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Analysis of Dynamic Properties of Forest Beetle
Outbreak Model
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Abstract This paper mainly studies the dynamic properties of the forest

beetle outbreak model. The existence of the positive equilibrium point and

the local stability of the positive equilibrium point of the system are analyzed,

and the relevant conclusions are drawn. After that, the existence of Turing

instability, Hopf bifurcation and Turing-Hopf bifurcation are discussed respec-

tively, and the necessary conditions for existence are given. Finally, the normal

form of the Turing-Hopf point is calculated, and some dynamic properties at

the point are analyzed by numerical simulation.
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1. Introduction

Disturbance is defined as any relatively discrete event that disrupts ecosystem, com-

munity or population structure in time and alters resources, substrate availability

or physical environment [13]. Forest disturbance is considered to be a key factor

a↵ecting terrestrial biological and geochemical processes, and it is closely related

not only to pests and diseases but also to forest fires. For this reason, many scholars

have conducted many studies on the relationship between forests, beetles and forest

fires.

Forest fires and pests are two natural disturbances to forests, and they have

had a devastating impact on the succession of forests. Forest fires not only burn

down forests and reduce its stand density, but also destroy forest structures and

reduce the use value of forests. Forest fires kill seedlings and saplings, therefore

prolong the forest regeneration period. The topsoil and rocks of the burned forest

land are exposed, and many places become barren mountains and ridges, making

it di�cult for the forest to recover. According to statistics, an average of 100,000

square kilometers of forests in China are infested with pests and diseases every

year. If it continues to develop, the shelterbelt project that involves half of the

country’s safety will be in danger of being destroyed by the pests population. In

order to minimize the damage caused by pests and forest fires to the forest and

to better carry out the forest management and control, many experts and scholars

have established various pine beetle models for di↵erent environments and studied
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them (see [1–3,7–9,14,15,18–20,26]). In [3], Chen proposed a mathematical model

for beetle outbreaks as a single perturbation in forest population dynamics or in

combination with wildfire perturbations:
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where V and B represent the number of pine trees and the number of beetles at time

t respectively. rv and Kv are the natural growth rate and the carrying capacity of

pine trees respectively. fk represents the percentage of successfully attacked pines

which are killed. r represents the threshold for the number of successfully attacked

beetles. rb and Ke are the natural growth rate and the carrying capacity of beetles

respectively. ↵ is the pine defense rate. � is the inverse of the beetle density, when

the pine defense is saturated. All parameters involved with the model are positive.

Based on model (1.1), Chen proposed model (1.2) with forest fire disturbance

as follows:

8
<

:

dV
dt = rvV

⇣
1�

V
Kv

� fk
B

r+B

⌘
� P

V
Kv

MvV,

dB
dt = rbB

⇣
1�

B
Ke

⌘
�

↵(1�cMv)B
2

1+�B2 �MbP
V
Kv

MvB,

(1.2)

where Mv and Mb represent the impact intensity of a forest fire on trees and beetles,

respectively. P represents the probability of a forest fire, and c is the parameter of

fire weakening the pine tree’s defense against beetles. Mv, Mb, P and c are positive

parameters.

Since Lotka and Volterra proposed the predator-prey dynamic behavior model,

many experts and scholars have studied various predator-prey models, which has

laid a solid theoretical foundation for the latter study (see [4–6, 12, 16, 17, 21–24,

28–30]). This paper argues that beetles will gain certain benefits after successfully

invading pine trees, and improves on the model proposed by Chen, changing the

model from a competition model to a predator-prey model, considering that both

pine trees and beetles can spread in space, thereby introducing a di↵usion term,

and establishing the following reaction-di↵usion forest beetle outbreak model:
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Vx (0, t) = Bx (0, t) = 0, Vx (l⇡, t) = Bx (l⇡, t) = 0,

V (x, 0) = V0 (x) � 0, B (x, 0) = B0 (x) � 0,

x 2 (0, l⇡) , t > 0,

(1.3)

where V (x, t) and B(x, t) are the number of pine trees and the number of beetles

at position x and time t respectively. d1 > 0 and d2 > 0 represent the di↵usion

coe�cients of prey and predator respectively. ⇠ > 0 is the bu↵ the beetles get, when

the pine tree is attacked by beetles. The meanings of the remaining parameters are

the same as those in (1.1) and (1.2), and will not be repeated here. The boundary

condition is Neumann boundary condition and all parameters involved with the
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model are positive. In order to simplify system (1.3), we denote t̃ = d2t, ṽ =
V
Kv

,

b̃ =
B
Kv

, r1 =
rv
d2
, r2 =

rb
d2
, �1 = �K

2

e , K = fkKe, mv = MvP , mb =
MbMvP

d2
,

↵f =
↵(1�cMv)Ke

d2
, ⌘ =

⇠Kv

d2
and d =

d1
d2
. After ignoring the superscript, model (1.3)

can be rewritten as follows:
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vx (0, t) = bx (0, t) = 0, vx (l⇡, t) = bx (l⇡, t) = 0,

v (x, 0) = v0 (x) � 0, b (x, 0) = b0 (x) � 0,

x 2 (0, l⇡) , t > 0,

x 2 (0, l⇡) , t > 0,

t > 0,

x 2 (0, l⇡) .

(1.4)

The general content of this article is as follows. In Section 2, the existence

of positive equilibrium points of the system and the local asymptotic stability at

positive equilibrium points are discussed. In Section 3, the existence of Turing bifur-

cation, Hopf bifurcation and Turing-Hopf bifurcation are investigated respectively,

and the normal forms for Turing-Hopf bifurcation are discussed. In Section 4, some

numerical simulations are given. Finally, in Section 5, a short conclusion is given.

2. Stability analysis of equilibria

2.1. Existence of the positive equilibria

Now, we analyze the existence of the positive equilibrium point of system (1.4).

The equilibrium of system (1.4) satisfies:

8
<

:
r1v

⇣
1� v �

Kb
r+Keb

�mvv

⌘
= 0,

b

⇣
r2(1� b)�

↵f b
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⌘
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(2.1)

Since a positive equilibrium point is required, v > 0, b > 0. According to (2.1), we

have 8
<

:
v =

r+(Ke�K)b
(1+mv)(r+Keb)

,

c1b
4
+ c2b

3
+ c3b

2
+ c4b+ c5 = 0,

(2.2)

where c1 = ��1Ker2(1 +mv) < 0, c5 = (⌘ �mb + r2 +mvr2)r and Ke > K(0 <

fk < 1). According to the first equation in (2.2), if b > 0, we can get v > 0, and if

⌘ > mb holds, from the continuity of the function, we can get that there exist c5 > 0

and b⇤ > 0. Therefore, the second equation in (2.2) holds. Since Turing bifurcation

and Hopf bifurcation will not occur in system (1.4), when ⌘ 6 mb, the following

chapters of this paper consistently assume that ⌘ > mb holds. The specific proof

will be given in Section 3. Thus, system (1.4) must have a positive equilibrium

point (v⇤, b⇤).

2.2. Stability analysis of (v⇤, b⇤)

Now, we analyze the stability analysis of (v⇤, b⇤) as did in [27]. Define the real-valued

Sobolev space

X := {(v, b) 2 [H
2
(0, l⇡)]

2
: (vx, bx)|x=0.l⇡ = (0, 0)},
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and the complexification of X

XC := X� iX = {x1 + ix2 : x1, x2 2 X}.

The linearized system form of the system (1.4) at (v⇤, b⇤) is as follows:

0

@ vt

bt

1

A = L(s)

0
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b

1

A :=

0

@d 0

0 1

1
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0

@�v
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0

@ r1a1 r1a2

b1 b2

1

A

0

@u

v

1

A ,

where a1, a2, b1 and b2 are defined in (2.3). The linearization of system (1.4) at the

equilibrium point (v⇤, b⇤) is as follows:

L(s) =

0

@d
@2

@x2 + r1a1 r1a2

b1
@2

@x2 + b2

1

A

with the domain DL(s) = XC, and

a1 = �(1 +mv)v⇤ < 0, a2 = �
Krv⇤

(r+Keb⇤)2
< 0,

b1 = �(mb � ⌘)b⇤, b2 = r2(1� 2b⇤)�
2↵f b⇤

(1+�1b2⇤)
2 � (mb � ⌘)v⇤.

(2.3)

We know that the eigenvalue problem

�'
00
= µ', x 2 (0, l⇡), '

0
(0) = '

0
(l⇡) = 0

has eigenvalues µn =
n2

l2 (n = 0, 1, · · · ) with corresponding eigenfunctions 'n(x) =

cos
nx
l . We can let 0

@ �

 

1

A =

1X
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0

@an
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1
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nx

l

be an eigenfunction of L(s) corresponding to an eigenvalue �(s). Then we can get

as follows:

L(s)(�, )
T
= �(s)(�, )

T
.

From a straightforward analysis, we have

Ln(s)

0

@an

bn

1

A = �(s)

0

@an

bn

1

A , n = 0, 1, · · · ,

where

Ln(s) :=

0

@ r1a1 � dµn r1a2

b1 b2 � µn

1

A .

The eigenvalues of L(s) are given by the eigenvalues of Ln(s) for n = 0, 1, 2, · · · ,

and the characteristic equation of Ln(s) is as follows:

�
2
� TRn�+DETn = 0, n = 0, 1, 2, · · · , (2.4)
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where

TRn = � (d+ 1)µn + r1a1 + b2,

DETn = dµ
2

n � (r1a1 + b2d)µn + r1(a1b2 � a2b1).

(2.5)

We can obtain the eigenvalues of (2.4) as follows:

�1,2 =
TRn ±

p
TR2

n � 4DETn

2
, n = 0, 1, 2, 3 . . .

The following theorem can be obtained.

Theorem 2.1. If TRn < 0 and DETn > 0 hold, then the real parts of the eigenval-
ues of system (1.4) are all less than zero, and system (1.4) is locally asymptotically
stable at the positive equilibrium point (v⇤, b⇤) .

3. Bifurcation analysis

We make the following assumptions:

(H1) : r1a1 + b2 < 0, r1(a1b2 � a2b1) > 0;

(H2) : r1(a1b2 � a2b1) > 0,

where (H1) determines the stability of the system without di↵usion, and is a neces-

sary condition for the system to generate Turing instability, while (H2) is a neces-

sary condition for the system to generate Hopf bifurcation without di↵usion. Both

of them will be used in the subsequent system bifurcation analysis. In order to

simplify the subsequent proof steps, these two assumptions are given here first.

3.1. Turing instability

According to [11, 25], for an equilibrium point that makes a system of ordinary

di↵erential equations stable, when a di↵usion term is added to the system, it is

no longer stable at the equilibrium point, and this phenomenon is called Turing

instability.

Under assumption (H1), we have TRn < TR0 < 0 and DET0 > 0 for n 2 N0.

According to Theorem 2.1, the system of ordinary di↵erential equations correspond-

ing to system (1.4) is locally asymptotically stable at the positive equilibrium point

(u*, v*).

Now, we select d as the parameter of Turing bifurcation line. According to

(2.5), we get an open-up quadratic function of µ : DET (µ) = dµ
2
�(r1a1 + b2d)µ+

r1(a1b2 � a2b1) and DET (0) = r1(a1b2 � a2b1) > 0. For n 6= 0, the symmetry axis

µ⇤ and the discriminant � of DET (µ) are given as follows:

µ⇤ =
(r1a1 + b2d)

2d
, � = (r1a1 + b2d)

2
� 4dr1 (a1b2 � a2b1) .

There are two cases to be considered as follows:

Case I: r1a1 + b2d  0 or � < 0. Then, all the roots of (2.4) have negative

real parts.

Case II: r1a1 + b2d > 0 and � > 0. Denote the two di↵erent roots of

DET (µ) = 0 as µl and µr (µl < µr). By straightforward calculation, we have

µl,r =
(r1a1+b2d)⌥

p
�

2d , and get the following conclusions:
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(i) For 8n 2 N, if µn /2 (µl, µr), we have DET (µn) > 0, and all the roots of

(2.4) have negative real parts.

(ii) If there exists a k 2 N such that µk 2 (µl, µr) and DET (µk) < 0, (2.4)

will have at least one root with positive real part.

In summary, the following theorem can be obtained.

Theorem 3.1. For system (1.4), we suppose (H1) hold, and the following state-
ments are true.

(1) In Case I, system (1.4) is locally asymptotically stable at the positive equilib-
rium point (v⇤, b⇤).

(2) In Case II, µn /2 (µl, µr) for 8n 2 N, and system (1.4) is locally asymptotically
stable at the positive equilibrium point (v⇤, b⇤).

(3) In Case II, there exists a k 2 N such that µk 2 (µl, µr), and system (1.4) is
Turing instability at the positive equilibrium point (v⇤, b⇤).

Furthermore, the case of ⌘  mb is discussed. Under ⌘  mb and assumptions

(H1), we have b1  0, b2 < 0, r1a1 + b2d < 0 in Case I. Therefore, system (1.4) will

not have Turing instability phenomenon.

3.2. Hopf bifurcation

Hopf bifurcation refers to a phenomenon in nonlinear equations with parameters

that reverses the stability of the trivial steady-state solution of the system with

the change of the parameters, thereby generating a period near the trivial steady-

state solution. If the system wants to have a Hopf bifurcation, its corresponding

linearization operator needs to have a pair of pure imaginary eigenroots at the

critical value, and satisfy the corresponding transversal conditions.

In this section, the parameter r1 will be selected to study Hopf bifurcation in

system (1.4).

Denote

r1 = r1n :=
(1 + d)µn � b2

a1
, n 2 N0.

Under assumption (H2), we have DET0(r10) > 0.

Denote

n
⇤
= max{ n | DETn(r1n) > 0, r1n > 0, n 2 N}.

When r1 = r1n, 0  n  n
⇤
, we have TRn(r1n) = 0, DETn(r1n) > 0, and

system (1.4) has a pair of pure imaginary eigenvalues. We assume that system (1.4)

has a pair of complex eigenvalues ↵n (r1)± i!n (r1) when r1 is near r1n, where

↵n (r1) =
TRn

2
, !n (r1) =

p
4DETn � TR2

n

2
,

d↵n (r1)

dr1

����
r1=r1n

=
a1

2
< 0.

The transversal condition is satisfied, and system (1.4) undergoes a Hopf bifurcation

at r1 = r1n. Thus we can get the following theorem.

Theorem 3.2. If (H2) holds, system (1.4) undergoes a Hopf bifurcation at r1 =

r1n, where n = 0, 1, 2, . . . , n
⇤.

Furthermore, the case of ⌘  mb is discussed. Under ⌘  mb and assumption

(H2), we have b1  0, b2 < 0, Tn < 0. System (1.4) will not have pure imaginary

eigenvalues and Hopf bifurcation phenomenon.
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3.3. Turing-Hopf bifurcation

Turing-Hopf bifurcation refers to the combination of Turing bifurcation and Hopf

bifurcation, so that the system can generate Hopf bifurcation when there is no

di↵usion, and then generate Turing bifurcation after adding a di↵usion.

If system (1.4) undergoes Turing-Hopf bifurcation, the following two conditions

need to be satisfied:

(i) When n = 0, equation (2.5) has a pair of pure imaginary roots.

(ii) When n > 0, equation (2.5) has a single zero root.

In this section, we assume that (H2) always holds.

Denote

dn = r1

✓
a1µn + a2b1 � a1b2

µn(µn � b2)

◆
, S = { n |n 2 N, µn � b2 < 0},

such that

dn⇤ = min
n2S

⇢
r10

✓
a1µn + a2b1 � a1b2

µn(µn � b2)

◆�
.

In r1-d plane, the Turing bifurcation curves are as follows:

Ln : dn = r1

✓
a1µn + a2b1 � a1b2

µn(µn � b2)

◆
, n 2 S,

and the Hopf bifurcation curve is as follows:

H0 : r1 = r10.

When n = 0, r1 = r10 , system (1.4) undergoes Hopf bifurcation according to

Theorem 3.2.

Now, we discuss the case of n 6= 0. If S = ;, the Turing bifurcation curves Ln

and the Hopf bifurcation curve H0 have no intersection point in the first quadrant,

and system (1.4) will not undergo Turing-Hopf bifurcation. If S 6= ;, the Tur-

ing bifurcation curves Ln and the Hopf bifurcation curve H0 have the intersection

point(r10, dn⇤) in the first quadrant, and the following cross-sectional conditions are

obtained:

dRe(�)
dr1

���
r1=r10,H0

=
a1
2

< 0,

d�
dd

��
d=dn⇤ ,Ln⇤

=
µn⇤ (µn⇤�b2)

Tn⇤
> 0.

System (1.4) undergoes Turing-Hopf bifurcation at the point (r1, d) = (r10, dn⇤). In

addition, when (r1, d) 2 {(r1, d)|r1 > r10, 0 < d < dn⇤}, we have TRn < 0, DETn >

0, then the positive equilibrium point (v⇤, b⇤) is locally asymptotically stable. In

summary, the following theorem can be obtained.

Theorem 3.3. The following statements are true:
(1) If S = ;, system (1.4) does not undergo Turing-Hopf bifurcation.
(2) If S 6= ;, system (1.4) undergoes Turing-Hopf bifurcation at the point

(r1, d) = (r10, dn⇤), and when (r1, d) 2 {(r1, d)|r1 > r10, 0 < d < dn⇤}, it is locally
asymptotically stable at the positive equilibrium point (v⇤, b⇤).
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3.4. Normal forms for Turing-Hopf bifurcation

In this section, we calculate the normal forms to analyze the dynamic properties of

system (1.4), when it undergoes Turing-Hopf bifurcation at the positive equilibrium

point (v⇤, b⇤). Some of the formulas can be referred to [10].

First, we define parameters �1, �2 , let r1 = r10+�1, d = dn⇤ +�2 and transform

system (1.4) into the following form:

8
<

:

@v(x,t)
@t = (r10 + �1)v

⇣
1� v �

Kb
r+Keb

�mvv

⌘
+ (dn⇤ + �2)�v,

@b(x,t)
@t = b

⇣
r2(1� b)�

↵f b
1+�1b2

� (mb � ⌘)v

⌘
+�b.

(3.1)

The equilibrium point of system (3.1) is still the positive equilibrium point (v⇤, b⇤).

Let v̄ = v � v⇤, b̄ = b� b⇤. After ignoring the horizontal bar, system (3.1) becomes

the following system:

8
>>>>>><

>>>>>>:

@v(x,t)
@t = (r10 + �1)(v + v⇤)

⇣
1� (v + v⇤)�

K(b+b⇤)
r+Ke(b+b⇤)

�mv(v + v⇤)

⌘

+(dn⇤ + �2)�v,

@b(x,t)
@t = (b+ b⇤)

⇣
r2 (1� (b+ b⇤))�

↵f (b+b⇤)
1+�1(b+b⇤)2

� (mb � ⌘)(v + v⇤)

⌘

+�b.

(3.2)

According to [10], for system (3.2), we can get

D(�) =

0

@dn⇤ + �2 0

0 1

1

A ,

L(�) =

0

@ (r10 + �1)a1 (r10 + �1)a2

b1 �r10a1

1

A ,

F (�, �) =

0

BBBBBB@

(r10 + �1)(�1 + v⇤)

⇣
1�

K(�2+b⇤)
r+Ke(�2+b⇤)

� (mv + 1)(�1 + v⇤)

⌘

�(r10 + �1)(a1�1 + a2�2)

(�2 + b⇤)

⇣
r2 (1� (�2 + b⇤))�

↵f (�2+b⇤)
1+�1(�2+b⇤)2

� (mb � ⌘)(�1 + v⇤)

⌘

�b1�1 + r10a1�2

1

CCCCCCA
,

where � = (�1,�2)
T
2 X, then we have

D(0) =

0

@dn⇤ 0

0 1

1

A , D1(�) =

0

@ 2�2 0

0 0

1

A ,

L(0) =

0

@ r10a1 r10a2

b1 �r10a1

1

A , L1(�) =

0

@2�1a1 2�1a2

0 0

1

A ,



588 X. Zhang & C. Zhang

Q (�, ) =

0

@↵11�1 1 + ↵12 (�1 2 + �2 1) + ↵13�2 2

↵21�1 1 + ↵22 (�1 2 + �2 1) + ↵23�2 2

1

A ,

C (�, , �) =

0

BBBBBB@

�11�1 1�1 + �12 (�1 1�2 + �1 2�1 + �2 1�1)

+�13 (�2 2�1 + �2 1�2 + �1 2�2) + �14�2 2�2

�21�1 1�1 + �22 (�1 1�2 + �1 2�1 + �2 1�1)

+�23 (�2 2�1 + �2 1�2 + �1 2�2) + �24�2 2�2

1

CCCCCCA
,

where

↵11 = � (1 +mv) r10,↵12 = �
Krr10

2(b⇤Ke+r)2
,↵13 =

KKerr10v⇤
(b⇤Ke+r)3

,

↵22 =
�mb+⌘

2
,↵23 =

↵f�3↵f b
2
⇤�1+(1+b2⇤�1)

3
r2

(1+b2⇤�1)
3 ,

�13 =
KKerr10

3(b⇤Ke+r)3
,�14 = �

KKe
2rr10v⇤

(b⇤Ke+r)4
,�24 = �

4↵f b⇤�1(�1+b2⇤�1)

(1+b2⇤�1)
4 ,

↵21 = �11 = �12 = �21 = �22 = �23 = 0.

The characteristic matrix corresponding to the system (3.2) is as follows:

Dn(�) =

0

@�+ dn⇤µn � r10a1 �r10a2

�b1 �+ µn + r10a1

1

A .

According to Theorem 3.3, � = ±i! with ! =
p
DET0 is a pair of pure imaginary

eigenvalues of D0(�). � = 0 is the single zero eigenvalue of Dn⇤(�). We can obtain

the following:

�1 =

0

@ 1

dn⇤µn⇤�r10a1

r10a2

1

A ,  1 =

0

@
r10a2b1

(dn⇤µn⇤�r10a1)
2+r10a2b1

r10a2(dn⇤µn⇤�r10a1)

(dn⇤µn⇤�r10a1)
2+r10a2b1

1

A
T

,

�2 =

0

@ 1

i!�r10a1

r10a2

1

A ,  2 =

0

@
r10a2b1

(i!�r10a1)
2+r10a2b1

r10a2(i!�r10a1)

(i!�r10a1)
2+r10a2b1

1

A
T

,

where � = (�1,�2, �̄2), = ( 1, 2,  ̄2),  � = I3, and I3 is the identity matrix. In
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addition, the following parameters are given:

a1(�) =
1

2
 1(L1(�)�1 � µn⇤D1(�)�1),

a200 =a011 = b110 = 0,

b2(�) =
1

2
 2(L1(�)�2 � 0D1(�)�2),

a300 =
1

4
 1C�1�1�1 +

1

!
 1Re[iQ�1�2 2]Q�1�1 +  1Q�1(h0

200+
1p
2
h2n⇤
200 )

,

a111 = 1C�1�2�̄2
+

2

!
 1Re[iQ�1�2 2]Q�2�̄2

+  1(Q�1(h0
011+

1p
2
h2n⇤
011 )

+Q�2h
n⇤
101

+Q�̄2h
n⇤
110

),

b210 =
1

2
 2C�1�1�2 +

1

2i!
 2(2Q�1�1 1Q�1�2 + (�Q�2�2 2 +Q�2�̄2

 ̄2)Q�1�1)

+  2(Q�1h
n⇤
110

+Q�2h0
200

),

b021 =
1

2
 2C�2�2�̄2

+
1

4i!
 2

✓
2

3
Q�̄2�̄2

 ̄2Q�2�2 + (�2Q�2�2 2 + 4Q�2�̄2
 ̄2)Q�2�̄2

◆

+  2(Q�2h0
011

+Q�̄2h0
020

),

h
0

200
=�

1

2
L
�1

(0)Q�1�1 +
1

2!i
(�2 2 � �̄2 ̄2)Q�1�1 ,

h
2n⇤
200

=�
1

2
p
2
[L(0)� 4µn⇤D(0)]

�1
Q�1�1 ,

h
0

011
=� L

�1
(0)Q�2�̄2

+
1

!i
(�2 2 � �̄2 ̄2)Q�2�̄2

,

h
0

020
=
1

2
[2i!I � L(0)]

�1
Q�2�2 �

1

2!i

✓
�2 2 +

1

3
�̄2 ̄2

◆
Q�2�2 ,

h
n⇤
110

=[i!I � (L(0)� diag(�µn⇤ ,�dn⇤µn⇤))]
�1

Q�1�2 �
1

!i
�1 1Q�1�2 ,

h
0

002
=h

0

020
, h

n⇤
101

= h
n⇤
110

, h
2n⇤
011

= 0.

Thus, the normal form of system (1.4) is obtained at the Turing-Hopf bifurcation

as follows:

8
>>><

>>>:

ż1 = a1(�)z1 + a200z1
2
+ a011z2z̄2 + a300z1

3
+ a111z1z2z̄2 + h.o.t.,

ż2 = i!z2 + b2(�)z2 + b110z1z2 + b210z1
2
z2 + b021z2

2
z̄2 + h.o.t.,

˙̄z2 = �i!z̄2 + b̄2(�)z̄2 + b̄110z1z̄2 + b̄210z1
2
z̄2 + b̄021z2z̄2

2
+ h.o.t..

(3.3)

Let z1 = r, z2 = ⇢cos✓ � ⇢isin✓, and convert system (3.3) to cylindrical coordinate

form: 8
<

:
ṙ = a1(�)r + a300r

3
+ a111r⇢

2
,

⇢̇ = Re(b2(�))⇢+Re(b210)⇢r
2
+Re(b021)⇢

3
.

(3.4)

4. Numerical simulations

In this section, simulations were performed to verify the previous conclusions. Let

r2 = 0.16, K = 1, Ke = 3, r = 1, �1 = 4, ↵f = 1.5, mv = 1.5, mb = 3, ⌘ =
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4 and l = 100, system (1.4) becomes as follows:

8
<

:

@v(x,t)
@t = r1v

⇣
1� v �

b
1+3b � 1.5v

⌘
+ d�v,

@b(x,t)
@t = b

⇣
0.16(1� b)�

1.5b
1+4b2 + v

⌘
+�b.

(4.1)

After computation, system (4.1) has a unique equilibrium point (v⇤, b⇤) = (0.3, 1),

and assumption (H2) is verified. Calculating other parameter values under this

condition, a1 = �0.75, a2 = �0.01875, b1 = 1 and b2 = 0.02. In r1-d plane, the

Hopf bifurcation curve is as follows:

H0 : r1 = r10 ⇡ 0.026667,

and the Turing bifurcation curves are as follows:

Ln : dn = r1

✓
a1µn + a2b1 � a1b2

µn(µn � b2)

◆
, n 2 S = {1, 2, 3, ...13, 14}.

The Turing bifurcation curves Ln and the Hopf bifurcation curve H0 have the first

intersection point(r10, dn⇤) ⇡ (0.026667, 2.61949) in the first quadrant (see Figure

1).

Figure 1. When n⇤ = 8, we have the first intersection of the Turing bifurcation curves Ln and the

Hopf bifurcation curve H0 at the point(r10, dn⇤ ) ⇡ (0.026667, 2.61949).

The normal form of system (4.1) is as follows:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ż1 = �0.369096(�1 � 0.0101801�2)z1 + 437.822z1
3
� 83.0370z1z2z̄2

+ h.o.t.,

ż2 = 0.01iz2 � (0.375� 0.1875i)�1z2 � (566.464 + 245.969i)z1
2
z2

� (9.6375 + 106.401i)z2
2
z̄2 + h.o.t.,

˙̄z2 = �0.01iz̄2 � (0.375 + 0.1875i)�1z̄2 � (566.464� 245.969i)z1
2
z̄2

� (9.6375� 106.401i)z2z̄2
2
+ h.o.t..

(4.2)

We get its cylindrical coordinate form as follows:
8
<

:
ṙ = �0.369096(�1 � 0.0101801�2)r + 437.822r

3
� 83.0370r⇢

2
,

⇢̇ = �0.375�1⇢� 566.464⇢r
2
� 9.63750⇢

3
.

(4.3)
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Considering ⇢ > 0, system (4.3) has the following equilibrium:

(1) The coexistence equilibrium: A0 = (0, 0).

(2) Spatially inhomogeneous steady states:

A
±

1
= (±0.0000888142

p
106875�1 � 1088�2, 0), for 106875�1 � 1088�2 > 0.

(3) Spatially homogeneous periodic solution:

A2 = (0, 0.197257

p
��1), for �1 < 0.

(4) Spatially inhomogeneous periodic solutions:

A
±

3
= (±�1,�2),

�1 = 9.505⇥ 10
�5

p
�5.957⇥ 104�1 � 78.21�2,

�2 = 3.68⇥ 10
�3

p
�5.369⇥ 102�1 + 3.061�2,

and � 5.957⇥ 10
4
�1 � 78.21�2 > 0 , � 5.369⇥ 10

2
�1 + 3.061�2 > 0.

The following bifurcating lines are obtained:

H0 : �1 = 0,

T : �2 = 98.23�1,

T1 : �2 = �761.7�1, �1  0,

T2 : �2 = 175.4�1, �1  0.

The parameter space is divided into six regions as shown below:

Figure 2. The bifurcation set and the phase portraits for Turing-Hopf bifurcation of system (4.1)

By analyzing the dynamic properties of each region, the following propositions

can be obtained:

Proposition 4.1. When r2 = 0.16,K = 1,Ke = 3, r = 1,�1 = 4,↵f = 1.5,mv =

1.5,mb = 3, ⌘ = 4, l = 100, the parameter space is divided into six regions by branch
lines H0, T , T1, T2. System (1.4) has di↵erent dynamical phenomena occurring in
these six regions.
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(1) When (�1, �2) 2 D1, system (1.4) has a locally asymptotically stable positive
equilibrium point and a pair of unstable spatially inhomogeneous steady states,
and the pair of unstable spatially inhomogeneous steady states is attracted to
the locally asymptotically stable positive equilibrium point. The numbers of
pine trees and beetles are stable at the equilibrium point, thus pines and beetles
coexist (See Figure 3).

(2) When (�1, �2) 2 D2, system (1.4) has an unstable positive equilibrium point.
The numbers of pines and beetles are both unstable at the equilibrium point.

(3) When (�1, �2) 2 D3, system (1.4) has an unstable positive equilibrium point
and an unstable spatially homogeneous periodic solution. The numbers of pines
and beetles are still both unstable at the equilibrium point.

(4) When (�1, �2) 2 D4, system (1.4) has a stable spatially homogeneous periodic,
an unstable positive equilibrium point and a pair of unstable spatially inho-
mogeneous periodic solutions. The pair of unstable spatially inhomogeneous
periodic solutions is attracted to the stable spatially homogeneous periodic.
The population of pine trees and beetles fluctuates periodically over time (See
Figure 4).

(5) When (�1, �2) 2 D5, system (1.4) has a stable spatially homogeneous periodic,
an unstable positive equilibrium point, a pair of unstable spatially inhomoge-
neous periodic solutions and a pair of unstable spatially inhomogeneous steady
state. The pair of unstable spatially inhomogeneous periodic solutions and
the pair of unstable spatially inhomogeneous steady states are attracted to the
stable spatially homogeneous periodic. Finally, both pine and beetle popula-
tion fluctuate periodically over time. Meanwhile, pines and beetles coexist and
exhibit an oscillatory behavior (See Figure 5).

(6) When (�1, �2) 2 D6, system (1.4) has a stable spatially homogeneous periodic,
an unstable positive equilibrium point and a pair of unstable spatially inho-
mogeneous steady state. The pair of unstable spatially inhomogeneous steady
states is attracted to the stable spatially homogeneous periodic. Pines and
beetles coexist and still exhibit an oscillatory behavior (See Figure 6).

Figure 3. (�1, �2) = (0.001, 0.05) 2 D1, A0 is locally asymptotically stable and A±
1 is unstable.
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Figure 4. (�1, �2) = (�0.001,�0.04) 2 D4, A2 is stable, while A0 and A±
3 are unstable.

Figure 5. (�1, �2) = (�0.001,�0.12) 2 D5, A2 is stable, while A0,A
±
1 and A±

3 are unstable.

Figure 6. (�1, �2) = (�0.001,�0.35) 2 D6, A2 is stable while A0 and A±
1 are unstable.

Here, v(x, 0) = 0.3 + 0.01sin(5x) and b(x, 0) = 1 + 0.1sin(5x).
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5. Conclusion

The di↵usion phenomenon exists widely in nature. Based on the work of Chen,

this paper analyzes the forest fire and forest beetle outbreak model with a di↵usion

term, and mainly carries out some bifurcation analyses on the local area of the

positive equilibrium point.

This paper discusses the existence and stability of the positive equilibrium

point of system (1.4), selects d and r1 as the parameters of the Turing and Hopf

bifurcations and obtains the necessary conditions for the existence of Turing insta-

bility, Hopf bifurcation and Turing-Hopf bifurcation respectively. By calculating

the normal form of system (1.4) at the Turing-hopf bifurcation point, the parame-

ter space is divided into six areas, and it is found that it is locally asymptotically

stable at the positive equilibrium point of D1, where pine trees and beetles coexist,

and system (1.4) is unstable at the positive equilibrium point of D2, D3 , stable

spatially homogeneous periodic solutions are generated at D4, D5, D6, where pines

and beetles coexist and exhibit an oscillatory behavior.
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