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Abstract. Recently, Li [16] introduced three kinds of single-hidden layer feed-forward
neural networks with optimized piecewise linear activation functions and fixed
weights, and obtained the upper and lower bound estimations on the approximation
accuracy of the FNNs, for continuous function defined on bounded intervals. In the
present paper, we point out that there are some errors both in the definitions of the
FNNs and in the proof of the upper estimations in [16]. By using new methods, we
also give right approximation rate estimations of the approximation by Li’s neural
networks.
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1 Introduction
Feed-forward neural networks (FNNS) have been investigated entensively and deeply
because of their universal approximation capbilities on compact input sets and approxi-

mation in a finite set. In the present paper, we deal with the FNNS with one hidden layer,
which can be mathematically expressed as

n
Ny (x) =) cjo((aj-x)+b;), xeR, seN,
=0

where for 0 < j < n,b; € R are the thresholds, a; € R® are the connection weights,
¢j € R are the coefficients, <aj . x> is the inner product of 4; and x, and ¢ is the activation
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function. In many fundamental network models, the activation function ¢ is usually
taken to be a sigmoidal function.

As we know, FNNS are universal approximators. Theoretically, any continuous func-
tion defined on a compact set can be approximated to any desired degree of accuracy
by increasing the number of hidden neurons. A lot of results concerning the existence
of an approximation and determining the number of neurons required to guarantee that
all functions (belong to a certain class) can be approximated to the prescribed degree of
accuracy, have been achieved by many authors (see [1-21] and [23-27]).

Let o : R — [0, ¢] be the ramp function defined by

0, x < —Ho,
) g X > Ho, + 1
o(x):= ceRT, 0< < -
() X+ U VO_Z

¢, —po <x <M,
20 ¢ W z

Define

=o(x+p) —o(x — po)

0, |x| > 2puo,

( - *|x| ¢ x| < 2u,

x +2pp) —o(x —2p0)

0 |x| > 3o,
(2o ) e w < <3
— ) 2;10 , Ho Ho,

c, x| < po.

Obviously, ¢1(x) and ¢y(x) are triangle function and trapezoidal function, respec-
tively. Furthermore, ¢1(x) and ¢,(x) are nonegative even functions, and are non-
increasing for x > 0. By using @;(x) as the activation functions, Li [16] introduced the
following single-hidden layer feed-forward neural network operators:

Ny(f, x) == = , (1.1)

where xy = a+kh,k =0,1,--- ,n, are the uniform space nodes on the interval [a, d], with
h=21
[ 12][16], Li obtained the following approximation rate of N,, ;(f, x) for functions f(x) €
Cla,d|:
INwi(F) = Il < 4wn (£,1), n ez, (12)
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where w;(f, x) is the second order modulus of smoothness of f(x).
The first purpose of the present paper is to clarify the following some facts:

(1) The operators Ny, 1(f,x) and N,2(f,x) are not well defined for 0 < o < } and
0<pu < %, respectively;

(2) Under the conditions either j = 1, % < pp < % orj =2, % < pp < %, (1.2) is not
valid;

(3) Whenj =1,y = %, (1.2) is true. However, the proof of it in [16] is incorrect. In
fact, in [16], the following inequality is used:

|f(x) = f(x)| < wa(f,h) (1.3)

for |x — x;| < h. By taking f(x) = x, we see that the left hand side of (1.3) equals
to [x — x;| > 0 when x # x;, but the right hand side always is zero, which means
the invalidaty of (1.3). The second purpose of us is to give right approximation
rate estimations of approximation by N, ;(f,x) under the conditions either j = 1,
T<m<iorj=2, % < po < 3 (see Theorem 3.1 in Section 3). Our final purpose
is to give a correct proof of (1.2) when j = 1, yp = % In fact, we also improve (1.2)

by using a sharper constant % to replace the constant 2 (see Theorem 3.2 in Section
3).

2 Some counterexamples

Proposition 2.1. The operators Ny, 1(f, x) and Ny (f,x) are not well defined for 0 < po < 1
and 0 < pg < %, respectively.

Proof. When j =1and 0 < yo < 1, we have
[x; + 2poh, xiv1 — 2poh] C (x4, xi41), i=1,2,---,n—1.

Therefore, for any given x € [x; + 2poh, xi+1 — 2poh], it holds that

1 1 .
E\x—xk] > ﬁmm(]x—xi\,]x—xiﬂl) > 2u

fork=0,1,---,n. By the definition of ¢;(x), we see that

1
¢1 <h|x—xk|> =0, k=0,1,---,n,

which means that the denominator of N, 1 (f, x)

Yo (v
1 (x—xk) =0
k=0 h
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for x € [x; + 2poh, x;+1 — 2poh]. Therefore, N,,1(f, x) are not well defined for 0 < o < 1.
Similarly, when 0 < o < %, we have

n 1
Y ¢ <h]x—xk|> =0
k=0

for x € [x; + 3uoh, xj11 — 3uoh], i = 1,2,--- ,n — 1, which means that N,,»(f, x) are not
well defined for 0 < o < 3. O

Proposition 2.2. Inequality (1.2) does not hold under the conditions either
(i) j=1,1<po <3 o0r
(i) j=2,% <po < 5
Proof. We first consider the case when j = 1 and }; < po < 3. Taking f(x) = x and

xf=x—h1<i<n
1 8
If ; < po < 15. Then

|xj —xi| = %h, (2.1a)
lxf —xi1| =h— %h > 2uoh, (2.1b)
|x;'k - xk| >h Z 2‘1/10]/1, k 7& 111 -1 (21C)
By the definition of ¢ (x), we have
. 1 * _ 1 * ] . Ho\ 15
k;)q)l <h|xi _xk’) =9 (h|xi - x1|> =9 (§> = RC'
and
f(x) = f(x) e ()
[N (f,x7) = ()] i
o1 ()
=|x —xllz%h. (2.2)

It 1% < g < %, we have (2.1a), (2.1c) and

xf — x| = h— %h < 2uoh. (2.3)
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By (2.1a), (2.1¢), (2.3) and the definition of ¢;(x), we have

[Nu1 (f, x7) = f(xi)] = 8

f(xi) = FO))er () + (flxima) = F(x))gr (1)

:h|2y% — 9o + 4|
16]40 —4

> 0. (2.4)

By (2.2) and (2.4), we observe that

INu1(f) = fllw >0

for 1 < po < 1. On the other hand, it is obvious that wy (f, t) = w»(x,t) = 0 forany t > 0.
Therefore, (1.2) does not hold.

Now, we consider the case when j = 2 and ¢ < o < 3. Taking f(x) = x and
X = x; —poh, i=1,2,--- ,n — 1. Direct calculations yield that

|%; — xi| = poh, |%i —xi—1] = (1 — po)h,
|fi—xk| > (1-}—]/!0)]/123}{0}1, k#l—l,l

When % <y < }1, we have 1 — ug > 39, which implies that |¥; — x;_1| > 3poh. Thus,

(f (xi) = f(%:)) @2 (Ho)
@2 (mo)

Nualf, %) — £(5)] = ] = yioh. 25)

Similarly, when % < pp < %, we have yp < |%; — x;_1| < 3poh. Thus,

(f (xi) = f(x)) @2 (o) + (f(xiz1) — f(Fi)) 92 (1 — pho)
@2 (o) + @2 (1 — po)

poh + (=14 o) h (2= 51

Nualf, %) — £(5)] = ]

S
3 T

_ hl6pg — 5o + 1]
6]40—1 '

(2.6)

From (2.5) and (2.6), we get
|Nu2(f, i) = f(xi)] >0

for i < po < 3, 1o # 3.
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Now, we consider the case when pg = % Taking x} = x; — %h. Then

|(f(xi) — ()2 (%
2 (

INu2(f, i) = f(x))] =

—h
30 > 0.

Finally, if yio = 3, by taking x{j = xo + £}, we have

1 1 15 3
|xo — x0] :Eh' —h <|x; —x{ ——6h<§h,
\xo—xk|2]x2—x|——h>3h k> 2.

Then

[Nua2(f, x0) = £ (x0)|
_|(f(x0) = f(x0)) 92 (16) + (f(x1) — F(x0)) 92 ()|

134
=7 —h>0.

In conclusion, we have that
[Nn2(f) = flleo >0,

and so (1.2) does not hold for j = 2, 1 ¢ <Mo< 1 O

3 Approximation rate of N, ;(f, x)

Firstly, we have

Theorem 3.1. Assume that % < o < %forj =1, and % < po < %forj = 2. Then, for any
f € Cla, d], we have

INw,i(f) = fll < w (f, (j+1uoh), neZ™. (3.1)

Proof. By the interpolation of Nn/j (f,x) at the nodes x;,i = 0,1,--- ,n, we may assume
thatx # x;,1=0,1,-

We first prove (3.1) in the case whenj=1land § <y < 3.

For any x € (x;,x;41),i=0,1,--- ,n — 1, denote by

={ke€Z:0<k<mn, and |x — x¢| < 2uoh},
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# A the cardinal number of A;. We have

\x — xi,l\ >x;—Xi_1=h> 2]10]’1, if i>1,
|x — Xji0| > X400 — xi01 = h > 2uoh, if i<n—2.

Thus,
|x — x| > 2poh, k#i,i+1.

On the other hand, if |x — x;| > 2uoh, i.e., x; + 2puoh < x < x;;1, then
|x — xip1| = x40 — x < (1 —2u0)h < 2uoh.
In conclusion, we have 1 < fA; < 2. Therefore,

Y (f(x) = fF(x) @2 (3]x — xel)

ke A
Nu1(f,x) — =
Noa (£, ) = £()] ST
kEA,
() = fOle2 (Glx—xl) X w(f, lx = xil)oa (i1 — xil)
keAy ke Ay
Y o (3lx —xi) - Y o2 (Glx—x)
ke Ay ke Ag
kEZA @2 (5 1x — x])
<w(f,2uph) —== = ,210h).
_(U(f Ho )ke% 72 (%’x_ka (U(f Ho )

Now, we prove (3.1) in the case when j = 2 and % < o < % For any x € (xj,xi11),

i=0,1,---,n—1, denote by
By={ke€Z:0<k<mn,and |x — x¢| < 3uoh},
# By the cardinal number of B;. We have

]x - xi_2’ > x;— Xj_p = 2h > 3]10h, if i >2,
|x — xjy3] > X403 — xi01 = 2h > 3uoh, if i<n-—3.

Then
|x — x| >3poh, k#i—1,i,i+1,i+2.

On the other hand, if |x — x;| > 3uoh, i.e., x; + 3puoh < x < x;11, then

|x — xj01] = x40 — x < (1= 3uo)h < 3uoh.
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Therefore, 1 < By < 4, and

Y (f(x) — f(x) @2 (5|2 — xx])

ke By
L 92 (lx = xl)
ke By

L w(f, |x = xel) g2 (jlx — )

[Nua(f,x) = f(x)] =

ke By
N L @2 (jilx —xl)
ke By
Sw(f, 3]/10]1)
Thus, we complete the proof. ]

To obtain the approximation rate of Ny, 1(f, x) when pg = 3, we need the following
two lemmas.

Lemma 3.1. It holds that
Nyi(t,x) =x, x € [a,d].

Proof. Since the interpolation of N, 1(f, x) at the nodes, thatis, N,,1(f, x;) = f(x;), i =

0,1,---,n, we may assume that x # x;,1 =0,1,--- ,n.
For any x € [a,d], assume that x; is the closest node to x. If i = 0, then,

1 1
[x = xo] < 5(x1 —x0) = 5h,
%h < |x —x1| < h =2uoh,
|x — x| > gh > 2uph, k#0,1.

Hence,
1 1
Ny1(t,x) =xo1 <h‘x - xo!) + X191 <h’x - x1|)

=X (1 - ;(x—xo)> +x1 <1 — %(xl —x)>

2 2
X X X(X1 —X
1 0 (1 0)

h h

=Xx0 + X1 — = X.

Similarly, if i = n, we have

1 1
Nyi(t,x) = x4 (h|x— xn|> + X191 <h|x_xn1|> = 7.
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Now, we consider the case 1 < i < n — 1. Without loss of generality, we may assume that
X € [%17“‘1 i)- Then

-xl <5, 5 <l -xia] <h
X Xi| S 2, 5 = X Xi—1 ’
\x—xk|>h:2y0h, k;él—].,l
Therefore,
1 1
Ny1(t,x) = xigq <h|x - xi|> + X191 <h]x — xi1]> = x.
Combining all the above discussions, we finish the proof of Lemma 3.1. O

Lemma 3.2. It holds that
IN,1((t—x)?,x)| < h2 x € [a,d].

Proof. Assume that x; is the closest node to x. We only consider the case when 1 < i <
n—1landx € [w i) , the other cases can be treated similarly. By Lemma 3.1 and the

definition of ¢;(x), we get

Ny ((t— x)z, x) =x% — 2xNy1(t x) + anl(tz, x)

1 1
=x? —2x* + x2 ¢y <h|x—x1~|> + X191 (h]x—xi1|>

= — 7+ x(x1 + x) — X%

=(x — xi—1) (x; — x).

It is easy to see that N, 1((t — x)?,x) attains its maximum value }Ih2 at the point x =
Xi+Xiq
2

,l.e.,
INwa ((t=x)%2)] < hz
We complete the proof. O

For f(x) € Cla, d], define the second order Steklov function as follows:

h/2 h/2
fun(x) : hz/h/z h/2fx+s+t)d
Then [22]
1
1f = funllew < 502(f, 1), (3.2a)

Il < geon(f, ). (3.20)
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Theorem 3.2. For any f € Cla,d|, we have
INw1(f) = flleo < G2 (f,h), neZ. (33)

Proof. 1t is obvious that

x| O

L [£(x0)lgr (hx 1)
Nua(f, ) < 0 < I|flle

Y g1 (5(x —x))
k=0

Then, by (3.2a), we have

INua(f, %) = f(0)] =[Nua(f = fun %) + Nua (frns %) = fun(x) + fun(x) — f(x)]
<2[If = funlleo + [Nu1 (fins X) — fun(x)]|
<ws(f, 1) + [Nu1(fun x) = fun(x)] - (3.4)

By using Lemmas 3.1 and 3.2, and Taylor’s expanssion formular:

Fi (k) = ) + i (0) 0k = )+ S F (@) — %, G € (nm) or (xx),

we deduce that

L () = fue))gn ((x = 30))

|Nn,1<fhh/x)_fhh(x)‘ = n
Y g1 (3(x —x))
k=0
L 160 (= xPn (hx —x0)
> g1 (b — )
k=0
1 i
<5 1 finlleoNaa (8 = x)°, 2)
<gws(f ). (3.5)
We prove (3.3) by combining (3.4) and (3.5). O

Remark 3.1. In Theorems 3.1 and 3.2, we obtain the direct results of approximation by
the operators N, 1(f, x) and N, »(f, x). It will be of interesting to investigate the inverse
results of approximation by these operators. Also, we only consider the neural network
operators based on the equally spaced nodes, it is of interesting to extend our results to
some other nodes. It is valuable to extend the main results to the multivariate case.
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