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Abstract

In the existing work, the recovery of strictly k-sparse signals with partial support in-

formation was derived in the ℓ2 bounded noise setting. In this paper, the recovery of

approximately k-sparse signals with partial support information in two noise settings is in-

vestigated via weighted ℓp (0 < p ≤ 1) minimization method. The restricted isometry con-

stant (RIC) condition δtk < 1

pη
2
p
−1

+1

on the measurement matrix for some t ∈ [1+ 2−p

2+p
σ, 2]

is proved to be sufficient to guarantee the stable and robust recovery of signals under

sparsity defect in noisy cases. Herein, σ ∈ [0, 1] is a parameter related to the prior support

information of the original signal, and η ≥ 0 is determined by p, t and σ. The new results

not only improve the recent work in [17], but also include the optimal results by weighted

ℓ1 minimization or by standard ℓp minimization as special cases.

Mathematics subject classification: 94A12, 94A15.
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1. Introduction

As a data acquisition paradigm, compressed sensing has been a very active research area

and has abundant applications [2,15,22]. Compressed sensing is particularly promising not only

in applications such as hyperspectral imaging where taking measurements is costly, but also in

applications such as medical and seismic imaging where the ambient dimension of the signal is

very large [18].

In standard compressed sensing theory, one observes

y = Ax+ z, (1.1)

where x = (x1, x2, . . . , xn)
T ∈ R

n is an unknown sparse signal, y ∈ R
m is the observed signal,

A ∈ R
m×n is a measurement matrix with m ≪ n, and z ∈ R

m denotes the noise in the

measurement. One of the central goals of compressed sensing is to recover the original high-

dimensional signal x based on the measurement matrix and the observed signal.

For signal recovery, the following noise settings

Bℓ2 (ǫ) :=
{

z ∈ R
m : ‖z‖2 ≤ ǫ

}

(1.2)
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and

BDS (ǫ) :=
{

z ∈ R
m :

∥

∥AT z
∥

∥

∞ ≤ ǫ
}

(1.3)

are of particular interest. Herein, ǫ ≥ 0 denotes some known margin. The ℓ2 bounded noise

setting (1.2) was considered for example in [14], and the DS noise setting (1.3) was motivated

by the Dantzig Selector procedure in [5].

Denote the support of x = (x1, x2, . . . , xn)
T as supp(x) = {i : xi 6= 0}. x is called k-sparse

if the number of nonzero components in x is k at most, i.e., ‖x‖0 = |supp(x)| ≤ k.

The constrained ℓp (0 < p ≤ 1) minimization method estimates the signal x by

x̂ = arg min
x∈Rn

{

‖x‖pp : y −Ax ∈ B
}

, (1.4)

where

‖x‖p =

(

n
∑

i=1

|xi|p
)

1
p

is the ℓp (quasi-)norm of x and B ⊆ R
m denotes some noise structure [21, 24, 28]. When

in particular p = 1, the ℓp minimization model (1.4) becomes the standard ℓ1 minimization

model [1–3].

The following restricted isometry property (RIP) is a commonly used framework for sparse

recovery.

Definition 1.1 ([4]). Suppose A ∈ R
m×n is a measurement matrix, k is an integer and

1 ≤ k ≤ n. For the measurement matrix A, the restricted isometry constant (RIC) of order k

is defined as the smallest number δk ≥ 0 such that for all k-sparse vectors x ∈ R
n,

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22 . (1.5)

More generally, when k is not an integer, δk is defined as δ⌈k⌉, where ⌈·⌉ denotes the ceiling

function [2].

In many practical applications, the original signal is not exactly k-sparse. As a consequence,

the stable recovery of approximately sparse signals in noisy settings is of significant interest,

and has been investigated under different sufficient RIC conditions by ℓp minimization model

(1.4) [23, 26–28]. When n ≤ 4k, under the assumption p ∈ (0, 3+2
√
2

2 (1 − δ2k)] for δ2k ∈ (0, 1),

Wen, Li and Zhu [26] proved the stable recovery of approximately k-sparse signals in the ℓ2
bounded noise case. For p ∈ (0, 1], Zhang and Li [28] derived the sharp condition

δ2k <
η

2− p− η
(1.6)

for the stable recovery of exactly k-sparse signals in noisy cases, where η ∈
(

1− p, 1− p
2

)

is the

unique positive solution of the equation

p

2
η

2
p + η − 1 +

p

2
= 0. (1.7)

In our previous work [8, 24], general condition

δtk < δ∗(p, t) :=
η

2− p

t− 1
− η

(1.8)
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for some t ∈ (1, 2] is proved to be sufficient for signal recovery in noiseless case and noisy

cases, and meanwhile the original signals are not restricted to be exactly k-sparse. Herein,

η ∈ [

√
1+2p−p2−1

p ,
1−(t−

√
t2−t)p

t−1 ] is the unique positive solution of the following equation:

p

2
η

2
p + η − 2− p

2(t− 1)
= 0. (1.9)

Furthermore, the sharpness of the RIC condition (1.8) was proved for all t ∈ [ 4
2+p , 2] in [25].

The constrained ℓp minimization method (1.4) for signal recovery is non-adaptive, since no

prior information on the signal being measured is used therein. In many applications, it may

be possible to draw an estimate of the support of the original signal or its largest components.

For instance, video and audio signals exhibit correlation over temporal frames which can be

employed to estimate a portion of the support using the previously decoded frames [16, 20].

If some prior information on the support of the original signal is provided, incorporating the

prior support information into the optimization problem for signal recovery is of significant use.

Therefore, the constrained ℓp minimization (1.4) can be modified as the following constrained

weighted ℓp (0 < p ≤ 1) minimization [18]

x̂ = arg min
x∈Rn

{

n
∑

i=1

wp
i |xi|p : y −Ax ∈ B

}

. (1.10)

Herein, w = (w1,w2, . . . ,wn)
T denotes a weight vector with wi ∈ [0, 1], i = 1, . . . , n. For any

given prior support estimate T̃ ⊆ {1, . . . , n} of the original signal x ∈ R
n, the “indicative”

weight vector w = (w1,w2, . . . ,wn)
T can be assigned as wi = 1− (1−w)χT̃ (i), where w ∈ [0, 1]

and

χT̃ (i) =

{

1, i ∈ T̃ ,

0, i /∈ T̃

denotes the characteristic function, i.e.,

wi =

{

w, i ∈ T̃ ,

1, i /∈ T̃
, i = 1, 2, . . . , n. (1.11)

Therefore, w ∈ {w, 1}n. The improved method (1.10) for signal recovery is adaptive by exploit-

ing some known information on the support of the original signal. As to (1.11), the main idea

of the choice of the weights wi is that the components xi of the original signal x which are “ex-

pected” to be large in absolute value are penalized less in the weighted objective function [16].

We employ Hadamard product of the two vectors w and x, i.e.,

w ◦ x = (w1x1,w2x2, . . . ,wnxn)
T . (1.12)

Then we have
∑n

i=1 w
p
i |xi|p = ‖w ◦ x‖pp, and thus the constrained weighted ℓp (0 < p ≤ 1)

minimization (1.10) can be reformulated as

x̂ = arg min
x∈Rn

{

‖w ◦ x‖pp : y −Ax ∈ B
}

. (1.13)

Specifically, in the ℓ2 bounded noise setting, (1.13) becomes

x̂ = arg min
x∈Rn

{

‖w ◦ x‖pp : ‖y − Ax‖2 ≤ ε
}

. (1.14)
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In the DS noise setting, (1.13) becomes

x̂ = arg min
x∈Rn

{

‖w ◦ x‖pp :
∥

∥AT (y −Ax)
∥

∥

∞ ≤ ε
}

. (1.15)

When in particular p = 1, (1.13) reduces to be the weighted ℓ1 minimization

x̂ = arg min
x∈Rn

{

‖w ◦ x‖1 : y −Ax ∈ B
}

. (1.16)

The recovery of sparse signals was analyzed by the weighted ℓ1 minimization [9, 16]. The

weighted ℓp (0 < p ≤ 1) minimization in ℓ2 bounded noise setting has been studied in the

literature [17, 18]. Ge, Chen and Ng [17] studied the recovery for exactly k-sparse signals with

partial support information via the weighted ℓp minimization model of the following form:

x̂ = arg min
x∈Rn

{

n
∑

i=1

wi|xi|p : y −Ax ∈ B
}

(1.17)

by generalizing the condition (1.8) in [8] to

δtk < δ̂(p,Θ) :=







z0
(2 − p)Θ− z0

, 0 < Θ <
2 + p

2− p
,

1, Θ = 0
(1.18)

for some t ∈ (d+ 2−p
2+pζ, 2d], where z0 ∈ ((1−p)Θ, min{1, 2−p

2 Θ}) is the unique positive solution
of the following equation:

p

2
z

2
p + z − 2− p

2
Θ = 0. (1.19)

Therein, T = supp(x), |T | = k, |T̃ | = ρk with ρ ≥ 0, |T ∩ T̃ | = α|T̃ | with α ∈ [0, 1] and αρ ≤ 1,

ζ =
[

w + (1 − w) (1 + ρ− 2αρ)
2−p
2

]
2

2−p

and Θ =
ζ

t− d

with

d =

{

1, w = 1,

1 + (max {0, 1− 2α}) ρ, 0 ≤ w < 1.
(1.20)

Nevertheless, the original signal x ∈ R
n is restricted to be strictly k-sparse.

In this paper, we propose to remove the strict k-sparsity requirement on the original sig-

nal in [17], overcome the combined obstacle induced by reducing the k-sparsity assumption

and incorporating prior support information into the the non-convex ℓp optimization problem,

establish new results for the recovery of approximately k-sparse signals with partial support

information in noiseless setting and two different noise settings by weighted ℓp minimization

(1.13); and moreover, we characterize the reconstruction error bounds precisely in terms of

the noise bound and the non-sparsity of the original signal together with the influence of the

prior support information, and therefore derive the stable and robust recovery of approximately

k-sparse signals with partial support information in noise settings.

The organization of the rest of this paper is as follows. In Section 2, some preliminary

notations, propositions and lemmas are introduced. In Section 3, main theorems are derived,

and a series of corollaries and comparisons are presented. The proofs of the main results

are presented in Section 4. In Section 5, numerical experiments are conducted in order to

demonstrate the performance of the weighted ℓp minimization. Finally, the conclusion of this

paper is summarized in Section 6.
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2. Preliminaries

For any vector v ∈ R
n, denote vmax(k) ∈ R

n the vector with all but the largest k components

of v in absolute value set to zeros, and v−max(k) := v − vmax(k). Denote vΓ ∈ R
n as a vector

which is equal to v on the index set Γ ⊆ {1, . . . , n} and zero elsewhere, and vΓc := v − vΓ.

It is important to note the following fact related to the accuracy of support estimate of the

original signal.

Proposition 2.1. When at least 50% of the support estimate is accurate, the RIC condition

(1.18) by weighted ℓp minimization is better compared with the previous RIC condition (1.8) by

regular ℓp minimization, since

δ̂(p,Θ) ≥ δ∗(p, t) for α ≥ 50%. (2.1)

Proof. (i) When α > 50%, we derive

ζ =
[

w + (1− w) (1 + ρ− 2αρ)
2−p
2

]
2

2−p ∈ [0, 1]

since w ∈ [0, 1] and p ∈ (0, 1]. By (1.20), we have d = 1.

The subsequent discussion is divided into three cases:

(i-1) When ζ ∈ (0, 1), according to (1.19), we obtain p
2z

2
p

0 + z0 = 2−p
2(t−d)ζ. According to

(1.9), we obtain p
2η

2
p + η = 2−p

2(t−1) . Therefore,
p
2z

2
p

0 + z0 < p
2η

2
p + η. It follows from

∂
(

p
2η

2
p + η

)

∂η
= η

2
p
−1 + 1 > 0 for η > 0

that p
2η

2
p + η is monotonically increasing with respect to η > 0. Consequently, z0 < η. η

2
p
−1 is

monotonically increasing with respect to η > 0, and thus

2

2− p

(

p

2
z

2
p
−1

0 + 1

)

<
2

2− p

(p

2
η

2
p
−1 + 1

)

.

It follows from (1.19) that

2

2− p

(

p

2
z

2
p
−1

0 + 1

)

=
ζ

(t− d)z0
,

and it follows from (1.9) that

2

2− p

(p

2
η

2
p
−1 + 1

)

=
1

(t− 1)η
.

Therefore, ζ
(t−d)z0

< 1
(t−1)η .

By (1.18), we have δ̂(p,Θ) = 1

(2−p) ζ
(t−d)z0

−1
. By (1.8), we obtain

δ∗(p, t) =
1

2−p
(t−1)η − 1

.

Hence, δ̂(p,Θ) > δ∗(p, t).
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(i-2) When ζ = 0, by (1.18), we have δ̂(p,Θ) = 1. By (1.8), we obtain δ∗(p, t) < 1. Hence,

δ̂(p,Θ) > δ∗(p, t).

(i-3) When ζ = 1, we derive z0 = η, and thus δ̂(p,Θ) = δ∗(p, t).

In summary, when α > 50%, δ̂(p,Θ) ≥ δ∗(p, t).

(ii) When α = 50%, we have d = 1 and

ζ =
[

w + (1− w) (1 + ρ− 2αρ)
2−p
2

]
2

2−p

= 1,

and thus ζ
t−d = 1

t−1 , which yields z0 = η. Hence, when α = 50%, δ̂(p,Θ) = δ∗(p, t). �

Therefore, in this paper we will focus on the problem regarding the recovery of approximately

k-sparse signals with partial support information when at least 50% of the support estimate is

accurate.

In the following, we introduce some lemmas which will be employed in the proof of the main

results.

Lemma 2.1 ([28]). Assume that x ∈ R
n satisfies ‖x‖0 = l, ‖x‖∞ ≤ τ and ‖x‖pp ≤ kτp with

k ≤ l being a positive integer, τ > 0 and 0 < p ≤ 1. Then x can be represented as the convex

combination of k-sparse vectors ui, i.e., x =
∑N

i=1 λiui, where λi > 0, N ∈ N,
∑N

i=1 λi = 1

and ‖ui‖0 ≤ k. Moreover,

N
∑

i=1

λi ‖ui‖22 ≤ min

{

l

k
‖x‖22 , τp ‖x‖

2−p
2−p

}

. (2.2)

Lemma 2.2 ([18]). For any x = (x1, x2, . . . , xn)
T ∈ R

n and x̂ = (x̂1, x̂2, . . . , x̂n)
T ∈ R

n,

denote h = x̂ − x and T0 = supp(xmax(k)). For any T̃ ⊆ {1, . . . , n} and w ∈ [0, 1], define

w = (w1,w2, . . . ,wn)
T with

wi =

{

w, i ∈ T̃ ,

1, i /∈ T̃
, i = 1, . . . , n.

If
n
∑

i=1

wp
i |x̂i|p ≤

n
∑

i=1

wp
i |xi|p, (2.3)

then
∥

∥hT c
0

∥

∥

p

p
≤ wp ‖hT0‖pp + (1− wp)

∥

∥

∥hT̃∪T0\(T̃∩T0)

∥

∥

∥

p

p

+ 2

[

wp
∥

∥xT c
0

∥

∥

p

p
+ (1− wp)

∥

∥

∥xT̃ c∩T c
0

∥

∥

∥

p

p

]

. (2.4)

Lemma 2.3 (Hölder inequality). Assume that ak ≥ 0, bk ≥ 0 (k = 1, . . . , n), 1
r +

1
s = 1, r >

1, s > 1. Then
n
∑

k=1

akbk ≤
(

n
∑

k=1

ark

)
1
r
(

n
∑

k=1

bsk

)
1
s

. (2.5)

Lemma 2.4 ([1]). Suppose that s ≥ r, a1 ≥ a2 ≥ · · · ≥ as ≥ 0, κ ≥ 0 and
∑r

i=1 ai + κ ≥
∑s

i=r+1 ai. Then for all ω ≥ 1,

s
∑

i=r+1

aωi ≤ r





(

1

r

r
∑

i=1

aωi

)
1
ω

+
κ

r





ω

. (2.6)
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3. Main Results

For signal recovery in noise settings, to be broadly applicable, the original signal which is

approximately k-sparse is expected to be recovered with bounded errors. The results for stable

and robust recovery of approximately k-sparse signals with partial support information in two

different noise settings (1.2) and (1.3) are derived in this section.

Firstly, we consider the recovery of approximately k-sparse signals with partial support

information in the ℓ2 bounded noise setting.

Theorem 3.1. Consider the signal recovery model (1.1) with ‖z‖2 ≤ ǫ. Suppose that T0 =

supp(xmax(k)), the prior support estimate is T̃ ⊆ {1, . . . , n} with cardinality |T̃ | = ρk (ρ ≥ 0),

|T0∩ T̃ | = α|T̃ | with α ∈ [ 12 , 1]. Suppose that x̂ℓ2 is the minimizer of the weighted ℓp (0 < p ≤ 1)

minimization (1.13) with B = Bℓ2(ε) for some ε ≥ ǫ and the weight vector w ∈ {w, 1}n is

defined in (1.11). Denote

σ :=
[

wp + (1 − wp) (1 + ρ− 2αρ)
2−p
2

]
2

2−p

. (3.1)

If the measurement matrix A satisfies

δtk < δ(p, t, σ) :=
1

pη
2
p
−1 + 1

(3.2)

for some t ∈ [1 + 2−p
2+pσ, 2], where η ∈ [(1 − p) σ

t−1 ,min{1, (1 −
√

w2

t−1+1
√

w2

t−1+1+1
p) σ

t−1}] is the unique

nonnegative solution of the following equation:

p

2
η

2
p + η − 2− p

2(t− 1)
σ = 0, (3.3)

then
∥

∥x̂ℓ2 − x
∥

∥

2
≤ C1 (ε+ ǫ) + C2

∥

∥w ◦ x−max(k)

∥

∥

p
, (3.4)

with C1 =

√

1 + 2
2
p
−2D1 and C2 =

√

D2
2 + 2

2
p
−2

[

D2 +
(

2

k1−
p
2

)
1
p

]2

.

The notations of D1 and D2 are as follows.

(1) When σδtk 6= 0,











































D1 =

(

1
δ(p,t,σ)

− 1 + p
)√

1 + δtk +

√

(

1
δ(p,t,σ)

− 1 + p
)2

(1 + δtk) + 4λ(1− p)β(p, t, σ)

2λβ(p, t, σ)
,

D2 =

[

2

(kσ)
2−p
2

] 1
p

































2(1− λ)β(p, t, σ)

p (1 + δtk)
[

(2−p)σδtk
(t−1)(1+δtk)

]
2−p
p

+ 1















p
2

− 1



















−

1
p (3.5)

with λ ∈ (0, 1) and

β(p, t, σ) :=
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk)

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

. (3.6)

(2) When σ = 0,
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

















D1 =
p
√
1 + δtk +

√

p2 (1 + δtk) + 4(1− p) (1− δtk)

2 (1− δtk)
,

D2 =

(

2

k
2−p
2

)
1
p
[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
2p

√

p (1 + δtk)

2 (1− δtk)
.

(3.7)

(3) When δtk = 0, D1 = 1 and D2 = 0.

Remark 3.1. In Theorem 3.1, not only the stable and robust reconstruction of approximately

k-sparse signals with partial support information in ℓ2 bounded noise setting is derived via

the weighted ℓp minimization, but also the RIC condition (3.2) is characterized in uniform

representation.

Remark 3.2. As for the recovery of approximately k-sparse signals, the new results by weighted

ℓp minimization include the results in [8,24] as special cases by setting the weight vector w = 1.

In particular, when w ◦x−max(k) = 0, we have the following result for the stable and robust

recovery of approximately k-sparse signals with partial support information in ℓ2 bounded noise

setting. In this case, the reconstruction error estimation can be more tightly characterized.

Corollary 3.1. Consider the signal recovery model (1.1) with ‖z‖2 ≤ ǫ. Suppose that T0 =

supp(xmax(k)), the prior support estimate is T̃ ⊆ {1, . . . , n} with |T̃ | = ρk (ρ ≥ 0), |T0 ∩
T̃ | = α|T̃ | with α ∈ [ 12 , 1]. Suppose that x̂ℓ2 is the minimizer of the weighted ℓp (0 < p ≤ 1)

minimization (1.13) with B = Bℓ2(ε) for some ε ≥ ǫ, the weight vector w ∈ {w, 1}n is defined

in (1.11), σ is defined in (3.1), and β(p, t, σ) is defined in (3.6). If w ◦ x−max(k) = 0 and the

measurement matrix A satisfies (3.2) for some t ∈ [1 + 2−p
2+pσ, 2], then

∥

∥x̂ℓ2 − x
∥

∥

2
≤

√
2D3 (ε+ ǫ) , (3.8)

where

D3 =

(

1
δ(p,t,σ) − 1 + p

)√
1 + δtk2β(p, t, σ)

2β(p, t, σ)

+

√

(

1
δ(p,t,σ) − 1 + p

)2

(1 + δtk) + 4(1− p)β(p, t, σ)

2β(p, t, σ)
. (3.9)

As a result of Corollary 3.1, the following result for the recovery of exactly k-sparse signals

with partial support information in ℓ2 bounded noise setting can be directly obtained, which

corresponds to the main result in [17].

Corollary 3.2. Consider the signal recovery model (1.1) where x ∈ R
n is k-sparse and ‖z‖2 ≤

ǫ. Denote T = supp(x). Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with

|T̃ | = ρk (ρ ≥ 0), |T ∩ T̃ | = α|T̃ | with α ∈ [ 12 , 1]. Suppose that x̂ℓ2 is the minimizer of the

weighted ℓp (0 < p ≤ 1) minimization (1.13) with B = Bℓ2(ε) for some ε ≥ ǫ, the weight vector

w ∈ {w, 1}n is defined in (1.11), and σ is defined in (3.1). If the measurement matrix A satisfies

(3.2) for some t ∈ [1 + 2−p
2+pσ, 2], then ‖x̂ℓ2 − x‖2 ≤

√
2D3(ε+ ǫ).



Stable and Robust Recovery of Approximately k-sparse Signals 1145

In noiseless setting, the recovery of approximately k-sparse signals with partial support

information can be obtained via weighted ℓp minimization, and the reconstruction error esti-

mation is precisely characterized, which indicates that the signal reconstruction is stable under

sparsity defect.

Theorem 3.2. Consider the signal recovery model (1.1) with z = 0. Denote T0 = supp(xmax(k)).

Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with |T̃ | = ρk (ρ ≥ 0), |T0∩ T̃ | = α|T̃ |
with α ∈ [ 12 , 1].

Suppose that x̂ is the minimizer of the weighted ℓp (0 < p ≤ 1) minimization (1.13) with

B = {0}, the weight vector w ∈ {w, 1}n is defined in (1.11), and σ is defined in (3.1). If the

measurement matrix A satisfies (3.2) for some t ∈ [1 + 2−p
2+pσ, 2], then

‖x̂− x‖2 ≤

√

D2
4 +

(

Dp
4 +

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

p
, (3.10)

where

D4 =



























































[

2

(kσ)
2−p
2

]
1
p

































2δ(p, t, σ)−
(

1 + δ2(p, t, σ)
)

δtk

p (1 + δtk) δ2(p, t, σ)
[

(2−p)σδtk
(t−1)(1+δtk)

]
2−p
p















p
2

− 1



















− 1
p

,

σδtk 6= 0,
(

2

k
2−p
2

)
1
p

√

p (1 + δtk)

2 (1− δtk)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
2p

, σ = 0,

0, δtk = 0.

(3.11)

In the DS noise setting (1.3), we deduce that the stable and robust recovery of approx-

imately k-sparse signals with partial support information can be guaranteed under the RIC

condition (3.2).

Theorem 3.3. Consider the signal recovery model (1.1) with ‖AT z‖∞ ≤ ǫ. Denote T0 =

supp(xmax(k)). Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with |T̃ | = ρk (ρ ≥ 0),

|T0 ∩ T̃ | = α|T̃ | with α ∈ [ 12 , 1]. Suppose x̂DS is the minimizer of the weighted ℓp (0 < p ≤ 1)

minimization (1.13) with B = BDS(ε) for some ε ≥ ǫ, the weight vector w ∈ {w, 1}n is defined

in (1.11), and σ is defined in (3.1). If the measurement matrix A satisfies (3.2) for some

t ∈ [1 + 2−p
2+pσ, 2], then

∥

∥x̂DS − x
∥

∥

2
≤ C5 (ε+ ǫ) + C6

∥

∥w ◦ x−max(k)

∥

∥

p
, (3.12)

where C5 =

√

1 + 2
2
p
−2D5 and C6 =

√

D2
6 + 2

2
p
−2

[

D6 +
(

2

k1−
p
2

)
1
p

]2

.

The notations of D5 and D6 are as follows.

(1) When σδtk 6= 0,






























D5 =
(1− p)

(

1 + 2
1
p
−1
)

+
(

1
δ(p,t,σ) − 1 + p

)√
t

λβ(p, t, σ)

√
k,

D6 = max











(1− p)
(

2√
k

)
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+
(

1
δ(p,t,σ) − 1 + p

)√
t
, D2











(3.13)

with λ ∈ (0, 1), D2 in (3.5) and β(p, t, σ) in (3.6).
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(2) When σ = 0,































D5 =
(1− p)

(

1 + 2
1
p
−1)

+ p
√
t

1− δtk

√
k,

D6 =

(

2

k

) 1
p
−

1
2

{

(1− p) 2
1
p
−

1
2

(1− p)
(

1 + 2
1
p
−1)+ p

√
t
+

√

p (1 + δtk)

1− δtk

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
2p

}

.

(3.14)

(3) When δtk = 0,



































D5 =

[

(1 − p)
(

1 + 2
1
p
−1
)

+
( 1

δ(p, t, σ)
− 1 + p

)√
t

]

δ(p, t, σ)
√
k,

D6 =
(1− p)

(

2√
k

)
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+
(

1
δ(p,t,σ) − 1 + p

)√
t
.

(3.15)

In particular, when w ◦ x−max(k) = 0, we have the following result for the recovery of

approximately k-sparse signals with partial support information in the DS noise setting.

Corollary 3.3. Consider the signal recovery model (1.1) with ‖AT z‖∞ ≤ ǫ. Denote T0 =

supp(xmax(k)). Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with |T̃ | = ρk (ρ ≥ 0),

|T0∩T̃ | = α|T̃ | with α ∈ [ 12 , 1]. Suppose that x̂
DS is the minimizer of the weighted ℓp (0 < p ≤ 1)

minimization (1.13) with B = BDS(ε) for some ε ≥ ǫ, the weight vector w ∈ {w, 1}n is defined

in (1.11), σ is defined in (3.1), and β(p, t, σ) is defined in (3.6). If w ◦ x−max(k) = 0 and the

measurement matrix A satisfies (3.2) for some t ∈ [1 + 2−p
2+pσ, 2], then

∥

∥x̂DS − x
∥

∥

2
≤

√
2k

2(1− p) +
(

1
δ(p,t,σ) − 1 + p

)√
t

β(p, t, σ)
(ε+ ǫ) . (3.16)

Stable recovery of k-sparse signals with partial support information in the noise setting

BDS(ǫ) can be directly obtained from Corollary 3.3. When the original signal x ∈ R
n is k-

sparse, we derive x−max(k) = 0, and thus w ◦ x−max(k) = 0. Then the result directly follows

from Corollary 3.3.

Corollary 3.4. Consider the signal recovery model (1.1) where x ∈ R
n is k-sparse and ‖AT z‖∞

≤ ǫ. Denote T = supp(x). Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with

|T̃ | = ρk (ρ ≥ 0), |T ∩ T̃ | = α|T̃ | with α ∈ [ 12 , 1].

Suppose that x̂DS is the minimizer of the weighted ℓp (0 < p ≤ 1) minimization (1.13) with

B = BDS(ε) for some ε ≥ ǫ, the weight vector w ∈ {w, 1}n is defined in (1.11), and σ is defined

in (3.1). If the measurement matrix A satisfies (3.2) for some t ∈ [1 + 2−p
2+pσ, 2], then (3.16)

holds.

Furthermore, when in particular σ = 1 (For example, if w = 1 or α = 1
2 , then σ = [wp +

(1−wp)(1 + ρ− 2αρ)
2−p
2 ]

2
2−p = 1), the RIC condition (3.2) coincides with the sharp condition

(1.8) derived by ℓp minimization in [24], we have the following result, and the reconstruction

error estimation can be further improved when w = 1.
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Corollary 3.5. Consider the signal recovery model (1.1) where x ∈ R
n is k-sparse and ‖AT z‖∞

≤ ǫ. Denote T = supp(x). Suppose that the prior support estimate is T̃ ⊆ {1, . . . , n} with

|T̃ | = ρk (ρ ≥ 0), |T ∩ T̃ | = α|T̃ | with α ∈ [ 12 , 1].

Suppose that x̂DS is the minimizer of the weighted ℓp (0 < p ≤ 1) minimization (1.13) with

B = BDS(ε) for some ε ≥ ǫ, the weight vector w ∈ {w, 1}n defined in (1.11), and σ is defined

in (3.1). If σ = 1 and the measurement matrix A satisfies (3.2) for some t ∈ [ 4
2+p , 2], i.e.,

δtk < δ(p, t, 1), then

∥

∥x̂DS − x
∥

∥

2
≤

√
2k

2(1− p) +
(

1
δ(p,t,1) − 1 + p

)√
t

β(p, t, 1)
(ε+ ǫ) . (3.17)

In particular, if w = 1, then

∥

∥x̂DS − x
∥

∥

2
≤

√
2k

1− p+ 1
δ(p,t,1)

β(p, t, 1)
(ε+ ǫ) . (3.18)

Remark 3.3. (1) Theorems 3.1 and 3.3 include our previous results in [24] for the recovery

of approximately k-sparse signals by standard ℓp minimization method (1.4) as special cases.

Actually, since prior support information of the original signal is not known or not exploited by

the standard ℓp minimization (1.4), which corresponds to (1.13) with w = 1 ∈ R
n, then σ = 1.

Therefore, the RIC condition (3.2) becomes the RIC condition (1.8) derived by ℓp minimization

in [24], i.e., δ(p, t, 1) = δ∗(p, t).

(2) For the recovery of approximately k-sparse signals, when at least 50% of the support

estimate is accurate, the RIC condition (3.2) by weighted ℓp minimization is better than the

condition (1.8) by regular ℓp minimization, since for w ∈ [0, 1), δ(p, t, σ) > δ∗(p, t) for α > 50%

and δ(p, t, σ) = δ∗(p, t) for α = 50%.

Remark 3.4. Theorems 3.1 and 3.3 include the main results in [9] by the weighted ℓ1 minimiza-

tion method as special cases. Actually, when in particular p = 1, it follows from (3.2) that σ =
[

w + (1− w)
√
1 + ρ− 2αρ

]2
, the unique nonnegative solution the equation η2

2 + η− σ
2(t−1) = 0

is η =
√

1 + σ
t−1 − 1, and thus δ(1, t, σ) = 1

η+1 =
√

t−1
t−1+σ . Therefore, the RIC condition (3.2)

for p = 1 via weighted ℓ1 minimization is

δtk <

√

t− 1

t− 1 +
[

w + (1− w)
√
1 + ρ− 2αρ

]2 ,

which is the RIC condition in [9].

Remark 3.5. The reconstruction error estimations (3.4) in Theorem 3.1 and (3.12) in Theo-

rem 3.3 indicate that the obtained result for signal recovery in the two noise settings is robust

under noise and stable under the non-sparsity of the original signal together with the influence

of the prior support information.

4. Proofs of the Main Results

In this section, the theorems and corollaries presented in Section 3 are proved.
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4.1. Proof of Theorem 3.1

(i) Firstly, we will prove that there is a unique nonnegative solution η of Eq. (3.3), i.e.,

p

2
η

2
p + η − 2− p

2(t− 1)
σ = 0,

and the solution satisfies

η ∈



(1− p)
σ

t− 1
,min







1,



1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1
p





σ

t− 1









 .

Denote

ϕ(η, p) :=
p

2
η

2
p + η − 2− p

2(t− 1)
σ.

It follows from

ϕ′
η(η, p) = η

2
p
−1 + 1 > 0 for η ≥ 0

that ϕ(η, p) is monotonically increasing for η ∈ [0,+∞).

Since α ∈ [ 12 , 1], we have 1 + ρ− 2αρ ∈ [0, 1]. It follows from w ∈ [0, 1] and p ∈ (0, 1] that

σ =
[

wp + (1 − wp) (1 + ρ− 2αρ)
2−p
2

]
2

2−p ∈
[

w
2p

2−p , 1
]

.

For t ∈ [1 + 2−p
2+pσ, 2],

w
2p

2−p

t−1 ≤ σ
t−1 ≤ 2+p

2−p . Therefore,

ϕ(
1 − p

t− 1
σ, p) =

pσ

2(t− 1)

[

(1− p)
2
p

(

σ

t− 1

)
2
p
−1

− 1

]

≤ pσ

2(t− 1)

[

(1 − p)
2
p

(

2 + p

2− p

)
2
p
−1

− 1

]

≤ 0. (4.1)

The above inequality follows from the fact that (1 − p)
2
p and (2+p

2−p )
2
p
−1 are monotonically

decreasing with p ∈ (0, 1] and limp→0+(1 − p)
2
p (2+p

2−p )
2
p
−1 = e−2e2 = 1.

We have ϕ(1, p) = 2+p
2 − 2−p

2(t−1)σ ≥ 0 since t ≥ 1 + 2−p
2+pσ.

It follows from w ∈ [0, 1] that

√

w2

t−1+1
√

w2

t−1+1+1
∈ [ 12 ,

√
t√

t+
√
t−1

]. We have

ϕ







1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1
p





σ

t− 1
, p





=
pσ

2(t− 1)



1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1
p





2
p
(

σ

t− 1

)
2
p
−1

+
1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1
· pσ

2(t− 1)

≥ pσ

2(t− 1)









1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1
p





2
p

w2

(t− 1)
2
p
−1

+
1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1







≥ pσ

2(t− 1)









1−

√

w2

t−1 + 1
√

w2

t−1 + 1 + 1





2

w2

t− 1
−

√

w2

t−1 + 1− 1
√

w2

t−1 + 1 + 1






= 0. (4.2)
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As a consequence, the unique nonnegative solution of (3.3) satisfies η ∈ [(1−p) σ
t−1 ,min{1, (1−

√

w2

t−1+1
√

w2

t−1+1+1
p) σ

t−1}].

(ii) In the following, we will prove stable and robust recovery of approximately k-sparse

signals with partial support information in ℓ2 bounded noise setting.

Denote h = x̂ℓ2 − x. By virtue of T0 = supp(xmax(k)) and Lemma 2.2, we have
∥

∥h−max(k)

∥

∥

p

p
≤‖hT c

0
‖pp (4.3)

≤wp‖hT0‖pp + (1− wp)‖hT̃∪T0\(T̃∩T0)
‖pp + 2

[

wp‖xT c
0
‖pp + (1− wp)‖xT̃ c∩T c

0
‖pp
]

≤wp
∥

∥hmax(k)

∥

∥

p

p
+ (1− wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
[

wp‖xT c
0
‖pp + (1 − wp)‖xT̃ c∩T c

0
‖pp
]

.

Since

wp‖xT c
0
‖pp + (1− wp)‖xT̃ c∩T c

0
‖pp

=wp‖xT̃∩T c
0
‖pp + wp‖xT̃ c∩T c

0
‖pp + (1− wp)‖xT̃ c∩T c

0
‖pp]

=wp‖xT̃∩T c
0
‖pp + ‖xT̃ c∩T c

0
‖pp =

∥

∥w ◦ x−max(k)

∥

∥

p

p
, (4.4)

by (4.3) we derive
∥

∥h−max(k)

∥

∥

p

p
≤ wp

∥

∥hmax(k)

∥

∥

p

p
+ (1− wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
∥

∥w ◦ x−max(k)

∥

∥

p

p
. (4.5)

Denote

ν =

[

wp
∥

∥hmax(k)

∥

∥

p

p
+ (1 − wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k

]

1
p

. (4.6)

Now we divide h−max(k) as h−max(k) = h(1) + h(2), where the components of h(1) and h(2)

respectively satisfy

h(1)(i) =







h−max(k)(i),
∣

∣h−max(k)(i)
∣

∣ > (t− 1)−
1
p ν,

0, otherwise,
(4.7)

h(2)(i) =







h−max(k)(i),
∣

∣h−max(k)(i)
∣

∣ ≤ (t− 1)−
1
p ν,

0, otherwise
(4.8)

for i = 1, . . . , n.

Denote |supp(h(1))| = r. Then it follows from (4.5) that

kνp ≥ ‖h−max(k)‖pp ≥ ‖h(1)‖pp ≥ r
νp

t− 1
,

and thus 0 ≤ r ≤ (t− 1)k. We derive

‖Ah‖2 = ‖Ax̂ℓ2 −Ax‖2 ≤ ‖y −Ax̂ℓ2‖2 + ‖Ax− y‖2 ≤ ε+ ǫ, (4.9)

〈A
(

hmax(k) + h1

)

, Ah〉 ≤ ‖A
(

hmax(k) + h1

)

‖2‖Ah‖2

≤
√

1 + δtk
∥

∥hmax(k) + h1

∥

∥

2
(ε+ ǫ) . (4.10)
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Moreover, we have ‖h(2)‖∞ ≤ (t− 1)−
1
p ν and

‖h(2)‖pp = ‖h−max(k)‖pp − ‖h(1)‖pp ≤ kνp − r
νp

t− 1
= [(t− 1)k − r]

νp

t− 1
. (4.11)

Therefore, by Lemma 2.1, we deduce that h(2) can be represented as h(2) =
∑N

i=1 λiui, where

λi > 0,
∑N

i=1 λi = 1, ui is [(t− 1)k − r]-sparse, and

N
∑

i=1

λi ‖ui‖22 ≤ νp

t− 1
‖h(2)‖2−p

2−p. (4.12)

By virtue of Hölder inequality and (4.11), we obtain

N
∑

i=1

λi ‖ui‖22 ≤ νp

t− 1
‖h(2)‖2−p

2−p

≤ νp

t− 1

(

‖h(2)‖22
)

2(1−p)
2−p

(

‖h(2)‖pp
)

p
2−p ≤ νp

t− 1

(

‖h(2)‖22
)

2(1−p)
2−p

{

[(t− 1)k − r]
νp

t− 1

}
p

2−p

≤ νp

t− 1

(

‖h(2)‖22
)

2(1−p)
2−p (kνp)

p
2−p =

1

(t− 1)k

(

‖h(2)‖22
)

2(1−p)
2−p (kνp)

2
2−p

=

(

‖h(2)‖22
)

2(1−p)
2−p

(t− 1)k

[

wp
∥

∥hmax(k)

∥

∥

p

p
+ (1− wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
∥

∥w ◦ x−max(k)

∥

∥

p

p

]
2

2−p

.

Note that |T0 ∪ T̃ \ (T̃ ∩ T0)| = k + ρk − 2αρk = (1 + ρ − 2αρ)k ≤ k since α ≥ 1
2 . Recall

(3.1).

Therefore, we deduce

wp
∥

∥hmax(k)

∥

∥

p

p
+ (1 − wp)‖hT0∪T̃\(T̃∩T0)

‖pp

≤wpk
2−p
2 ‖hmax(k)‖p2 + (1− wp)‖hT0∪T̃\(T̃∩T0)

‖p2 [(1 + ρ− 2αρ)k]
2−p
2

≤wpk
2−p
2 ‖hmax(k)‖p2 + (1− wp)‖hmax(k)‖p2 [(1 + ρ− 2αρ)k]

2−p
2

=
[

wp + (1− wp)(1 + ρ− 2αρ)
2−p
2

]

k
2−p
2 ‖hmax(k)‖p2

=σ
2−p
2 k

2−p
2 ‖hmax(k)‖p2. (4.13)

As a consequence,

N
∑

i=1

λi ‖ui‖22 ≤
(

‖h(2)‖22
)

2(1−p)
2−p

t− 1

(

σ
2−p
2 ‖hmax(k)‖p2 +

2‖w◦x
−max(k)‖p

p

k
2−p
2

)
2

2−p

. (4.14)

For any µ ∈ [0, 1], denote βi = hmax(k) + h(1) + µui (i = 1, . . . , N). Then

N
∑

j=1

λjβj −
p

2
βi =

(

1− p

2
− µ

)

(

hmax(k) + h(1)

)

− p

2
µui + µh.
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It is clear that
∑N

j=1 λjβj − p
2βj −µh and

(

1− p
2 − µ

) (

hmax(k) + h(1)

)

− p
2µui are tk-sparse.

In addition, ui−uj is 2 [(t− 1)k − r]-sparse, and thus ui−uj is tk-sparse since 2 [(t− 1)k − r] ≤
tk for t ∈ [1 + 2−p

2+pσ, 2].

It is easy to check the following identity

N
∑

i=1

λi‖A(
N
∑

j=1

λjβj −
p

2
βi)‖22 +

1− p

2

N
∑

i=1

N
∑

j=1

λiλj‖A(βi − βj)‖22

=
(

1− p

2

)2 N
∑

i=1

λi‖Aβi‖22. (4.15)

We deduce
N
∑

i=1

λi‖A(
N
∑

j=1

λjβj −
p

2
βi)‖22

=
N
∑

i=1

λi

∥

∥

∥A[(1 − p

2
− µ)(hmax(k) + h(1))−

p

2
µui + µh]

∥

∥

∥

2

2

=

N
∑

i=1

λi‖A[(1 −
p

2
− µ)(hmax(k) + h(1))−

p

2
µui]‖22

+ 2〈A[(1 − p

2
− µ)(hmax(k) + h(1))−

p

2
µh(2)], µAh〉+ µ2‖Ah‖22

=
N
∑

i=1

λi‖A[(1 −
p

2
− µ)(hmax(k) + h(1))−

p

2
µui]‖22

+ 2µ〈A[(1 − p

2
− µ)(hmax(k) + h(1))−

p

2
µh(2)], Ah〉

+ pµ2〈A(hmax(k) + h(1) + h(2)), Ah〉+ (1− p)µ2‖Ah‖22

=

N
∑

i=1

λi‖A[(1 −
p

2
− µ)(hmax(k) + h(1))−

p

2
µui]‖22

+ (2 − p)µ(1− µ)〈A(hmax(k) + h(1)), Ah〉+ (1− p)µ2‖Ah‖22. (4.16)

Therefore,

0 =

N
∑

i=1

λi‖A[(1−
p

2
− µ)(hmax(k) + h(1))−

p

2
µui]‖22 + (2− p)µ(1 − µ)〈A(hmax(k) + h(1)), Ah〉

+ (1− p)µ2‖Ah‖22 +
1− p

2

N
∑

i=1

N
∑

j=1

λiλj‖A(βi − βj)‖22 −
(

1− p

2

)2 N
∑

i=1

λi‖Aβi‖22. (4.17)

By virtue of the definition of RIC of order tk, the inequalities (4.9) and (4.10), we obtain

N
∑

i=1

λi‖A(
N
∑

j=1

λjβj −
p

2
βi)‖22 ≤ (1 + δtk)

N
∑

i=1

λi

∥

∥

∥

[(

1− p

2
− µ

)

(hmax(k) + h(1))−
p

2
µui

]∥

∥

∥

2

2
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+ (2 − p)µ(1− µ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
(ε+ ǫ) + (1− p)µ2(ε+ ǫ)2

=(1 + δtk)

[

(

1− p

2
− µ

)2
∥

∥hmax(k) + h(1)

∥

∥

2

2
+

p2

4
µ2

N
∑

i=1

λi‖ui‖22

]

+ (2 − p)µ(1− µ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
(ε+ ǫ) + (1− p)µ2(ε+ ǫ)2.

By virtue of the definition of RIC of order tk, we derive

N
∑

i=1

N
∑

j=1

λiλj‖A(βi − βj)‖22

=µ2
N
∑

i=1

N
∑

j=1

λiλj‖A(ui − uj)‖22

≤ (1 + δtk)µ
2

N
∑

i=1

N
∑

j=1

λiλj‖ui − uj‖22

=2 (1 + δtk)µ
2

(

N
∑

i=1

λi‖ui‖22 − ‖h(2)‖22

)

and

N
∑

i=1

λi‖Aβi‖22 ≥ (1− δtk)

N
∑

i=1

λi‖hmax(k) + h(1) + µui‖22

=(1− δtk)

(

∥

∥hmax(k) + h(1)

∥

∥

2

2
+ µ2

N
∑

i=1

λi‖ui‖22

)

.

By (4.15), we deduce

0 ≤ (1 + δtk)
[ (

1− p

2
− µ

)2
∥

∥hmax(k) + h(1)

∥

∥

2

2
+

p2

4
µ2

N
∑

i=1

λi‖ui‖22

+ µ2 (1− p)

N
∑

i=1

λi‖ui‖22 − µ2(1− p)‖h(2)‖22
]

− (1− δtk)
(

1− p

2

)2
(

∥

∥hmax(k) + h(1)

∥

∥

2

2
+ µ2

N
∑

i=1

λi‖ui‖22

)

+ (2 − p)µ(1− µ)(ε+ ǫ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
+ (1− p)µ2(ε+ ǫ)2

=(1 + δtk)

[

(

1− p

2
− µ

)2
∥

∥hmax(k) + h(1)

∥

∥

2

2
− µ2(1− p)‖h(2)‖22

]

− (1− δtk)
(

1− p

2

)2 ∥
∥hmax(k) + h(1)

∥

∥

2

2
+ 2δtk

(

1− p

2

)2

µ2
N
∑

i=1

λi‖ui‖22

+ (2 − p)µ(1− µ)(ε+ ǫ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
+ (1− p)µ2(ε+ ǫ)2, (4.18)

and the estimate (4.14) for
N
∑

i=1

λi‖ui‖22 yields

0 ≤
[

(1 + δtk) (1−
p

2
− µ)2 − (1− δtk)

(

1− p

2

)2
]

∥

∥hmax(k) + h(1)

∥

∥

2

2
(4.19)
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+ (2− p)µ(1− µ)(ε+ ǫ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
+ (1 − p)µ2(ε+ ǫ)2

+ µ2

[

2δtk

(

1− p

2

)2
(

‖h(2)‖22
)

2(1−p)
2−p

t− 1

(

σ
2−p
2 ‖hmax(k)‖p2 +

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
2−p

− (1− p) (1 + δtk) ‖h(2)‖22

]

.

Denote ϑ =
∥

∥h(2)

∥

∥

2

2
. By simple calculations, we derive that the following function

2δtk

(

1−p

2

)2 ϑ
2(1−p)
2−p

t−1

(

σ
2−p
2 ‖hmax(k)‖p2 +

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
2−p

− (1− p) (1 + δtk)ϑ (4.20)

for ϑ ≥ 0 attains its maximum at

ϑ =

[

(2− p) δtk
(t− 1) (1 + δtk)

]
2−p
p

(

σ
2−p
2 ‖hmax(k)‖p2 +

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

.

Therefore, we deduce
[

(1 + δtk)
(

1− p

2
− µ

)2

− (1− δtk)
(

1− p

2

)2
]

∥

∥hmax(k) + h(1)

∥

∥

2

2

+ (2 − p)µ(1− µ)
√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
(ε+ ǫ) + (1− p)µ2 (ε+ ǫ)2

+ µ2

(

σ
2−p
2 ‖hmax(k)‖p2 +

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

·
{

2δtk
(

1− p
2

)2

t− 1

[

(2− p) δtk
(t− 1) (1 + δtk)

]

2(1−p)
p

−(1− p) (1 + δtk)

[

(2− p) δtk
(t− 1) (1 + δtk)

]
2−p
p

}

≥ 0. (4.21)

Set µ = 2−p

pη
2−p
p +2

. By (4.21), we obtain

{(

2− p

pη
2−p
p + 2

)2

− (2− p)
2− p

pη
2−p
p + 2

+ δtk





(

1− p

2
− 2− p

pη
2−p
p + 2

)2

+
(

1− p

2

)2





+
p

2

(

2− p

pη
2−p
p + 2

)2

(1 + δtk)

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

∥

∥hmax(k) + h(1)

∥

∥

2

2
(4.22)

+ (2− p)
2− p

pη
2−p
p + 2

(

1− 2− p

pη
2−p
p + 2

)

√

1 + δtk
∥

∥hmax(k) + h(1)

∥

∥

2
(ε+ ǫ)

+ (1− p)

(

2− p

pη
2−p
p + 2

)2

(ε+ ǫ)2 +
p

2

(

2− p

pη
2−p
p + 2

)2

(1 + δtk)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p

·





(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

− σ
2−p
p

∥

∥hmax(k) + h(1)

∥

∥

2

2



 ≥ 0.

In view of δ(p, t, σ) = 1

pη
2−p
p +1

, we deduce

(

pη
2−p
p + 2

)

(

1− 2− p

pη
2−p
p + 2

)

=
1

δ(p, t, σ)
− 1 + p
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and

(

2− p

pη
2−p
p + 2

)2

− (2− p)
2− p

pη
2−p
p + 2

+ δtk





(

1− p

2
− 2− p

pη
2−p
p + 2

)2

+
(

1− p

2

)2





+
p

2

(

2− p

pη
2−p
p + 2

)2

(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

=

(

2− p

pη
2−p
p + 2

)2{

−
(

pη
2−p
p + 1

)

+
δtk
2

[

(

pη
2−p
p + 1

)2

+ 1

]

+
p

2
(1 + δtk)

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

=−
(

2− p

pη
2−p
p + 2

)2{

2δ(p, t, σ)− δtkδ
2(p, t, σ)− δtk

2δ2(p, t, σ)

− p

2
(1 + δtk)

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

. (4.23)

When σ = 0, it follows from Eq. (3.3) that η = 0, and thus (2−p)σδtk
(t−1)(1+δtk)

= η; when σ > 0, it

follows from (3.3) that (2−p)σ
t−1 = pη

2
p + 2η, and thus the RIC condition δtk < 1

pη
2−p
p +1

yields

(2− p)σδtk
(t− 1) (1 + δtk)

=
(

pη
2
p + 2η

) δtk
1 + δtk

< η. (4.24)

Hence,

β(p, t, σ) :=
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

≥2δ(p, t, σ)−
(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk) η

2−p
p

=
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− 1

2
(1 + δtk)

(

1

δ(p, t, σ)
− 1

)

=
1

2δ(p, t, σ)

(

1

δ(p, t, σ)
+ 1

)

(δ(p, t, σ)− δtk) > 0.

Therefore, the inequality (4.22) is equivalent to

β(p, t, σ)
∥

∥hmax(k) + h(1)

∥

∥

2

2
−
(

1

δ(p, t, σ)
− 1 + p

)

√

1 + δtk (ε+ ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p)(ε+ ǫ)2 +
p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p
∥

∥hmax(k) + h(1)

∥

∥

2

2

− p (1 + δtk)

2

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p
(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2

+
2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)
2
p

≤ 0. (4.25)
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(i) When σδtk 6= 0, (4.25) is transformed to

λβ(p, t, σ)
∥

∥hmax(k) + h(1)

∥

∥

2

2

−
(

1

δ(p, t, σ)
− 1 + p

)

√

1 + δtk (ε+ ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2
− (1− p) (ε+ ǫ)

2

+

{

(1− λ)β(p, t, σ) +
p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

∥

∥hmax(k) + h(1)

∥

∥

2

2

− p (1 + δtk)

2

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p
(

σ
2−p
2

∥

∥

∥hmax(k)

+ h(1)

∥

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)
2
p

≤ 0 (4.26)

for any λ ∈ (0, 1).

Therefore, we derive
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D1(ε+ ǫ) +D2

∥

∥w ◦ x−max(k)

∥

∥

p
,

where

D1 =

(

1
δ(p,t,σ) − 1 + p

)√
1 + δtk +

√

(

1
δ(p,t,σ) − 1 + p

)2

(1 + δtk) + 4λ(1− p)β(p, t, σ)

2λβ(p, t, σ)
(4.27)

and

D2 =

[

2

(kσ)
2−p
2

]
1
p

































2(1− λ)β(p, t, σ)

p (1 + δtk)
[

(2−p)σδtk
(t−1)(1+δtk)

]
2−p
p

+ 1















p
2

− 1



















− 1
p

. (4.28)

(ii) When σ = 0, it follows from Eq. (3.3) that η = 0. Therefore,

δ(p, t, σ) =
1

pη
2−p
p + 1

= 1

and

β(p, t, σ) =
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

= 1− δtk.

The inequality (4.25) becomes

(1− δtk)
∥

∥hmax(k) + h(1)

∥

∥

2

2
− p
√

1 + δtk (ε+ ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2
(4.29)

− (1− p)(ε+ ǫ)2 − p

2
(1 + δtk)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≤ 0,

which is a second-order inequality for
∥

∥hmax(k) + h(1)

∥

∥

2
. By solving the inequality, we obtain

∥

∥hmax(k) + h(1)

∥

∥

2
(4.30)

≤p
√
1+δtk (ε+ǫ)

2 (1−δtk)
+

1

2 (1−δtk)

√

p2 (1+δtk) (ε+ǫ)2 +4 (1−δtk)
[

(1−p)(ε+ ǫ)2 +B
∥

∥w ◦ x
−max(k)

∥

∥

2

p

]

with B := p
2 (

2

k
2−p
2

)
2
p (1 + δtk)[

(2−p)δtk
(t−1)(1+δtk)

]
2−p
p .
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Since
√

[

p
√

1 + δtk (ε+ ǫ)
]2

+ 4 (1− δtk)
[

(1− p)(ε+ ǫ)2 +B
∥

∥w ◦ x−max(k)

∥

∥

2

p

]

=
√

[p2 (1 + δtk) + 4 (1− δtk) (1− p)] (ε+ ǫ)
2
+ 4 (1− δtk)B

∥

∥w ◦ x−max(k)

∥

∥

2

p

≤
√

p2 (1 + δtk) + 4 (1− δtk) (1− p)(ε+ ǫ) + 2
√

(1− δtk)B
∥

∥w ◦ x−max(k)

∥

∥

p
,

we derive
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D1(ε+ ǫ) +D2

∥

∥w ◦ x−max(k)

∥

∥

p
,

where D1 and D2 are given by (3.7).

(iii) When δtk = 0, we have

β(p, t, σ) =
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

=
1

δ(p, t, σ)
.

The inequality (4.25) becomes

1

δ(p, t, σ)

∥

∥hmax(k)+h(1)

∥

∥

2

2
−
(

1

δ(p, t, σ)
−1+p

)

(ε+ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2

−(1− p)(ε+ ǫ)2 ≤ 0. (4.31)

We obtain
∥

∥hmax(k) + h(1)

∥

∥

2
≤ ε+ ǫ, which can be rewritten as

∥

∥hmax(k) + h(1)

∥

∥

2
≤ D1(ε+ ǫ) +D2

∥

∥w ◦ x−max(k)

∥

∥

p
(D1 = 1, D2 = 0).

For (i), (ii) and (iii), in view of (4.5) and |T0 ∪ T̃ \ (T̃ ∩ T0)| = k + ρk − 2αρk ≤ k for

α ∈ [ 12 , 1], we obtain ‖hT0∪T̃\(T̃∩T0)
‖pp ≤

∥

∥hmax(k)

∥

∥

p

p
, and thus

∥

∥h−max(k)

∥

∥

p

p
≤wp

∥

∥hmax(k)

∥

∥

p

p
+ (1− wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
∥

∥w ◦ x−max(k)

∥

∥

p

p

≤
∥

∥hmax(k)

∥

∥

p

p
+ 2

∥

∥w ◦ x−max(k)

∥

∥

p

p
. (4.32)

By Lemma 2.4, we derive

∥

∥h−max(k)

∥

∥

2

2
≤k





(
∥

∥hmax(k)

∥

∥

2

2

k

)

p
2

+
2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k





2
p

=

(

∥

∥hmax(k)

∥

∥

p

2
+
2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

2
p

. (4.33)

Then it follows from Jensen inequality that

∥

∥h−max(k)

∥

∥

2
≤
(

∥

∥hmax(k)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

1
p

≤2
1
p
−1

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]

. (4.34)



Stable and Robust Recovery of Approximately k-sparse Signals 1157

Therefore,

‖x̂ℓ2 − x‖22 = ‖h‖22 =
∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2

≤
∥

∥hmax(k)

∥

∥

2

2
+ 2

2
p
−2

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]2

≤
[

D1 (ε+ ǫ) +D2

∥

∥w ◦ x−max(k)

∥

∥

p

]2

+ 2
2
p
−2

[

D1 (ε+ ǫ) +D2

∥

∥w ◦ x−max(k)

∥

∥

p
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]2

, (4.35)

and thus

‖x̂ℓ2 − x‖2 ≤ C1 (ε+ ǫ) + C2

∥

∥w ◦ x−max(k)

∥

∥

p
, (4.36)

where

C1 =

√

1 + 2
2
p
−2D1, C2 =

√

√

√

√D2
2 + 2

2
p
−2

[

D2 +

(

2

k1−
p
2

)
1
p

]2

.

The proof of Theorem 3.1 is therefore completed. �

Remark 4.1. (1) In particular, in the noiseless case, the coefficient C2 can be more precisely

characterized in that
√

D2
2 + 2

2
p
−2[D2 + ( 2

k1−
p
2
)

1
p ]2 can be replaced by

√

D2
2 + (Dp

2 +
2

k1−
p
2
)

2
p .

Actually, in the noiseless case, ‖hmax(k) + h(1)‖2 ≤ D2‖w ◦ x−max(k)‖p, and thus

‖x̂ℓ2 − x‖22 = ‖h‖22 =
∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2

≤
∥

∥hmax(k)

∥

∥

2

2
+

(

∥

∥hmax(k)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

2
p

≤D2
2

∥

∥w ◦ x−max(k)

∥

∥

2

p
+

[

Dp
2

∥

∥w ◦ x−max(k)

∥

∥

p

p
+

2

k1−
p
2

∥

∥w ◦ x−max(k)

∥

∥

p

p

]
2
p

=

[

D2
2 +

(

Dp
2 +

2

k1−
p
2

)
2
p

]

∥

∥w ◦ x−max(k)

∥

∥

2

p
.

Therefore, in the noiseless case,

‖x̂ℓ2 − x‖2 ≤

√

D2
2 +

(

Dp
2 +

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

p
.

(2) In the proof of Theorem 3.1, we employ the estimation (4.34) of
∥

∥h−max(k)

∥

∥

2
based on

the following comparison:

By (4.33) and Jensen inequality, we deduce

∥

∥h−max(k)

∥

∥

2

2
≤
(

∥

∥hmax(k)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

2
p

≤2
2
p
−1

[

∥

∥hmax(k)

∥

∥

2

2
+

(

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

2

p

]

. (4.37)
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On the other hand, by (4.34), i.e.,

∥

∥h−max(k)

∥

∥

2
≤
(

∥

∥hmax(k)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

1
p

≤2
1
p
−1

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]

,

we obtain

∥

∥h−max(k)

∥

∥

2

2
≤ 2

2
p
−2

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]2

. (4.38)

Now we compare the two different estimations (4.37) and (4.38) of
∥

∥h−max(k)

∥

∥

2

2
. Since

∥

∥hmax(k)

∥

∥

2

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p
≤ 1

2

[

∥

∥hmax(k)

∥

∥

2

2
+

(

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

2

p

]

,

we derive

2
2
p
−2

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]2

= 2
2
p
−2

[

∥

∥hmax(k)

∥

∥

2

2
+

(

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

2

p
+2
∥

∥hmax(k)

∥

∥

2

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]

≤ 2
2
p
−1

[

∥

∥hmax(k)

∥

∥

2

2
+

(

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

2

p

]

.

Therefore, we conclude that the estimation (4.38) is more precise than another estimation

(4.37), and thus the estimation (4.34) of
∥

∥h−max(k)

∥

∥

2
is employed, i.e.,

∥

∥h−max(k)

∥

∥

2
≤ 2

1
p
−1

[

∥

∥hmax(k)

∥

∥

2
+

(

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]

.

4.2. Proof of Corollary 3.1

When in particular w ◦ x−max(k) = 0, the inequality (4.25) in the proof of Theorem 3.1

becomes

β(p, t, σ)
∥

∥hmax(k) + h(1)

∥

∥

2

2
−
(

1

δ(p, t, σ)
− 1 + p

)

√

1 + δtk (ε+ ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p)(ε+ ǫ)2 ≤ 0. (4.39)

By solving the inequality, we obtain

∥

∥hmax(k) + h(1)

∥

∥

2
≤ D3(ε+ ǫ),

where

D3 =

(

1
δ(p,t,σ) − 1 + p

)√
1 + δtk +

√

(

1
δ(p,t,σ) − 1 + p

)2

(1 + δtk) + 4(1− p)β(p, t, σ)

2β(p, t, σ)
. (4.40)
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Since w ◦ x−max(k) = 0, the inequality (4.33) in the proof of Theorem 3.1 becomes

∥

∥h−max(k)

∥

∥

2

2
≤
∥

∥hmax(k)

∥

∥

2

2
.

Therefore,

∥

∥x̂ℓ2 − x
∥

∥

2
=
√

∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2
≤

√
2
∥

∥hmax(k)

∥

∥

2
≤

√
2D3(ε+ ǫ). (4.41)

This completes the proof of Corollary 3.1. �

4.3. Proof of Corollary 3.2

Denote T0 = supp(xmax(k)). Since the signal x ∈ R
n is k-sparse and T = supp(x), we derive

T0 = T and x−max(k) = 0, and thus w ◦ x−max(k) = 0. Then the result directly follows from

Corollary 3.1. �

4.4. Proof of Theorem 3.2

Denote h = x̂−x. In the noiseless setting, ǫ = 0 and ε = 0. Therefore, the inequality (4.25)

in the proof of Theorem 3.1 becomes

2δ(p, t, σ)−
(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2

− p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p
(

σ
2−p
2

∥

∥

∥hmax(k)

+ h(1)

∥

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)
2
p

≤ 0. (4.42)

(i) When σδtk 6= 0, we obtain
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D4

∥

∥w ◦ x−max(k)

∥

∥

p
, where

D4 =

[

2

(kσ)
2−p
2

]
1
p

































2δ(p, t, σ)−
(

1 + δ2(p, t, σ)
)

δtk

p (1 + δtk) δ2(p, t, σ)
[

(2−p)σδtk
(t−1)(1+δtk)

]
2−p
p















p
2

− 1



















− 1
p

. (4.43)

(ii) When σ = 0, it follows from the RIC condition (3.2) that δ(p, t, σ) = 1. The inequality

(4.42) becomes

(1− δtk)
∥

∥hmax(k) + h(1)

∥

∥

2

2

− p (1 + δtk)

2

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p

[

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

]

2
p

≤ 0, (4.44)

and we obtain
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D4

∥

∥w ◦ x−max(k)

∥

∥

p
, where

D4 =

√

p (1 + δtk)

2 (1− δtk)

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
2p
(

2

k
2−p
2

)
1
p

. (4.45)
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(iii) When δtk = 0, the inequality (4.42) becomes 1
δ(p,t,σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2
≤ 0. Thus,

∥

∥hmax(k) + h(1)

∥

∥

2
= 0, which can be equivalently written as

∥

∥hmax(k) + h(1)

∥

∥

2
≤ D4‖w◦

x−max(k)‖p with D4 = 0.

Therefore, for (i), (ii) and (iii), by (4.33) in the proof of Theorem 3.1, we deduce

∥

∥h−max(k)

∥

∥

2
≤
(

∥

∥hmax(k)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k1−
p
2

)

1
p

≤
(

Dp
4 +

2

k1−
p
2

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p
, (4.46)

and thus

‖x̂ℓ2 − x‖2 =

√

∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2

≤

√

D2
4 +

(

Dp
4 +

2

k1−
p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

p
. (4.47)

�

4.5. Proof of Theorem 3.3

Denote h = x̂DS − x. We have
∥

∥ATAh
∥

∥

∞ =
∥

∥AT (Ax̂DS −Ax)
∥

∥

∞

≤
∥

∥AT (Ax̂DS − y)
∥

∥

∞ +
∥

∥AT (Ax− y)
∥

∥

∞ ≤ ε+ ǫ. (4.48)

The same as in the proof of Theorem 3.1, we derive the inequality (4.5), i.e.,
∥

∥h−max(k)

∥

∥

p

p
≤ wp

∥

∥hmax(k)

∥

∥

p

p
+ (1− wp)‖hT0∪T̃\(T̃∩T0)

‖pp + 2
∥

∥w ◦ x−max(k)

∥

∥

p

p
.

Then it follows from |T0∪T̃ \(T̃ ∩T0)| = k+ρk−2αρk ≤ k for α ∈ [ 12 , 1] that ‖hT0∪T̃\(T̃∩T0)
‖pp ≤

∥

∥hmax(k)

∥

∥

p

p
, and thus

∥

∥h−max(k)

∥

∥

p

p
≤
∥

∥hmax(k)

∥

∥

p

p
+ 2

∥

∥w ◦ x−max(k)

∥

∥

p

p
.

By Lemma 2.4 and Jensen inequality, we derive

∥

∥h−max(k)

∥

∥

1
≤k

[(
∥

∥hmax(k)

∥

∥

1

k

)p

+
2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k

]

1
p

≤2
1
p
−1k

[
∥

∥hmax(k)

∥

∥

1

k
+

(

2

k

)
1
p
∥

∥w ◦ x−max(k)

∥

∥

p

]

=2
1
p
−1
∥

∥hmax(k)

∥

∥

1
+

2
2
p
−1

k
1
p
−1

∥

∥w ◦ x−max(k)

∥

∥

p
. (4.49)

Therefore,

‖h‖1 =
∥

∥hmax(k)

∥

∥

1
+
∥

∥h−max(k)

∥

∥

1

≤
(

1 + 2
1
p
−1
)

∥

∥hmax(k)

∥

∥

1
+ k1−

1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p

≤
(

1 + 2
1
p
−1
)√

k
∥

∥hmax(k)

∥

∥

2
+ k1−

1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
. (4.50)



Stable and Robust Recovery of Approximately k-sparse Signals 1161

We have

‖Ah‖22 =〈h,ATAh〉 ≤ ‖h‖1
∥

∥ATAh
∥

∥

∞

≤
[(

1 + 2
1
p
−1
)√

k
∥

∥hmax(k)

∥

∥

2
+ k1−

1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p

]

(ε+ ǫ) (4.51)

and

〈A(hmax(k) + h(1)), Ah〉 = 〈hmax(k) + h(1), A
TAh〉

≤
∥

∥hmax(k) + h(1)

∥

∥

1

∥

∥ATAh
∥

∥

∞ ≤
√
tk
∥

∥hmax(k) + h(1)

∥

∥

2
(ε+ ǫ). (4.52)

Similar to the proof of Theorem 3.1, for

µ =
2− p

pη
2−p
p + 2

= (2− p)
δ(p, t, σ)

δ(p, t, σ) + 1
,

by virtue of the identity (4.17), we obtain

(1− p)‖h‖1 (ε+ ǫ) +
1− (1− p)δ(p, t, σ)

δ(p, t, σ)
〈A(hmax(k) + h(1)), Ah〉 (4.53)

+
δtkδ

2(p, t, σ) + δtk − 2δ(p, t, σ)

2δ2(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2

+
p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≥ 0,

and then

(1− p)

[

(

1 + 2
1
p
−1
)√

k
∥

∥hmax(k) + h(1)

∥

∥

2
+

2
2
p
−1

k
1
p
−1

∥

∥w ◦ x−max(k)

∥

∥

p

]

(ε+ ǫ)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
tk (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2

+
δtkδ

2(p, t, σ) + δtk − 2δ(p, t, σ)

2δ2(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2

+
p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≥ 0,

i.e.,

δtkδ
2(p, t, σ) + δtk − 2δ(p, t, σ)

2δ2(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2
(4.54)

+

[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2

+ (1− p)k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

+
p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≥ 0.
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Therefore, by the notation (3.6) of β(p, t, σ), we have

β(p, t, σ)
∥

∥hmax(k) + h(1)

∥

∥

2

2
(4.55)

−
[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

+
p (1 + δtk)

2

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p
∥

∥hmax(k) + h(1)

∥

∥

2

2

− p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≤ 0.

(i) When σδtk 6= 0, for any λ ∈ (0, 1),

λβ(p, t, σ)
∥

∥hmax(k) + h(1)

∥

∥

2

2

−
[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

+

{

(1− λ)β(p, t, σ) +
p (1 + δtk)

2

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

∥

∥hmax(k) + h(1)

∥

∥

2

2

−p (1 + δtk)

2

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p
(

σ
2−p
2

∥

∥

∥hmax(k) + h(1)

∥

∥

∥

p

2
+

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)
2
p

≤ 0.

Therefore, we deduce

∥

∥hmax(k) + h(1)

∥

∥

2
(4.56)

≤max







[

(1− p)
(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t
]√

k (ε+ ǫ) +
√
E

2λβ(p, t, σ)
, D2

∥

∥w ◦ x−max(k)

∥

∥

p







,

where D2 is defined in (3.5) and

E :=

[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]2

k (ε+ ǫ)2

+ 4λβ(p, t, σ) (1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ) . (4.57)

Since

√
E ≤

[

(1 − p)
(

1 + 2
1
p
−1
)

+
1− (1 − p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

+
2λβ(p, t, σ) (1− p) k

1
2− 1

p 2
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t

∥

∥w ◦ x−max(k)

∥

∥

p
, (4.58)

we obtain
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D5(ε+ ǫ) +D6

∥

∥w ◦ x−max(k)

∥

∥

p
,

where

D5 =
(1− p)

(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t

λβ(p, t, σ)

√
k (4.59)
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and

D6 = max







(1− p) k
1
2− 1

p 2
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t
, D2







. (4.60)

(ii) When σ = 0, it follows from (3.3) that η = 0, and thus

δ(p, t, σ) =
1

pη
2−p
p + 1

= 1.

We have

β(p, t, σ) =
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
− p

2
(1 + δtk)

[

(2 − p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

= 1− δtk.

Therefore, the inequality (4.55) becomes

(1− δtk)
∥

∥hmax(k) + h(1)

∥

∥

2

2
−
[

(1 − p)
(

1 + 2
1
p
−1
)

+ p
√
t
]√

k (ε+ ǫ)
∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

− p

2
(1 + δtk)

[

(2 − p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p

≤ 0. (4.61)

By solving the above inequality, we obtain

∥

∥hmax(k) + h(1)

∥

∥

2
≤

[

(1− p)
(

1 + 2
1
p
−1
)

+ p
√
t
]√

k (ε+ ǫ) +
√
F

2 (1− δtk)
, (4.62)

where

F :=
[

(1 − p)
(

1 + 2
1
p
−1
)

+ p
√
t
]2

k (ε+ ǫ)
2

+ 4 (1− δtk)

{

(1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

+
p

2
(1 + δtk)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p

(

2
∥

∥w ◦ x−max(k)

∥

∥

p

p

k
2−p
2

)

2
p
}

=
[

(1 − p)
(

1 + 2
1
p
−1
)

+ p
√
t
]2

k (ε+ ǫ)2

+ 2 (1− δtk) (1− p)k1−
1
p 2

2
p

∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ)

+ 2p
(

1− δ2tk
)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p
(

2

k
2−p
2

)
2
p
∥

∥w ◦ x−max(k)

∥

∥

2

p
. (4.63)

We derive

√
F ≤

[

(1− p)
(

1 + 2
1
p
−1
)

+ p
√
t
]√

k (ε+ ǫ) +
(1− δtk) (1− p)k1−

1
p 2

2
p

[

(1− p)
(

1 + 2
1
p
−1
)

+ p
√
t
]√

k

∥

∥w ◦ x−max(k)

∥

∥

p

+
√

2p (1− δ2tk)

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
2p

2
1
p k

1
2− 1

p

∥

∥w ◦ x−max(k)

∥

∥

p
, (4.64)
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and therefore
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D5(ε+ ǫ) +D6

∥

∥w ◦ x−max(k)

∥

∥

p
,

where

D5 =
(1− p)

(

1 + 2
1
p
−1
)

+ p
√
t

1− δtk

√
k (4.65)

and

D6 =

(

2

k

)
1
p
− 1

2







(1− p) 2
1
p
− 1

2

(1− p)
(

1 + 2
1
p
−1
)

+ p
√
t
+

√

p (1 + δtk)

1− δtk

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
2p







. (4.66)

(iii) When δtk = 0, we have β(p, t, σ) = 1
δ(p,t,σ) , and the inequality (4.55) becomes

1

δ(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2
(4.67)

−
[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2

− (1− p) k1−
1
p 2

2
p
−1
∥

∥w ◦ x−max(k)

∥

∥

p
(ε+ ǫ) ≤ 0.

By solving the inequality, we obtain

∥

∥hmax(k) + h(1)

∥

∥

2

≤δ(p, t, σ)

[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]√
k (ε+ ǫ)

+
(1− p) k

1
2− 1

p 2
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t

∥

∥w ◦ x−max(k)

∥

∥

p
. (4.68)

Therefore,
∥

∥hmax(k) + h(1)

∥

∥

2
≤ D5(ε+ ǫ) +D6

∥

∥w ◦ x−max(k)

∥

∥

p
,

where

D5 =

[

(1− p)
(

1 + 2
1
p
−1
)

+
1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
t

]

δ(p, t, σ)
√
k (4.69)

and

D6 =
(1− p) k

1
2− 1

p 2
2
p
−1

(1− p)
(

1 + 2
1
p
−1
)

+ 1−(1−p)δ(p,t,σ)
δ(p,t,σ)

√
t
. (4.70)

Analogous to (4.36) in the proof of Theorem 3.1, it can be readily derived that

‖x̂DS − x‖2 =

√

∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2
≤ C5 (ε+ ǫ) + C6

∥

∥w ◦ x−max(k)

∥

∥

p
,

where C5 =

√

1 + 2
2
p
−2D5 and C6 =

√

D2
6 + 2

2
p
−2

[

D6 +
(

2

k1−
p
2

)
1
p

]2

. �
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4.6. Proof of Corollary 3.3

When w ◦ x−max(k) = 0, the inequality (4.53) becomes

(1− p)‖h‖1 (ε+ ǫ) +
1− (1− p)δ(p, t, σ)

δ(p, t, σ)
〈A(hmax(k) + h(1)), Ah〉

+
δtkδ

2(p, t, σ) + δtk − 2δ(p, t, σ)

2δ2(p, t, σ)

∥

∥hmax(k) + h(1)

∥

∥

2

2

+
p (1 + δtk)

2

[

(2− p)δtk
(t− 1) (1 + δtk)

]
2−p
p (

σ
2−p
2

∥

∥hmax(k) + h(1)

∥

∥

p

2

)
2
p ≥ 0, (4.71)

and the inequality (4.32) becomes

∥

∥h−max(k)

∥

∥

p

p
≤
∥

∥hmax(k)

∥

∥

p

p
.

Then by virtue of Lemma 2.4, we derive

∥

∥h−max(k)

∥

∥

2

2
≤ k





(
∥

∥hmax(k)

∥

∥

2

2

k

)

p
2





2
p

=
∥

∥hmax(k)

∥

∥

2

2
, (4.72)

∥

∥h−max(k)

∥

∥

1
≤ k

[(
∥

∥hmax(k)

∥

∥

1

k

)p] 1
p

= ‖hmax(k)‖1. (4.73)

Therefore,

‖h‖1 =
∥

∥hmax(k)

∥

∥

1
+
∥

∥h−max(k)

∥

∥

1
≤ 2
∥

∥hmax(k)

∥

∥

1
≤ 2

√
k
∥

∥hmax(k)

∥

∥

2
. (4.74)

Recall (4.48), i.e.,
∥

∥ATAh
∥

∥

∞ ≤ ε+ ǫ. We obtain

‖Ah‖22 = 〈h,ATAh〉 ≤ ‖h‖1
∥

∥ATAh
∥

∥

∞ ≤ 2
√
k
∥

∥hmax(k)

∥

∥

2
(ε+ ǫ) . (4.75)

Recall (4.52) and (3.6), together with (4.71), we obtain

2(1− p)
√
k (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2
+

1− (1− p)δ(p, t, σ)

δ(p, t, σ)

√
tk (ε+ ǫ)

∥

∥hmax(k) + h(1)

∥

∥

2
(4.76)

+

{

−
2δ(p, t, σ)−

(

1 + δ2(p, t, σ)
)

δtk

2δ2(p, t, σ)
+

p

2
(1 + δtk)

[

(2− p)σδtk
(t− 1) (1 + δtk)

]
2−p
p

}

∥

∥hmax(k) + h(1)

∥

∥

2

2
≥ 0.

It follows from (4.76) that

∥

∥hmax(k) + h(1)

∥

∥

2
≤ D7 (ε+ ǫ) , (4.77)

where D7 =
√
k
2(1−p)+ 1−(1−p)δ(p,t,σ)

δ(p,t,σ)

√
t

β(p,t,σ) . Hence,

‖x̂DS − x‖2 =

√

∥

∥hmax(k)

∥

∥

2

2
+
∥

∥h−max(k)

∥

∥

2

2

≤
√
2
∥

∥hmax(k) + h(1)

∥

∥

2
≤

√
2D7 (ε+ ǫ) . (4.78)

This completes the proof of Corollary 3.3. �
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4.7. Proof of Corollary 3.5

When in particular σ = 1, by virtue of Corollary 3.3, we directly derive (3.17).

If w = 1, then w = 1, and thus σ = 1. In addition, in view of (4.6), we obtain

ν =

(
∥

∥hmax(k)

∥

∥

p

p

k

)

1
p

. (4.79)

Recall the definition (4.7) of h(1) ∈ R
n, i.e.,

h(1)(i) =

{

h−max(k)(i),
∣

∣h−max(k)(i)
∣

∣ > (t− 1)−
1
p ν,

0, otherwise.

Since w = 1, we have

(t− 1)−
1
p ν ≥ ν =

(
∥

∥hmax(k)

∥

∥

p

p

k

)

1
p

≥ ‖h−max(k)‖∞ ≥
∣

∣h−max(k)(i)
∣

∣ (4.80)

for t ∈ [ 4
2+p , 2], and thus h(1) = 0. Then the inequality (4.52) becomes

〈

A(hmax(k) + h(1)), Ah
〉

=〈hmax(k), A
TAh〉

≤‖hmax(k)‖1
∥

∥ATAh
∥

∥

∞ ≤
√
k‖hmax(k)‖2(ε+ ǫ), (4.81)

and therefore, the inequality (4.71) turns to be

(1− p)‖h‖1 (ε+ ǫ) +
1− (1 − p)δ(p, t, 1)

δ(p, t, 1)

√
k (ε+ ǫ)

∥

∥hmax(k)

∥

∥

2

+
δtkδ

2(p, t, 1) + δtk − 2δ(p, t, 1)

2δ2(p, t, 1)

∥

∥hmax(k)

∥

∥

2

2

+
p

2
(1 + δtk)

[

(2− p)δtk
(t−1) (1+δtk)

]
2−p
p
∥

∥hmax(k)

∥

∥

2

2
≥ 0. (4.82)

Recall the notation (3.6) of β(p, t, σ) and (4.74), i.e., ‖h‖1 ≤ 2
√
k
∥

∥hmax(k)

∥

∥

2
. Therefore, the

inequality (4.82) yields

2(1−p)
√
k
∥

∥hmax(k)

∥

∥

2
(ε+ǫ)+

1−(1−p)δ(p, t, 1)

δ(p, t, 1)

√
k (ε+ǫ)

∥

∥hmax(k)

∥

∥

2

−β(p, t, 1)
∥

∥hmax(k)

∥

∥

2

2
≥ 0. (4.83)

We obtain
∥

∥hmax(k)

∥

∥

2
≤

√
k
1− p+ 1

δ(p,t,1)

β(p, t, 1)
(ε+ ǫ) , (4.84)

and thus
∥

∥x̂DS − x
∥

∥

2
≤

√
2
∥

∥hmax(k)

∥

∥

2
≤

√
2k

1− p+ 1
δ(p,t,1)

β(p, t, 1)
(ε+ ǫ) . (4.85)

This completes the proof. �
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5. Numerical Experiments

In this section, we present a series of numerical experiments to illustrate the performance

of recovery of approximate k-sparse signals by the weighted ℓp (0 < p ≤ 1) minimization (1.13).

We adopt the iteratively reweighted least squares (IRLS) algorithm proposed in [7] to solve the

nonconvex optimization problem.

First, x(0) = arg min
x∈Rn

‖y −Ax‖22 and x(t+1) is the solution of

min
x∈Rn

1

2λ
‖y −Ax‖22 +

1

2

∥

∥

∥W (t)x
∥

∥

∥

2

2
, (5.1)

where λ > 0 is a regularization parameter, and the weight matrix W
(t)
i is defined as

W
(t)
i = diag

(

√

pwp
i

(

τ2t +
(

x
(t)
i

)2
)p/4−1/2

)

for i = 1, . . . , n. Then by (5.1), we obtain

x(t+1) =
(

W (t)
)−1

(

Φ
(

W (t)
)−1

)T (

Φ
(

W (t)
)−1

+ λIn

)−1(

Φ
(

W (t)
)−1

)T

y.

τ0 = 1, τt+1 = min
{

τt, γr(x
(t+1))k̂+1

}

, where γ ∈ (0, 1) is a constant. We set γ = 0.9 and

λ = 10(−6). r(x) is the rearrangement of the absolute values of x in decreasing order. k̂ is the

number of the support estimate, we set k̂ = k. When t > 1000 or r(x(t+1))k̂+1 = 0, we stop the

iteration and output x(t+1).

We consider signals x ∈ R
500 such that xj = j−d for some d > 1, i = 1, . . . , n. In our

experiments, the measurement matrix A is generated as an m×500 matrix with entries drawing

from i.i.d standard normal distribution. For a generated approximately sparse signal x, the

measurements y = Ax+ z, where A is an m× 500 Gaussian matrix with n varying between 80

and 220. In the case of noisy measurements, z is standard Gaussian white noise and ‖z‖2

‖x‖2
= 0.02.

In the case of noiseless measurements, z = 0. The recovery performance is assessed by the signal

to noise ratio (SNR) denoted by

SNR = 20 log10
‖x‖2

‖x− x(t+1)‖2
, (5.2)

and the measure of the SNR is dB.

In each experiment, we report the average results over 30 replications and set d = 2.

Fig. 5.1 illustrates the recovery performance of approximate k-sparse signal under different

measurements in the noiseless case. We set p = 0.5 and k = 40, i.e., the best 40-term sparse

approximation. It shows that for α ≥ 0.5, smaller weight w yields better recovery performance.

Fig. 5.2 shows the recovery performance of approximate sparse signal under different mea-

surements in the noisy case. The results are consistent with the no-noise case.

In Fig. 5.3 and Fig. 5.4, we illustrate the impacts of p ∈ (0, 1] for both the noiseless and noisy

measurements cases. We set α = 0.8 and ρ = 1. The results show that smaller p always leads

to better recovery performance. In some measurements, the recovery performance of p = 0.2 is

worse than p = 0.5 and p = 0.7. This is because a smaller p makes the minimizing functional

more nonconvex and thus more difficult to solve.
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(a) (b) (c)

Fig. 5.1. In the noiseless case, for p = 0.5 and ρ = 1, the recovery performance of the weighted ℓp

minimization when (a) α = 0.8, (b) α = 0.5, (c) α = 0.2.

(a) (b) (c)

Fig. 5.2. In the noise case, for p = 0.5 and ρ = 1, the recovery performance of the weighted ℓp

minimization when (a) α = 0.8, (b) α = 0.5, (c) α = 0.2.

(a) (b)

Fig. 5.3. In the noiseless case, for α = 0.8 and ρ = 1, the recovery performance of the weighted ℓp

minimization when (a) w = 0.5, (b) w = 0.8.

(a) (b)

Fig. 5.4. In the noisy case, for α = 0.8 and ρ = 1, the recovery performance of the weighted ℓp

minimization when (a) w = 0.5, (b) w = 0.8.
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6. Conclusions

The recovery of approximately k-sparse signal with partial support information in two dif-

ferent noise settings is investigated by the weighted ℓp (0 < p ≤ 1) minimization method (1.13).

The newly derived theorems and corollaries indicate that approximately k-sparse signal x ∈ R
n

can be stably and robustly recovered by the minimizer x̂ of (1.13) when there is partial and

possibly partly inaccurate prior support information. The obtained results not only improve the

work in [17] which addressed the ℓ2-bounded noise setting concerning the recovery of strictly

k-sparse original signal, but also include the optimal results by weighted ℓ1 minimization or by

standard ℓp minimization as special cases.
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