2)− E[Ftk(x

k
2)]‖2|Fk−1] + 2E[‖E[Ftk(x

k
2)]− F (xk

2)‖2|Fk−1]

≤ 4σ̄2
F

nk
F

+ 4(µk
F)

2. (2.13)

Similarly, we can obtain

E[(Ek
G(x

k))2|Fk−1] ≤ 4σ̄2
G

nk
G

+ 4(µk
G)

2. (2.14)

By (2.13) and (2.14), we can see that the deviation of stochastic information from true values can

be reduced via increasing batch sizes nk
F and nk

G, which plays an important role in theoretical

analysis in next sections. Moreover, it implies from (2.13) and (2.14) together with Jensen’s

inequality that

E[Ek
F (x

k)|Fk−1] ≤ (E[(Ek
F (x

k))2|Fk−1])1/2 ≤ 2σ̄F

(nk
F)

1/2
+ 2µk

F , (2.15)

E[Ek
G(x

k)|Fk−1] ≤ (E[(Ek
G(x

k))2|Fk−1])1/2 ≤ 2σ̄G

(nk
G)

1/2
+ 2µk

G. (2.16)

3. Global Convergence

In this section, we will study global convergence properties of Algorithm 2.1. Let (xk)k be

generated by Algorithm 2.1. We first give two assumptions as follows.

Assumption 3.1.

(B1) There exists a positive constant mG such that ‖Gsk(x
k)v‖ ≥ mG‖v‖ for any sk, k ≥ 0, and

v ∈ Rn.

(B2) There exists a positive constant MF such that E[‖Ftk(x
k)‖2] ≤ M2

F for tk, k ≥ 0.

The following lemma provides an upper bound for the expectation of function value i.e.

E[‖F (xk)‖].

Lemma 3.1. Suppose that assumptions (A1)–(A3) and (B1)–(B2) hold. Then for any N ∈ N+,

N
∑

k=0

min{c, (1− η)αk}E[‖F (xk)‖] ≤ ‖F (x0)‖+
N
∑

k=0

(Mk
c1 +Mk

c2), (3.1)

where

Mk
c1 =(1− c)E[Ek

F (x
k)] + E[Ek+1

F (xk+1)] + εk,

Mk
c2 =(1 + η)αk

E[Ek
F (x

k)] + η̄MFα
k(E[(Ek

G(x
k))2])1/2 +

1

2
η̄2M2

FL
′(αk)2

with η̄ = (1 + η)/mG.

1200 J.N. WANG, X. WANG AND L.W. ZHANG

Proof. Following from the algorithmic framework, we know that at kth iteration, the iterate

xk+1 can be either xk + dk satisfying (2.6) or otherwise, xk +αkdk. If the former case happens,

by the definition of Ek
F (x) in (2.12), we have

‖Ftk(x
k)‖ ≤ ‖F (xk)‖+ Ek

F (x
k),

which implies that

‖F (xk+1)‖ − (1 − c)‖F (xk)‖ ≤ ‖Ftk+1(xk+1)‖ + Ek+1
F (xk+1)

− (1− c)‖Ftk(x
k)‖+ (1− c)Ek

F (x
k).

Then by (2.6), it is easy to have

‖F (xk+1)‖ − ‖F (xk)‖ ≤ −c‖F (xk)‖+ (1− c)Ek
F (x

k) + Ek+1
F (xk+1) + εk. (3.2)

If (2.6) does not hold, xk+1 = xk + αkdk. Then it follows from (2.11) that

‖F (xk+1)‖ − ‖F (xk)‖

≤‖F (xk) + αkJF (xk)dk‖+ (αk)2L′

2
‖dk‖2 − ‖F (xk)‖

≤ (1− αk)‖F (xk)‖+ αkEk
F (x

k) + αk‖Ftk(x
k) + JF (xk)dk‖+ (αk)2L′

2
‖dk‖2 − ‖F (xk)‖

≤αk(1 + ηk)Ek
F (x

k) + αk(ηk − 1)‖F (xk)‖+ αkEk
G(x

k)‖dk‖+ (αk)2L′

2
‖dk‖2, (3.3)

where we use (2.4) in the last inequality. Notice that by (2.4) and ηk ≤ η it is easy to obtain

‖dk‖ ≤ ‖(Gsk(x
k))−1‖‖Gsk(x

k)dk‖
≤ (1 + ηk)‖Gsk(x

k)−1‖‖Ftk(x
k)‖

≤ η̄‖Ftk(x
k)‖. (3.4)

Then substituting (3.4) into (3.3) yields

‖F (xk+1)‖ − ‖F (xk)‖ ≤αk(1 + η)Ek
F (x

k)− αk(1− η)‖F (xk)‖

+ αkη̄‖Ftk(x
k)‖Ek

G(x
k) +

1

2
(αk)2η̄2L′‖Ftk(x

k)‖2. (3.5)

Now we combine above two cases together. It follows from (3.2) and (3.5) that

‖F (xk+1)‖ − ‖F (xk)‖ ≤ −min{c, αk(1− η)}‖F (xk)‖ +max{Mk
1 ,M

k
2 }, (3.6)

where

Mk
1 =(1 − c)Ek

F (x
k) + Ek+1

F (xk+1) + εk, (3.7)

Mk
2 =αk(1 + η)Ek

F (x
k) + αkη̄‖Ftk(x

k)‖Ek
G(x

k) +
1

2
(αk)2η̄2L′‖Ftk(x

k)‖2.

By summing up (3.6) over k = 0, . . . , N , we obtain

‖F (xN+1)‖ − ‖F (x0)‖ ≤ −
N
∑

k=0

min{c, (1− η)αk}‖F (xk)‖+
N
∑

k=0

max
{

Mk
1 ,M

k
2

}

,

A Stochastic Newton Method for Nonlinear Equations 1201

which yields

N
∑

k=0

min{c, (1− η)αk}‖F (xk)‖ ≤ ‖F (x0)‖ − ‖F (xN+1)‖+
N
∑

k=0

max
{

Mk
1 ,M

k
2

}

.

Taking expectation on both sides of above inequality indicates

N
∑

k=0

min{c, (1− η)αk}E[‖F (xk)‖] ≤ ‖F (x0)‖+
N
∑

k=0

(E[Mk
1] + E[Mk

2]),

where the expectation is taken w.r.t. all the random variables generated in all N iterations.

Thus, (3.1) is obtained by E[Mk
1] = Mk

c1 and E[Mk
2] ≤ Mk

c2 from assumption (B2) and

E[‖Ftk(x
k)‖EG

k (xk)] ≤ (E[‖Ftk(x
k)‖2])1/2(E[(EG

k (xk))2])1/2 ≤ MF (E[(EG
k (xk))2])1/2. �

The next theorem shows the global convergence of Algorithm 2.1, when αk satisfies the

small step size policy (3.8).

Theorem 3.1. Suppose that assumptions (A1)–(A3) and (B1)–(B2) hold. If step sizes {αk}k
satisfy conditions

∑

k

αk = +∞,
∑

k

(αk)2 < +∞, (3.8)

and (εk)k, (µk
F)k, ((µk

G)
2)k, ((nk

F)
−1/2)k, ((nk

G)
−1)k ∈ ℓ1+ , then we have

lim inf
k→∞

E[‖F (xk)‖] = 0 and lim inf
k→∞

F (xk) = 0 a.s..

Proof. By (2.13)–(2.14) and (µk
F)k, (µk

G)k, ((nk
F)

−1/2)k, ((nk
G)

−1)k ∈ ℓ1+, we obtain

∑

k

E[Ek
F (x

k)] < +∞ and
∑

k

E[(EG
k (xk))2] < +∞.

Then it derives from (3.8) that

∑

k

αkE[EF
k (xk)] ≤

(

∑

k

α2
k

)1/2(
∑

k

E[(EF
k (xk))2]

)
1
2

< +∞,

∑

k

αk(E[(EG
k (xk))2])1/2 ≤

(

∑

k

α2
k

)1/2(
∑

k

E[(EG
k (xk))2]

)1/2

< +∞.

Hence, (3.1) implies
∑

k

min{c, (1− η)αk}E[‖F (xk)‖] < +∞,

which further yields from (3.8) that lim infk→∞ E[‖F (xk)‖] = 0. Moreover, it follows from

Fatou’s lemma that

E

[∞
∑

k=0

αk‖F (xk)‖
]

≤ lim inf
N→∞

E[

N
∑

k=0

αk‖F (xk)‖] < ∞.

It indicates
∑∞

k=1 α
k‖F (xk)‖ < ∞ with probability 1 thus lim inf

k→∞
F (xk) = 0 almost surely. �

We next consider another assumption different from (B2).

1202 J.N. WANG, X. WANG AND L.W. ZHANG

Assumption 3.2.

(B2’) There exists a positive constant M̄F such that ‖Ftk(x
k)‖ ≤ M̄F holds almost surely for

any k and tk.

Different from Lemma 3.1, under assumption (B2’) we obtain the following lemma showing

a different upper bound on expected function values.

Lemma 3.2. Suppose that assumptions (A1)–(A3), (B1) and (B2’) hold. If the step size αk

satisfies αk ≤ c/(1− η) for all k ≥ 0, then for any N ∈ N+,

N
∑

k=0

αk(1 − η − η̄(
2σ̄G

(nk
G)

1/2
+ 2µk

G)−
1

2
αkL′M̄F η̄

2)E[‖F (xk)‖]

≤‖F (x0)‖+
N
∑

k=0

(E[Mk
c1] + E[Mk

c3]), (3.9)

where Mk
c1 is defined in Lemma 3.1 and

Mk
c3 =

[

(1 + η)αk + 2αkη̄

(

σ̄G

(nk
G)

1/2
+ µk

G

)

+
1

2
(αk)2η̄2L′M̄F

]

(

E[(Ek
F (x

k))2]
)1/2

.

Proof. From the proof of Lemma 3.1, (3.2) holds if the line search condition (2.6) is satisfied.

Otherwise, we have (3.3). Note that it yields from (3.4) and the definition of Ek
F (x

k) that

‖dk‖ ≤ η̄‖Ftk(x
k)‖ ≤ η̄(‖F (xk)‖+ Ek

F (x
k)),

‖dk‖2 ≤ η̄2‖Ftk(x
k)‖2 ≤ η̄2‖Ftk(x

k)‖(‖F (xk)‖+ Ek
F (x

k)).

Then (3.3) together with ηk ≤ η yields

‖F (xk+1)‖ − ‖F (xk)‖

≤ − αk

(

1− η − η̄Ek
G(x

k)− 1

2
αkL′η̄2‖Ftk(x

k)‖
)

‖F (xk)‖

+ αk(1 + η)Ek
F (x

k) + αk η̄Ek
F (x

k)Ek
G(x

k) +
(αk)2L′η̄2

2
Ek
F (x

k)‖Ftk(x
k)‖. (3.10)

Hence, it follows from (3.2), (3.10) and assumption (B2’) that

‖F (xk+1)‖ − ‖F (xk)‖

≤
(

−min
{

c, αk(1− η)
}

+ αkη̄Ek
G(x

k) +
1

2
(αk)2L′M̄F η̄

2

)

‖F (xk)‖+max
{

Mk
1 ,M

k
3

}

≤ − αk

(

1− η − η̄Ek
G(x

k)− 1

2
αkL′M̄F η̄

2

)

‖F (xk)‖+max
{

Mk
1 ,M

k
3

}

(3.11)

holds almost surely, where the second inequality is due to αk ≤ c/(1−η), Mk
1 is defined in (3.7)

and

Mk
3 =αk(1 + η)Ek

F (x
k) + αk η̄Ek

F (x
k)Ek

G(x
k) +

1

2
(αk)2η̄2L′M̄FEk

F (x
k).

Then summing up (3.11) over k = 0, · · · , N on both sides implies that

N
∑

k=0

αk

(

1− η − η̄Ek
G(x

k)− 1

2
αkL′M̄F η̄

2

)

‖F (xk)‖ ≤ ‖F (x0)‖+
N
∑

k=0

(

Mk
1 +Mk

3

)

A Stochastic Newton Method for Nonlinear Equations 1203

holds almost surely, which leads to

P

(

N
∑

k=0

αk

(

1− η − η̄Ek
G(x

k)− 1

2
αkL′M̄F η̄

2

)

‖F (xk)‖ ≤ ‖F (x0)‖+
N
∑

k=0

(

Mk
1 +Mk

3

)

)

= 1.

Note that for two random variables ξ1 and ξ2, if P(ξ1− ξ2 ≤ 0) = 1, then E[ξ1− ξ2] ≤ 0. Hence,

we have

N
∑

k=0

E[αk(1− η − η̄Ek
G(x

k)− 1

2
αkL′M̄F η̄

2)‖F (xk)‖] ≤ ‖F (x0)‖+
N
∑

k=0

(E[Mk
1] + E[Mk

3]). (3.12)

By (2.16) and xk ∈ F̂k−1 we have

E[Ek
G(x

k)‖F (xk)‖] =E[E[Ek
G(x

k)‖F (xk)‖ | F̂k−1]]

=E[E[Ek
G(x

k) | F̂k−1]‖F (xk)‖]

≤
(

2σ̄G

(nk
G)

1/2
+ 2µk

G

)

E
[

‖F (xk)‖
]

.

Then (3.12) yields

N
∑

k=0

αk

(

1− η − η̄

(

2σ̄G

(nk
G)

1/2
+ 2µk

G

)

− 1

2
αkL′M̄F η̄

2

)

E[‖F (xk)‖]

≤‖F (x0)‖+
N
∑

k=0

(

E[Mk
1] + E[Mk

3]
)

. (3.13)

Notice that for any k ≥ 0,

E[Ek
F (x

k)Ek
G(x

k)]
(

E[(Ek
F (x

k))2]
)1/2

(E[(Ek
G(x

k))2])1/2

≤
(

2σ̄G

(nk
G)

1/2
+ 2µk

G

)

(

E[(Ek
F (x

k))2]
)1/2

,

then

E[Mk
3] = (1 + η)αk

E[EF
k (xk)] + αkη̄E

[

Ek
F (x

k)Ek
G(x

k)
]

+
1

2
(αk)2η̄2L′M̄FE[Ek

F (x
k)]

≤
(

(1 + η)αk + 2αkη̄(
σ̄G

(nk
G)

1/2
+ µk

G) +
1

2
(αk)2η̄2L′M̄F

)

×
(

E[(Ek
F (x

k))2]
)1/2

= Mk
c3. (3.14)

Consequently, plugging E[Mk
1] = Mk

c1 and (3.14) into (3.13) yields the conclusion. �

Based on Lemma 3.2, Algorithm 2.1 can achieve global convergence when αk is constant.

Theorem 3.2. Suppose that assumptions (A1)–(A3), (B1) and (B2’) hold. Further suppose

that for any k ≥ 0, the step size (αk)k satisfies

αk = ᾱ ≤ θ := min

{

c

1− η
,
2(1− η)

3L′M̄F η̄2

}

, (3.15)

1204 J.N. WANG, X. WANG AND L.W. ZHANG

and µk
G, nk

G satisfy
2σ̄G

(nk
G)

1/2
+ 2µk

G ≤ 1− η

3η̄
. (3.16)

If (εk)k, (µ
k
F)k, ((n

k
F)

−1/2)k ∈ ℓ1+, then

lim
k→∞

E[‖F (xk)‖] = 0 and lim
k→∞

F (xk) = 0 a.s..

Proof. It follows from (3.9) and assumptions that

∑

k

αk

(

1− η − η̄

(

2σ̄G

(nk
G)

1/2
+ 2µk

G

)

− 1

2
αkL′M̄F η̄

2

)

E[‖F (xk)‖] < +∞.

Then it further yields from (3.15) and (3.16) that

∑

k

1

3
ᾱ(1− η)E[‖F (xk)‖] < +∞,

which implies limk→∞ E[‖F (xk)‖] = 0. Similar to the analysis of Theorem 3.1, we obtain that

limk→∞ F (xk) = 0 almost surely. �

Remark 3.1. From (3.4) we can see that Assumption B1 plays a crucial role in both Theo-

rems 3.1 and 3.2 for proving the global convergence in expectation and almost-surely. Moreover,

both theorems above show that the increase of sample size plays an important role in proving

the almost sure convergence of {‖F (xk)‖}. But as shown in Theorem 3.2, under assumption

(B2’), only an increase in the sample size to compute the mini-batch approximate function

value Ftk(x
k) is required.

4. Computational Complexity

In this section, we analyze the computational complexity of Algorithm 2.1 with respect to

stochastic zeroth- and first-order oracles, when its output is chosen randomly from all iterates

xk, k = 0, . . . , N , where N is the maximum iteration number. In this situation, we establish

several complexity results under different choices of step sizes.

Theorem 4.1. Suppose that assumptions (A1)–(A3) and (B1)–(B2) hold. Let Algorithm 2.1

return xR as the output, where R ∈ {0, . . . , N} follows the distribution function

P(R = k) =
min{c, αk(1− η)}

∑N
k=0 min{c, αk(1 − η)}

, k = 0, . . . , N.

Then we have

E[‖F (xR)‖] ≤ ‖F (x0)‖+∑N
k=0(M

k
c1 +Mk

c2)
∑N

k=0 min{c, αk(1 − η)}
, (4.1)

where Mk
c1,M

k
c2 are defined in Lemma 3.1. Furthermore, we have the following results:

(i) Suppose that c + η ≥ 1, α0 = γ > 0, αk = k−β with β ∈ (0.5, 1), k = 1, . . . , N and εk,

µk
F , µ

k
G, (n

k
F)

−1/2, (nk
G)

−1 = O(k−δ) with δ > 1. Then, E[‖F (xR)‖] = O(Nβ−1). Thus

to achieve E[‖F (xR)‖] < ǫ for given ǫ > 0, the total number of evaluations of zeroth- and

first-order oracles are in order of O(ǫ
1+2δ
β−1) and O(ǫ

1+δ
β−1), respectively.

A Stochastic Newton Method for Nonlinear Equations 1205

(ii) Suppose that N > (1−η
c)2, αk = α, k = 0, 1, . . . , N and εk, µk

F , µ
k
G, (n

k
F)

−1/2, (nk
G)

−1 =

O(k−δ) with δ > 0. Then the following conclusions hold.

(1) If δ > 1 and α = N−1/2, we obtain E[‖F (xR)‖] = O(N−1/2). Thus to achieve

E[‖F (xR)‖] ≤ ǫ for given ǫ > 0, the total number of evaluations of zeroth- and

first-order oracles are in order of O(ǫ−(2+4δ)) and O(ǫ−(2+2δ)), respectively.

(2) If δ < 1 and α = N−δ/2, we obtain E[‖F (xR)‖] = O(N−δ/2). Thus to achieve

E[‖F (xR)‖] ≤ ǫ for given ǫ > 0, the total number of evaluations of zeroth- and

first-order oracles are in order of O(ǫ−(4+ 2
δ)) and O(ǫ−(2+ 2

δ)), respectively.

(3) If δ = 1 and α = (N
logN)−1/2, we obtain E[‖F (xR)‖] = O((N

logN)−1/2). Thus to

achieve E[‖F (xR)‖] ≤ ǫ for given ǫ > 0, the total number of evaluations of zeroth-

and first-order oracles are in order of Õ(ǫ−6) and Õ(ǫ−4), respectively. Here we use

Õ to hide the dependence on logarithmic factors.

Proof. Due to the randomness of R, it is straightforward to obtain (4.1) from Lemma 3.1

and

E[‖F (xR)‖] =
∑N

k=0 min{c, (1− η)αk}E[‖F (xk)‖]
∑N

k=0 min{c, αk(1 − η)}
.

We first prove part (i). It implies from c+ η ≥ 1 and (4.1) that

E[‖F (xR)‖]

≤ 1

(1− η)(
∑N

k=0 α
k)

(‖F (x0)‖ +
N
∑

k=0

((1 − c)E[Ek
F (x

k)] + E[EF
k+1(x

k+1)] + εk)

+

N
∑

k=0

αk[(1 + η)E[Ek
F (x

k)] + η̄MF (E[(Ek
G(x

k))2])1/2] +
1

2
η̄2M2

FL
′

N
∑

k=0

(αk)2). (4.2)

Note that
N
∑

k=0

αk ≥ γ +
(N + 1)1−β − 1

1− β
and

N
∑

k=0

(αk)2 ≤ 2β

2β − 1
+ γ2.

Moreover, it follows from (µk
F)k, ((n

k
F)

−1/2)k ∈ ℓ1+ that
∑

k=0 E[Ek
F (x

k)] = O(1). In addition,

by (µk
G)

2
k, ((n

k
G)

−1)k ∈ ℓ1+, we have

N
∑

k=0

αk
(

E[(EG
k (xk))2]

)1/2 ≤
(

N
∑

k=0

(αk)2

)1/2(N
∑

k=0

E[(EG
k (xk))2]

)1/2

= O(1),

which implies that E[‖F (xR)‖] is in the order ofO(Nβ−1). Therefore, to achieve E[‖F (xR)‖] ≤ ǫ,

N should be in order ofO(ǫ
1

β−1). Then the total number of evaluations of zeroth- and first-order

oracles are

N
∑

k=0

nk
F = O(N1+2δ) = O

(

ǫ
1+2δ
β−1

)

and

N
∑

k=0

nk
G = O(N1+δ) = O

(

ǫ
1+δ
β−1

)

,

respectively.

1206 J.N. WANG, X. WANG AND L.W. ZHANG

Next we prove part (ii). For (1), it implies from N > (1−η
c)2, (4.1) and α = 1√

N
that

E[‖F (xR)‖] ≤ 1

(1− η)Nα

(

‖F (x0)‖+
N
∑

k=0

(

(1− c)E[Ek
F (x

k)] + E[EF
k+1(x

k+1)] + εk

+ α[(1 + η)E[Ek
F (x

k)] + η̄MF (E[(Ek
G(x

k))2])1/2] +
1

2
η̄2M2

FL
′α2

)

)

=
1

(1− η)
√
N

(

‖F (x0)‖+
N
∑

k=0

(

(1− c)E[Ek
F (x

k)] + E[EF
k+1(x

k+1)] + εk

+
1√
N

(1 + η)E[Ek
F (x

k)] +
1

2
E[(Ek

G(x
k))2] +

η̄2M2
F (L

′ + 1)

2N

)

)

.

Moreover, similar to part (i), we have
∑

k=0 E[Ek
F (x

k)] = O(1) and
∑

k=0 E[(EG
k (xk))2] = O(1).

Then E[‖F (xR)‖] is in the order of O(N−1/2). Therefore, to achieve E[‖F (xR)‖] ≤ ǫ, N should

be in order of O(ǫ−2). Then the total number of evaluations of zeroth- and first-order oracles

are
N
∑

k=0

nk
F = O(N1+2δ) = O

(

ǫ−(2+4δ)
)

and

N
∑

k=0

nk
G = O(N1+δ) = O

(

ǫ−(2+2δ)
)

,

respectively.

To prove (2), we first derive from δ < 1 that

N
∑

k=0

E[EF
k (xk)] = O(N1−δ) and

N
∑

k=0

E[(Ek
G(x

k))2] = O(N1−δ).

Then it yields from (4.2) and α = O(N−δ/2) that E[‖F (xR)‖] = O(N−δ/2). Therefore, to

achieve E[‖F (xR)‖] ≤ ǫ, N should be in order ofO(ǫ−2/δ). Then the total number of evaluations

of zeroth- and first-order oracles are

N
∑

k=0

nk
F = O(N1+2δ) = O(ǫ−(4+ 2

δ)) and

N
∑

k=0

nk
G = O(N1+δ) = O(ǫ−(2+ 2

δ)),

respectively. We now prove (3). Notice that in this case

N
∑

k=0

E[EF
k (xk)] = O(logN) and

N
∑

k=0

(E[(Ek
G(x

k))2])1/2 = O(logN).

Then similar to previous two cases, we can obtain from (4.2) and α = (N
logN)−1/2 that

E[‖F (xR)‖] = O((N
logN)−1/2). Therefore, to achieve E[‖F (xR)‖] ≤ ǫ, N should be in order

of O(ǫ−2 log(ǫ−1)), thus the total number of evaluations of zeroth- and first-order oracles are

N
∑

k=0

nk
F = O(N3) = Õ(ǫ−6) and

N
∑

k=0

nk
G = O(N2) = Õ(ǫ−4),

respectively. �

Theorem 3.2 shows that the global convergence of Algorithm 2.1 can be guaranteed when

step sizes are constant. Moreover, from (3.16) we can see that it is not necessary to require

A Stochastic Newton Method for Nonlinear Equations 1207

(nk
G)

−1 and µk
G approach zero, provided that they are small enough. It only requires stochastic

zeroth-order oracles approach the real function values gradually. Accordingly, we can establish

the computational complexity of Algorithm 2.1 as follows.

Theorem 4.2. Suppose that assumptions (A1)–(A3), (B1) and (B2’) hold, and Algorithm 2.1

returns xR as the output, where R ∈ {1, · · · , N} follows the distribution function

P(R = k) =
αk(1− η − φk)

N
∑

k=0

αk(1− η − φk)

, k = 0, . . . , N,

with φk = η̄(2σ̄G

(nk
G)1/2

+2µk
G)+

1
2α

kL′M̄F η̄
2, (αk)k satisfying (3.15), nk

G ≥ 144η̄2σ̄2
G

(1−η)2 and µk
G ≤ 1−η

12η̄ .

Then we have

E[‖F (xR)‖] ≤
3‖F (x0)‖+ 3

N
∑

k=0

(Mk
c1 +Mk

c3)

(1− η)
N
∑

k=0

αk

. (4.3)

Furthermore, if εk, µk
F , (n

k
F)

−1/2 = O(k−δ) with δ > 0, the following conclusions hold.

(1) If δ > 1 and αk = N−1/2 with N > θ2 where θ is defined in (3.15), we have E[‖F (xR)‖] =
O(N−1/2). Thus to achieve E[‖F (xR)‖] ≤ ǫ for a given ǫ > 0, the total number of

evaluations of zeroth- and first-order oracles are in order of O(ǫ−(2+4δ)) and O(ǫ−2),

respectively.

(2) If δ < 1 and αk = N−δ/2 with N > θ
2
δ , then E[‖F (xR)‖] = O(N−δ/2). Thus to achieve

E[‖F (xR)‖] ≤ ǫ for given ǫ > 0, the total number of evaluations of zeroth- and first-order

oracles are in order of O(ǫ−(4+ 2
δ)) and O(ǫ−2/δ), respectively.

(3) If δ = 1 and αk = (N
logN)−1/2, then E[‖F (xR)‖] = O((N

logN)−1/2). Thus, to achieve

E[‖F (xR)‖] ≤ ǫ for given ǫ > 0, the total number of evaluations of zeroth- and first-order

oracles are in order of Õ(ǫ−6) and O(ǫ−2 log(ǫ−1)), respectively.

Proof. Note that the settings of nk
G and µk

G satisfy (3.16). Then in all cases the number of

evaluations of first-order oracles are in order of O(N). The remaining of the proof is similar to

Theorem 4.1. �

Remark 4.1. Theorems 4.1 and 4.2 establish computational complexities of Algorithm 2.1 to

achieve E[‖F (xR)‖] ≤ ǫ. Note that the criticality measure is stronger than those considered

in RSG [9] and SGN [29], seen from Table 1.1. This is due to assumption B1 that we can

guarantee the near feasibility of the approximate solution of (1.1).

5. Local Convergence

In this part we study the local convergence properties of Algorithm 2.1. In general, we

consider a single trajectory of the stochastic process (xk)k, and show that local convergence

and a fast convergence rate can be achieved with high probability if the sample sizes nk
F and

nk
G are chosen appropriately. In the following, we denote (xk)k as the underlying stochastic

1208 J.N. WANG, X. WANG AND L.W. ZHANG

process or a trajectory generated by a single run of Algorithm 2.1. Let x∗ be an accumulation

point of (xk)k. To establish the local convergence properties of Algorithm 2.1, we first refer

to Lemma 4.3 in [18] and Theorem 1.6 in [30] about concentration inequalities for vector- and

matrix-valued martingales, respectively. For completeness, we state them as Lemma A.1 in the

appendix.

Throughout this section, we suppose that

(δk)k ⊆ (0, 1/2), 0 < (εk)k ∈ ℓ1+,

(αk)k satisfy (3.15) and (µk
G)k, (n

k
G)k satisfy (3.16).

The following theorem shows the convergence of whole sequence (xk)k to x∗ in certain

probability.

Theorem 5.1. Under assumptions (A1)–(A3), (B1) and (B2’), suppose that JF (x∗) is non-

singular and there exists l̄ ∈ N such that µk
F = 0 and nk

F ≥ σ̄2
F

(εk)2δk
for k ≥ l̄. Then with

probability no less than δ∗1 =
∏∞

k=l̄(1 − 2δk), the whole sequence (xk)k converges to x∗ and x∗

is a solution of (1.1).

Proof. Recall that by (2.8) and framework of Algorithm 2.1, at kth iteration xk is xk
1 when

the line search condition is satisfied and xk
2 , otherwise. Given ε > 0, we define the the following

events

Ek
F (ε) = {ω ∈ Ω : Ek

F (x
k(ω) ≤ ε},

Ek
1(ε) = {ω ∈ Ω : Ek

F (x
k
1(ω) ≤ ε} and Ek

2(ε) = {ω ∈ Ω : EF
k (xk

2(ω)) ≤ ε}. (5.1)

Notice that xk
1 , xk

2 ∈ Fk−1 and ̥(xk
j , t

k
i)− F (xk

j) ∈ F̂k−1, i ∈ [nk
F], j = 1, 2. Letting

Xk
i = ̥(xk

1 , t
k
i)− F (xk

1), i = 1, . . . , nk
F ,

we obtain from assumption (A3) and µk
F = 0, k ≥ l̄, that for any k ≥ l̄,

E[Xk
i |Fk−1] = 0, E[‖Xk

i ‖2|Fk−1] ≤ σ̄2
F .

Then it follows from Lemma A.1 (i) that

P(‖Ftk(x
k
1)− F (xk

1))‖ ≥ (δknk
F)

−1/2σ̄F |Fk−1)

=P





∥

∥

∥

∥

∥

∥

1

nk
F

nk
F
∑

i=1

Xk
i

∥

∥

∥

∥

∥

∥

≥ (δknk
F)

−1/2σ̄F |Fk−1





=P





∥

∥

∥

∥

∥

∥

nk
F
∑

i=1

Xk
i

∥

∥

∥

∥

∥

∥

≥ (δk)−1/2(nk
F)

1/2σ̄F |Fk−1



 ≤ δk,

which further yields from nk
F ≥ σ̄2

F

(εk)2δk
for all k ≥ l̄ that

P(‖Ftk(x
k
1)− F (xk

1)‖ ≤ εk |Fk−1) ≥ 1− δk.

Similarly, we obtain

P(‖Ftk(x
k
2)− F (xk

2)‖ ≤ εk |Fk−1) ≥ 1− δk

A Stochastic Newton Method for Nonlinear Equations 1209

for all k ≥ l̄. Then by Bonferroni inequality it yields that for any k ≥ l̄,

P(Ek
1(ε

k) ∩Ek
2(ε

k))|Fk−1) ≥ 1
E

k
1
(εk)(ω) + 1

E
k
2
(εk)(ω)− 1 ≥ 1− 2δk.

Note that from Ek
F (x

k
j) = ‖Ftk(x

k)− F (xk)‖ ≤ εk, j = 1, 2, and (2.10) we have

Ek
F (x

k) = ‖Ftk(x
k)− F (xk)‖

= ‖Y k(Ftk(x
k
1)− F (xk

1)) + (1− Y k)(Ftk(x
k
2)− F (xk

2))‖
≤ Y kEk

F (x
k
1) + (1− Y k)Ek

F (x
k
2) ≤ εk,

which yields

P(Ek
F (ε

k) |Fk−1) ≥ P(Ek
1(ε

k) ∩Ek
2(ε

k)|Fk−1) ≥ 1− 2δk (5.2)

for all k ≥ l̄. Thus it derives

P

(

L
⋂

k=l̄

Ek
F (ε

k)

)

≥
L
∏

k=l̄

(1 − 2δk).

Letting L → ∞ and defining event E =
⋂∞

k=l̄ E
k
F (ε

k), we have

P(E) ≥
∞
∏

k=l̄

(1− 2δk) = δ∗1 .

Therefore, we can assume that the trajectory (xk)k is generated by a sample point ω̄ ∈ E, which

occurs with probability no less than δ∗1 . Note that the bound of nk
F ensures that (nk

F)
−1/2 ∈

ℓ1+. Then conditions of Theorem 3.2 are satisfied, which yields F (xk) → 0 in probability one

conditioned on E. Therefore, F (xk) → 0 and x∗ is a solution of (1.1) with probability no less

than δ∗. Moreover, as JF (x∗) is nonsingular, there exists a neighborhood of x∗, denoted by

B(x∗), and a positive number mJ , such that for ‖JF (x)v‖ ≥ mJ‖v‖ for any x ∈ B(x∗) and

v ∈ Rn. Then for any x ∈ B(x∗) and x 6= x∗, there exists ξx ∈ (x∗, x) ⊂ B(x∗) such that

‖F (x)‖ = ‖F (x)− F (x∗)‖ = ‖JF (ξx)(x− x∗)‖ ≥ mJ‖x− x∗‖ > 0,

which indicates that x∗ is an isolated solution of (1.1). Furthermore, it implies from (2.10) and

‖xk+1 − xk‖ = ‖(Y k+1 + (1− Y k+1)αk)d
k‖

≤ (1 + ηk)‖G−1
sk

(xk)‖‖Ftk(x
k)‖ ≤ 1 + ηk

mG
(‖F (xk)‖+ Ek

F (x
k))

that ‖xk+1 − xk‖ → 0 as k → ∞. Therefore by Lemma 4.10 in [19] it derives the convergence

of (xk)k to x∗ with probability no less than δ∗1 . This completes the proof. �

In the following theorem, we show the local convergence rate of Algorithm 2.1. Let (γk)k ⊂
(0,∞) be a non-increasing sequence with γk → 0 as k → ∞.

Theorem 5.2. Under same conditions as Theorem 5.1, suppose that there exist l̂ ≥ l̄ and λ̄ > 0

such that for all k ≥ l̂, µk
G = 0, ‖G(xk, skj)− JF (xk)‖ ≤ λ̄ for any skj ∈ Ξ, j ∈ [nk

G],

ηk < min

{

min{1,mG}
3‖JF (x∗)‖ ,

(1− c)mG

4‖JF (x∗)‖2‖[JF (x∗)]−1‖

}

,

1210 J.N. WANG, X. WANG AND L.W. ZHANG

and

nk
F ≥ σ̄2

F

δk(λk
F)

2
, nk

G ≥ log

(

2n

δk

)(

2σ̄2
G

(λk
G)

2
+

2λ̄

3λk
G

)

,

where

λk
F = min {λ◦

k, λ
◦
k−1}, λk

G < min

{

εk

2
,

(1− c)mG

8‖JF (x∗)‖‖[JF (x∗)]−1‖

}

with λ◦
k = min{ m2

Gεk

(2−c)m2
G+2mG‖JF (x∗)‖+6L′+2

, mG(γk)k−l̂

2 }. Then there exists l◦ ≥ l̂ such that for

all k ≥ l◦,

‖xk − x∗‖ ≤ τk, (5.3)

where with θk = 1
mG

(λk
G + ηk‖JF (x∗)‖+ L′(1+ηk)

2 ‖xk − x∗‖),

τk =

{

max {‖xl◦ − x∗‖, (γl◦)(l◦−l̂)/2}, k = l◦,

max {(θk−1 + (γk−1)(k−1−l̂)/2)τk−1, (γk)(k−l̂)/2}, k > l◦.

Consequently, with probability δ∗2 =
∏∞

k=l̂(1 − 2δk)(1 − δk), (xk)k converges to x∗ at least r-

linearly. In addition, if ηk → 0 and λk
G → 0 as k → ∞, xk converges r-superlinearly to x∗ with

probability δ∗2 .

Proof. Given ε > 0, define the event Ek
G(ε) = {ω ∈ Ω : Ek

G(x
k(ω)) ≤ ε}. Denote Xk

j =

G(xk, skj)− E[G(xk , skj)], j = 1, . . . , nk
G. As µ

k
G = 0 for k ≥ l̂, we have

Xk
j = G(xk, skj)− JF (xk), j = 1, . . . , nk

G, k ≥ l̂,

and it yields from assumption (A3) that for any k ≥ l̂,

max







∥

∥

∥

∥

∥

∥

nk
G
∑

j=1

E[Xj(X
k
j)

T]

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

nk
G
∑

j=1

E[(Xk
j)

TXk
j]

∥

∥

∥

∥

∥

∥







≤ nk
Gσ̄

2
G.

Recall that xk ∈ F̂k−1 and G(xk, skj) ∈ Fk, i ∈ [nk
G]. Then from Lemma A.1 (ii) and ‖Xk

j ‖ ≤ λ̄,

j = 1, . . . , nk
G with nk

G ≥ log(2n/δk)(2σ̄2
G(λ

k
G)

−2 + 2λ̄(λk
G)

−1/3) it implies that for any k ≥ l̂,

P(‖Gsk(x
k)− JF (xk)‖

≥ λk
G |F̂k−1) = P





∥

∥

∥

∥

∥

∥

1

nk
G

nk
G
∑

i=1

Xk
i

∥

∥

∥

∥

∥

∥

≥ λk
G |F̂k−1



 = P





∥

∥

∥

∥

∥

∥

nk
G
∑

i=1

Xk
i

∥

∥

∥

∥

∥

∥

≥ nk
Gλ

k
G |F̂k−1





≤ 2n · exp
(−(nk

Gλ
k
G)

2/2

nk
Gσ̄

2
G + λ̄nk

Gλ
k
G/3

)

≤ δk,

which yields

P(Ek
G(λ

k
G) |F̂k−1) = P(‖Gsk(x

k)− E[Gsk(x
k)]‖ ≤ λk

G |F̂k−1) ≥ 1− δk (5.4)

for all k ≥ l̂. Now consider the event E :=
⋂∞

k=l̂ E
k
F (λ

k
F) ∩ Ek

G(λ
k
G). It follows from the tower

property of the conditional expectation, (5.2) and (5.4) that for any L > l̂,

P





L
⋂

k=l̂

Ek
F (λ

k
F) ∩Ek

G(λ
k
G)



 = E





L−1
∏

k=l̂

1
E

k
F (λk

F)1E
k
G(λk

G){E[1E
L
F (λL

F)E[1E
L
G(λL

G) |F̂L−1] |FL−1]}





A Stochastic Newton Method for Nonlinear Equations 1211

≥ (1− 2δL)(1 − δL)E





L−1
∏

k=l̂

1
E

k
F (λk

F)1E
k
G(λk

G)





≥
L
∏

k=l̂

(1− 2δk)(1− δk) = δ∗2 .

Taking the limit as L → ∞, it yields P(E) ≥ δ∗2 . Then we can assume that (xk)k is generated

by a sample point belonging to E such that (xk)k converges to x∗, which thus occurs with

probability no less than δ∗2 and by Theorem 5.1, x∗ is a solution of (1.1).

Next, we will show that with probability at least δ∗2 , the line search condition (2.6) always

holds whenever k is sufficiently large. In the following, if not specified, the event happens with

probability at least δ∗2 . It follows from assumptions (A2) and (B1) that

‖xk + dk − x∗‖
≤‖G−1

sk
(xk)‖‖Gsk(x

k)(xk − x∗) +Gsk(x
k)dk‖

≤ 1

mG
‖(Gsk(x

k)− JF (xk))(xk − x∗) + (JF (xk)(xk − x∗) + F (x∗)− F (xk))

− (Ftk(x
k)− F (xk)) +Gsk(x

k)dk + Ftk(x
k)‖

≤ 1

mG

(

Ek
G(x

k) +
L′

2
‖xk − x∗‖

)

‖xk − x∗‖+ 1

mG

(

Ek
F (x

k) + ηk‖Ftk(x
k)‖
)

≤ 1

mG

(

Ek
G(x

k) +
L′

2
‖xk − x∗‖

)

‖xk − x∗‖+ 1

mG
Ek
F (x

k)

+
ηk

mG
‖Ftk(x

k)− F (xk) + (F (xk)− F (x∗) + JF (x∗)(xk − x∗))− JF (x∗)(xk − x∗)‖

≤ 1

mG

(

Ek
G(x

k) + ηk‖JF (x∗)‖+∆(xk)
)

‖xk − x∗‖+ 1 + ηk

mG
Ek
F (x

k)

≤ 1

mG

(

Ek
G(x

k) + ηk‖JF (x∗)‖+∆(xk)
)

‖xk − x∗‖+ 2

mG
Ek
F (x

k), (5.5)

where ∆(xk) = L′(1+ηk)
2 ‖xk − x∗‖. Notice that by assumptions on λk

G and ηk, we have that for

any k ≥ l̂,

Ek
G(x

k) ≤ λk
G ≤ 1

3
, ηk ≤ 1, ηk‖JF (x∗)‖ ≤ 1

3
,

and due to xk → x∗, there exists l1 ≥ l̂ such that for all k ≥ l1,

‖xk − x∗‖ ≤ 1, ∆(xk) ≤
1

3
.

Then we obtain that for any k ≥ l1,

‖xk + dk − x∗‖ ≤ 1

mG
‖xk − x∗‖+ 2

mG
Ek
F (x

k),

∆(xk + dk) =
L′(1 + ηk)

2
‖xk + dk − x∗‖ ≤ 1

mG
∆(xk) +

2L′

mG
Ek
F (x

k),

which further indicates from ∆(xk) ≤ 1, ‖xk − x∗‖ ≤ 1 and Ek
F (x

k) ≤ 1 for k ≥ l1 that

∆(xk + dk)‖xk + dk − x∗‖ ≤ ∆(xk)

m2
G

‖xk − x∗‖+ 2

m2
G

∆(xk)Ek
F (x

k)

1212 J.N. WANG, X. WANG AND L.W. ZHANG

+
2L′

m2
G

Ek
F (x

k)‖xk − x∗‖+ 4L′

m2
G

(Ek
F (x

k))2

≤ ∆(xk)

m2
G

‖xk − x∗‖+ 2 + 6L′

m2
G

Ek
F (x

k). (5.6)

By (2.11) and the definition of ∆(x), we have that for any k ≥ l1,

‖F (xk + dk)‖ ≤ L′

2
‖xk + dk − x∗‖2 + ‖JF (x∗)‖‖xk + dk − x∗‖

≤∆(xk + dk)‖xk + dk − x∗‖+ ‖JF (x∗)‖‖xk + dk − x∗‖.

Then it follows from (5.5) and (5.6) that

‖F (xk + dk)‖ ≤
[(

1

mG
+ ‖JF (x∗)‖

)

∆(xk)

mG
+

ηk

mG
‖JF (x∗)‖2 + Ek

G(x
k)

mG
‖JF (x∗)‖

]

‖xk − x∗‖

+

(

2‖JF (x∗)‖
mG

+
6L′ + 2

m2
G

)

Ek
F (x

k).

Notice that by the mean value theorem, for any xk there exists ξk ∈ (x∗, xk) such that

F (xk) = F (xk)− F (x∗) = JF (ξk)(xk − x∗). (5.7)

As xk → x∗ and ∆(xk) → 0, there exists l2 ≥ l1 such that for all k ≥ l2,

∆(xk) ≤ (1 − c)mG

8(1/mG + ‖JF (x∗)‖)‖[JF (x∗)]−1‖ ,

and for any x ∈ (x∗, xk), JF (x) is nonsingular and ‖[JF (x)]−1‖ ≤ 2‖[JF (∗)]−1‖. Then it

yields from (5.7) that

‖xk − x∗‖ ≤ 2‖[JF (x∗)]−1‖‖F (xk)‖.

Therefore, it follows from

ηk <
(1− c)mG

4‖JF (x∗)‖2‖[JF (x∗)]−1‖ , λk
G <

(1− c)mG

8‖JF (x∗)‖‖[JF (x∗)]−1‖ , k ≥ l̂,

that for any k ≥ l2,

‖F (xk + dk)‖ ≤ (1 − c)‖F (xk)‖+
(

2‖JF (x∗)‖
mG

+
6L′ + 2

m2
G

)

Ek
F (x

k).

In addition, according to the bound on λk
F , it indicates that for any k ≥ l∗ := max{l2, l̂},

‖Ftk+1(xk + dk)‖ − (1− c)‖Ftk(x
k)‖

≤‖F (xk + dk)‖+ Ek+1
F (xk + dk)− (1− c)‖F (xk)‖ + (1− c)Ek

F (x
k)

≤Ek+1
F (xk + dk) + (1− c)Ek

F (x
k) +

(

2‖JF (x∗)‖
mG

+
6L′ + 2

m2
G

)

Ek
F (x

k)

≤λk+1
F + (1− c)λk

F +

(

2‖JF (x∗)‖
mG

+
6L′ + 2

m2
G

)

λk
F

≤
(

2− c+
2‖JF (x∗)‖

mG
+

6L′ + 2

m2
G

)

λ◦
k ≤ εk,

A Stochastic Newton Method for Nonlinear Equations 1213

which satisfies (2.6). Therefore, the line search condition is always satisfied for any k ≥ l∗ with

a probability no less than δ∗2 .

Finally we will derive the convergence rate of Algorithm 2.1. As xk+1 = xk + dk for any

k ≥ l∗, it follows from (5.5) that

‖xk+1 − x∗‖ ≤ 1

mG
(λk

G + ηk‖JF (x∗)‖+∆(xk))‖xk − x∗‖+ 1 + ηk

mG
λk
F

≤ θk‖xk − x∗‖+ (γk)k−l̂,

where θk = 1
mG

(λk
G + ηk‖JF (x∗)‖ +∆(xk)). By induction, from the definition of (τk)k≥l◦ , it

is easy to obtain (5.3). Moreover, as (γk)k is a nonincreasing sequence, we obtain that for any

k ≥ l◦,

τk+1

τk
≤ max {θk + (γk)(k−l̂)/2, (γk+1)1/2(γk+1/γk)(k−l̂)/2}

≤ max {θk + (γk)(k−l̂)/2, (γk)1/2}.

Notice that the value of ηk plays a key role in determining the convergence rate of Algorithm 2.1.

If ηk < mG

3‖JF (x∗)‖ for all sufficiently large k, then due to
λk
G

mG
< 1

8 and ∆(xk), γk → 0 we obtain

there exists θ̄ < 1 such that θk ≤ θ̄ for any k ≥ l◦. Hence (τk)k converges q-linearly to 0, which

indicates that xk converges to x∗ with r-linear rate. If ηk → 0 and λk
G → 0 as k → ∞, then τk

converges q-superlinerly to 0, thus xk converges to x∗ with r-superlinear rate. �

Remark 5.1. In Theorem 5.2, to guarantee the r-superlinear convergence rate, it requires

the stochastic approximate function Ftk(·) and the stochastic approximate Jacobian Gsk(·) are
unbiased estimates of F (·) and JF (·), respectively, i.e.

E[Ftk (x)] = F (x), E[Gsk (x)] = JF (x).

Actually, the above two relations can be realized simultaneously. More specifically, with sk = tk

and G(x, skj) = J̥(x, tki) for any x ∈ Rn, suppose that E[Ftk (x)] = F (x). If F (·) is well defined
and finite valued at any x ∈ Rn, and for almost every ξ ∈ Ξ, Ftk = Ftk(ξ) is differentiable and

Lipschitz continuous in x, then by Theorem 7.44 in [28], we have

E[Gsk (x)] = E[JFtk(x)] = JE[Ftk(x)] = JF (x). (5.8)

If Ftk(ξ) is random lower semicontinuous and convex in x, and F is proper, we can also ob-

tain (5.8).

6. Numerical Experiments

In this section, we present some preliminary numerical results to illustrate the performance

of Algorithm 2.1. All numerical experiments were implemented in MATLAB R2019a on a

laptop with Intel(R) Core(TM) i5-6200U 2.30GHz and 8GB memory. The four data sets used

in numerical experiments are displayed in the following Table 6.1.

We next list all the algorithms present in numerical experiments.

1214 J.N. WANG, X. WANG AND L.W. ZHANG

Table 6.1: Datasets used in the experiments.

Data Set No. of Data Points: m No. of Variables: n Reference

Adult 1605 123 [20]

CINA 16033 132 [6]

gisette 6000 5000 [10]

rcv1 20242 47236 [17]

Alg. 2.1 Algorithm 2.1.

SN. Stochastic Newton method, obtained by removing the line search step in Algorithm 2.1

while only taking a constant step size.

LNM. Deterministic line search Newton method, obtained by replacing all the stochastic infor-

mation in Algorithm 2.1 with exact function value and Jacobian, i.e. F (xk) and JF (xk),

respectively.

NM. Deterministic Newton method, obtained by removing the line search step in LNM while

only taking a constant step size.

SGN. Stochastic Gauss-Newton algorithm proposed in [29] for nonconvex compositional opti-

mization.

SGM. Stochastic gradient method combining the variance reduced stochastic oracle [15], using

sub-sampled gradient information with 10% sample size of the training data size n.

In both Alg. 2.1 and SN, stochastic function values and Jacobian matrices are generated

in the same way. More specifically, we first select the sub-samples Tk ⊆ [m] uniformly at

random and without replacement from the index set {1, . . . ,m}. Then compute the mini-batch

stochastic oracles through (2.2), where the size of Tk is chosen increasingly by 5% from ⌈0.05m⌉
until it reaches m. In both Alg. 2.1 and LNM, we set εk = k−4/3, ηk = 10−5, αk = 0.3 and

c = 0.3. In Alg. 2.1, SN, LNM and NM, Gauss-Seidel iterative method [31] is used to solve the

approximate solution dk of (2.4). In SGN and SGM, the parameter and step sizes are selected

for best performance. Without further specification, we use the following termination criterion

in numerical tests: ‖xk+1 − xk‖ ≤ 10−9.

6.1. Logistic regression problem

We consider the following binary classification problem:

min
x∈Rn

H(x) =
1

m

m
∑

i=1

hi(x) +
λ

2
‖x‖2, (6.1)

where hi is the logistic loss function, i.e., hi(x) := log(1 + exp(−bi(ai)
Tx)) and λ = 0.01. The

vector ai ∈ Rn represents the feature vector of the data and bi ∈ {−1, 1} represents the label

of each data in the binary classification problem. As the objective function H is smooth and

level bounded, it has stationary points which solve

0 = F (x) :=
1

m

m
∑

i=1

∇hi(x) + λx. (6.2)

A Stochastic Newton Method for Nonlinear Equations 1215

In the following we report numerical results by applying algorithms to solve the above nonlinear

system of equations.

As shown in previous theoretical analysis, the parameter ηk has a very important influence

on the convergence rate of Alg. 2.1. In Fig. 6.1 we report the numerical impact of ηk on the

performance of Alg. 2.1, by recording changing curves of errors under different settings of ηk

with respect to CPU time. Here, “Time (s)”, “Time (m)” and “Time (h)” denote the CPU time

in seconds, minutes and hours, respectively. The error at iterate xk is defined as ‖F (xk)‖. We

set ηk as 10−5, 0.3, 0.5, 0.8 and 1/k, respectively. We can see that Alg. 2.1 performs better as ηk

is smaller and achieves best when ηk = 10−5. This demonstrates that solving the approximate

Newton’s equation more accurately can improve the performance of Alg. 2.1.

Fig. 6.2 shows the influence of step size αk on the performance of Alg. 2.1. In the experiments

we test five different settings where αk = 0.3, 1, 5k−1, k−1/2 and k−1/4 for each data set. From

this figure, we can see when αk = 1, the error barely changes. Comparatively, Alg. 2.1 performs

better in other settings when αk is smaller, particularly when αk = 0.3 and 5k−1. It shows that

numerically simply unit step size is not enough to guarantee the global convergence, although

it brings faster local convergence rate when close to solution.

In Fig. 6.3, we report the impact of the sample sizes on the performance of Alg. 2.1 by using

different sampling rates. For all data sets, we choose the same initial sample set size as 5% of

total sample size m, then increase it to 100% at the sampling rate of 1%, 2%, 5%, and 10%,

respectively. From the figure we can see that the error decreases faster as the sampling rate

increases. As more samples are used when higher sampling rate is set, it reveals that the use

of more function information can help improve the algorithmic performance of Alg. 2.1.

In local convergence analysis of previous Theorem 5.2 we have shown that when the iteration

number k is sufficiently large, the line search condition can always hold, thus the step size

of Alg. 2.1 is equal to 1. To show this numerically, we plot the values of step sizes along

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.1. Performance profile of Alg. 2.1 associated with different ηk.

1216 J.N. WANG, X. WANG AND L.W. ZHANG

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.2. Comparison of Alg. 2.1 associated with different αk.

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.3. Comparison on Alg. 2.1 associated with different sampling rates.

with the algorithm proceeds in Fig. 6.4. For each data set, we run Alg. 2.1 until it reaches

‖xk+1 − xk‖ ≤ 10−15. We can see that in later stage of Alg. 2.1, the step size is always 1 which

verifies our previous theoretical analysis.

In Fig. 6.5, we show the comparison performances of all six algorithms aforementioned. The

same initial point x0 is chosen. From the numerical results, Alg. 2.1 and LNM converge more

A Stochastic Newton Method for Nonlinear Equations 1217

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.4. The trend of the step size αk in Alg. 2.1 for solving (6.2).

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.5. Comparison of six algorithms for solving (6.2).

rapidly than NM and SN in general for all data sets. After a few initial iterations the error

returned by Alg. 2.1 and LNM decreases more dramatically. We believe that in these stages

the iterates are approaching the solution thus the line search condition is always satisfied which

brings faster convergence rate according to previous local convergence analysis. Moreover,

Alg. 2.1 achieves lower error within the same CPU time on all data sets compared with LNM,

1218 J.N. WANG, X. WANG AND L.W. ZHANG

which reflects that the application of stochastic information can help to improve the algorithm

within the same CPU time. This point can also been seen from the better performance of SN

than NM. In addition, compared with SGN and SGM, Alg. 2.1 reveals faster local convergence

rate in later stage of the algorithm process and shows superior performance, especially on data

sets Adult and CINA.

6.2. Nonlinear equations

We consider the following nonlinear system of equations:

1

m

m
∑

i=1

fi(x) = 0, (6.3)

where the mapping fi : R
n → R2n is defined as

fi(x) =





−bi · (1− tanh(bi · 〈ai, x〉))2 · ai
−bi ·

exp(−bi · 〈ai, x〉)
1 + exp(−bi · 〈ai, x〉)

· ai + λx



 , i = 1, 2, . . . ,m. (6.4)

Here, ai ∈ Rn and bi ∈ {−1, 1} are denoted same as those in problem (6.1) and λ = 0.01.

Note that each fi consists of gradients of previous logistic loss function and the sigmoid loss

function which is defined as 1−tanh(bi · 〈ai, x〉). Both loss functions are widely used in machine

learning. As both functions are smooth and level bounded, it ensures that (6.3) has a solution.

We compare all six algorithms on four data sets given in Table 6.1. Moreover, except for

α = 0.15 on the data set Adult, other parameters used in those algorithms are consistent with

Section 6.1.

We apply all six algorithms to solve (6.3), (6.4) and report the comparison results in Fig. 6.6.

We can see that after initial iterations and compared with SGN, SGM, NM and SN, both Alg. 2.1

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.6. Comparison of six algorithms for solving (6.4).

A Stochastic Newton Method for Nonlinear Equations 1219

(a) Adult (b) CINA

(c) gisette (d) rcv1

Fig. 6.7. The trend of the step size αk in Alg. 2.1 for solving (6.4).

and LNM reduce the errors much more rapidly. We believe that in these stages the line search

condition is always satisfied thus faster local convergence rate can be achieved. Moreover,

Alg. 2.1 performs better than LMN, which shows again that the use of stochastic information

brings benefit to algorithmic performance within the same CPU time.

The trend of the step size αk during the process of Alg. 2.1 until ‖xk+1 − xk‖ ≤ 10−15 is

drawn in Fig. 6.7 on four data sets. When αk = 1, it means that the line search condition

(2.6) is satisfied. Otherwise, a constant step size is taken in Alg. 2.1. As can be seen from

Fig. 6.7, Alg. 2.1 can guarantee that while the iteration number is increasing, the step size αk

is always equal to 1 after at most twenty iterations, which means that in these cases (2.6) is

always satisfied.

7. Conclusions

In this paper, we propose a stochastic Newton method, Algorithm 2.1, for solving nonlinear

equations which can only be accessed through stochastic oracles. At each iteration, we compute

an inexact Newton direction by solving the approximate Newton’s equation constructed based

on stochastic zeroth- and first-order oracles. Then to determine the step size we consider

an inexact backtracking line search condition which is relying on stochastic approximations.

We take the unit step size if the line search condition is satisfied. Otherwise, a preset small

step size is taken. We establish the global convergence of errors at iterates, i.e. ‖F (xk)‖, in
expectation as well as its almost-sure convergence for Algorithm 2.1. Furthermore, we explore

the computational complexities of Algorithm 2.1 with respect to calls to stochastic zeroth-

and first-order oracles, when the algorithm returns a randomly chosen iterate as the output.

Moreover, we analyze local convergence properties of Algorithm 2.1 and establish the local

convergence rate in high probability. Finally, we report experimental results on some large

data sets and the proposed algorithm shows very promising numerical performances.

1220 J.N. WANG, X. WANG AND L.W. ZHANG

Appendix

Lemma A.1. Let (Uk)
m
k=0 be a given filtration of the σ-algebra F .

(i) Let (Xk)
m
k=1, Xk : Ω → Rn, be a family of random vectors, satisfying Xk ∈ Uk and σ ∈

Rm be a given vector with σk 6= 0, k = 1, . . . ,m. Suppose that E[Xk |Uk−1] = 0, and

E[‖Xk‖2 |Uk−1] ≤ σ2
k a.e. for all k ∈ [m]. Then it holds

E

[∥

∥

∥

∥

∥

m
∑

k=1

Xk‖2
∥

∥

∥

∥

∥

U0

]

≤ ‖σ‖2, P

(∥

∥

∥

∥

∥

m
∑

k=1

Xk

∥

∥

∥

∥

∥

≥ τ‖σ‖ |U0

)

≤ τ−2, ∀τ > 0

almost everywhere.

(ii) Let (Xk)
m
k=1, Xk : Ω → Rd1×d2 , be a sequence of random matrices satisfying Xk ∈ Uk.

Suppose that E[Xk |Uk−1] = 0, and there exists a positive constant R such that ‖Xk‖ ≤ R

a.e. for all k ∈ [m]. Define ν2 = max{‖∑m
k=1 E(XkX

T
k)‖, ‖

∑m
k=1 E(X

T
k Xk)‖}. Then it

holds

P

(∥

∥

∥

∥

∥

m
∑

k=1

Xk

∥

∥

∥

∥

∥

≥ t |U0

)

≤ (d1 + d2) · exp
(−t2/2

ν2 +Rt/3

)

, ∀t > 0

almost everywhere.

Acknowledgments. This research was partially supported by the National Natural Science

Foundation of China (Nos. 11731013, 11871453 and 11971089), Young Elite Scientists Sponsor-

ship Program by CAST (No. 2018QNRC001), Youth Innovation Promotion Association, CAS,

and Fundamental Research Funds for the Central Universities, UCAS.

References

[1] C.D. Aliprantis and K.C. Border, Infinite dimensional analysis: A hitchhiker’s guide, third ed,

Springer, Berlin, Germany, 2006.

[2] P. Bianchi, Ergodic convergence of a stochastic proximal point algorithm, SIAM J. Optim., 26:4

(2016), 2235–2260.

[3] E.G. Birgin, N. Krejić and J.M. Marténez, Globally convergent inexact quasi-Newton methods for

solving nonlinear equations, Numer. Algorithms, 32 (2003), 249–260.

[4] L. Bottou, F.E. Curtis and J. Nocedal, Optimization methods for large-scale machine Learning,

SIAM Rev., 60:2 (2018), 223–311.

[5] R. Bollapragada, R.H. Byrd and J. Nocedal, Exact and inexact subsampled Newton methods for

optimization, IMA J. Numer. Anal., 39:3 (2019), 545–578.

[6] Causality workbench team, A marketing dataset, http://www.causality.inf.ethz.ch/data/CINA.html,

2008, September.

[7] J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear

equations, SIAM J. Math. Data Sci., 1996, DOI: 10.1137/1.9781611971200.

[8] P. Dvurechensky and A. Gasnikov, Stochastic intermediate gradient method for convex problems

with stochastic inexact oracle, J. Optim. Theory Appl., 171:1 (2016), 121–145.

[9] S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic pro-

gramming, SIAM J. Optim., 23:4 (2013), 2341–2368.

[10] I. Guyon, S. Gunn, A. Ben-Hur and G. Dror, Result analysis of the NIPS 2003 feature selection

challenge, NIPS, (2005), 545–552.

A Stochastic Newton Method for Nonlinear Equations 1221

[11] A.N. Iusem, A. Jofré, R.I. Oliveira and P. Thompson, Extragradient method with variance reduc-

tion for stochastic variational inequalities, SIAM J. Optim., 27:2 (2017), 686–724.

[12] A.N. Iusem, A. Jofré, R.I. Oliveira, and P. Thompson, Variance-Based Extragradient Methods

with Line Search for Stochastic Variational Inequalities, SIAM J. Optim., 29:1 (2019), 175–206.

[13] A.N. Iusem, A. Jofré and P. Thompson, Incremental constraint projection methods for monotone

stochastic variational inequalities, Math. Oper. Res., 44:1 (2018), 236–263.

[14] H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality

problem, IEEE Trans. Automat. Contr., 53:6 (2008), 1462–1475.

[15] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance re-

duction, NIPS, 1:3 (2013), 315–323.

[16] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer,

1992.

[17] D.D. Lewis, Y. Yang, T.G. Rose and F. Li, RCV1: A new benchmark collection for text catego-

rization research, J. Math. Learn. Res., 5 (2004), 361–397.

[18] A. Milzarek, X. Xiao, S. Cen, Z. Wen and M. Ulbrich, (2019). A Stochastic Semismooth Newton

Method for Nonsmooth Nonconvex Optimization, SIAM J. Optim., 29:4 (2019), 2916–2948.

[19] J.J. Moré and D.C. Sorensen, Computing a trust region step, SIAM J. Sci. Comput., 4:3 (1983),

DOI:10.1137/0904038.

[20] I. Mukherjee, K. Canini, R. Frongillo and Y. Singer, Parallel boosting with momentum, In Joint

European Conference on Mach. Learn. Knowl. Discov. Databases, Springer, Berlin, Heidelberg,

(2013), September, 17–32.

[21] A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach

to stochastic programming, SIAM J. Optim., 19:4 (2009), 1574–1609.

[22] J. Nocedal and S. Wight, Numerical optimization, Springer, 2006.

[23] G.D. Nunno and T. Zhang, Approximations of stochastic partial differential equations, Ann. Appl.

Probab., 26:3 (2016), 1443–1466.

[24] C. Paquette and K. Scheinberg, A stochastic line search method with convergence rate analysis,

SIAM J. Optim., 30:1 (2020), 349–376.

[25] S.J. Reddi, S. Sra, B. Poczos and A.J. Smola, Proximal stochastic methods for nonsmooth non-

convex finite-sum optimization, NIPS, (2016), 1145–1153.

[26] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Stat., (1951), 400–407.

[27] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, Inc., USA, 1983.

[28] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on stochastic programming: modeling

and theory, MOS-SIAM Series on Optimization, SIAM, Philadelphia, USA, 9: (2009).

[29] Q. Tran-Dinh, N.H. Pham, and L. Nguyen, Stochastic Gauss-Newton Algorithms for Nonconvex

Compositional Optimization, In ICML 2020: 37th International Conference on Machine Learning,

2020.

[30] J.A. Tropp, User-friendly tail bounds for sums of random matrices, Found. Comut. Math., 12:4

(2012), 389–434.

[31] R.S. Varga, Matrix Iterative Analysis, Springer series in Computational Mathematics, Prentice-

Hall, Inc, Englewood Cliffs, New Jersey, 1962.

[32] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel and S. Lacoste-Julien, Painless stochastic

gradient: Interpolation, line search, and convergence rates, NeurIPS, 32 (2019), 3732–3745.

[33] Y. Xu and W. Yin, Block stochastic gradient iteration for convex and nonconvex optimization,

SIAM J. Optim., 25:3 (2015), 1686–1716.

[34] T.J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev., 37:4 (1995),

531–551.

