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Abstract. A design of a new heterogeneous code for LBM simulations is proposed.
By heterogeneous computing we mean a collaborative computation on CPU and GPU,
which is characterized by the following features: the data is distributed between CPU
and GPU memory spaces taking advantage of both parallel hierarchies; the capabil-
ities of both SIMT GPU and SIMD GPU parallelization are used for calculations; the
algorithms in use efficiently conceal the CPU-GPU data exchange; the subdivision of
the computing task is performed with an account for the strong points of both process-
ing units: high performance of GPU, low latency, and advanced memory hierarchy
of CPU. This code is a continuation of our work in the development of LRnLA codes
for LBM. Previous LRnLA codes had good efficiency both for CPU and GPU com-
puting, and allowed GPU simulation performed on data stored in CPU RAM without
performance loss on CPU-GPU data transfer. In the new code, we use methods and
instruments that can be flexibly adapted to GPU and CPU instruction sets. We present
the theoretical study of the performance of the proposed code and suggest implemen-
tation techniques. The bottlenecks are identified. As a result, we conclude that larger
problems can be simulated with higher efficiency in the heterogeneous system.
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1 Introduction

In the field of high-performance computational fluid dynamics (CFD), the Lattice Boltz-
mann Method (LBM) [1, 2] is an extremely popular method. It was proposed as a devel-
opment of Lattice Gas Automata methods [3], and achieved worldwide recognition after
several classic publications [4, 5]. From its early days, researchers predicted the power
of the method to simulate extreme-scale problems. This power is in the simplicity of
formulation of the method.
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LBM has been implemented on many cutting-edge supercomputers [6–9]. There exist
impressive applied simulations, such as wind modeling [10], flow simulation around the
skeletal structure of a depth sponge [11], simulation of cerebrovascular blood flow [12],
automotive simulation [13].

1.1 Heterogeneous computing model

In practice, usefulness of a method depends on the performance of its code implementa-
tion. Higher performance requires efficient use of computer hardware. Modern comput-
ers, as a rule, contain several computing devices with different architectures for hardware
and for software (Instruction Set Architecture — ISA). Let us discuss the problem of de-
veloping an LBM code that uses all available computing power with the most efficiency.
For such complex hybrid systems, one has to motivate the choice of and adequate (1)
computing model, (2) algorithms, (3) implementation tools.

In systems with several processing devices, one of them is the main processor (CPU,
host), and at least one is considered to be a coprocessor, which is dedicated to accelerating
specific tasks. In this work, GPUs are taken as coprocessors. Considering the computing
model, one may treat coprocessor as an extension of the processor. The coding tools in
this environment treat the hardware uniformly, hiding the heterogeneity from the user
with a common API (Application Programming Interface), such as OneAPI.

This method had its success in the previous generation. In 1980s, coprocessors such
as Intel 8087, Weitek X167 were used to speed up floating point operations. Their ar-
chitectures were extensions of ISA x86. Later, such coprocessors became integrated into
mainstream CPU, and their ISAs was integrated into CPU ISA. Now, SIMD extensions for
handling vector data (SSE/AVX2/AVX512) and matrix data (AMX) are also integrated in
CPU. At the same time, these extensions remain optional. They are used for accelera-
tion of some specific computing tasks. From this perspective, state-of-the art SIMD tools
can be seen as a stage of coprocessor evolution. Their use is available through specific
methods, compiled into libraries, and the interface can be obscured with compiler op-
tions or programming language extensions. The common tools for SIMD extensions of
ISA x86+ include intrinsic methods, vectorized data types and vectorized operations im-
plemented as special objects, extensions of compilers and programming language, loop
auto-vectorization with OpenMP or optimizing compilers.

In our research of CPU/GPU heterogeneous computing models, we choose to avoid
this evolution path. Its advantage is the fact that software code can be easily made uni-
versal for systems with and without coprocessors. Among LBM implementations, this
path was followed in [14]. As a consequence, the software that was developed before
introduction of coprocessors can be effortlessly adapted to new architectures. This is pro-
moted in the Intel OneAPI standard [15]. On the other hand, GPU devices have their own
address space and memory hierarchy, and memory bus with CPU RAM often presents it-
self as a performance bottleneck. If the fact is hidden from the programmer and ignored,
computation efficiency often decreases. With other computing models, it can be taken
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advantage of. That is why we prefer to use CUDA instead of unified directives such as
OpenACC.

The second wide-spread computing model is based in the parallel computing plat-
form CUDA [16] and OpenCL [17]. Its foundation is SIMT parallelism. This concept
is different both from classical CPU parallelism (threads/processes) and from CPU vec-
torization in SIMD. Therefore, many common CPU programming patterns can not be
transferred to GPU efficiently. At this cost, CUDA provides its users all means to exploit
all levels of GPU parallelism and memory hierarchy. In the CUDA programming envi-
ronment, there are sufficient tools for efficient implementation of stencil computation in
3D Cartesian grids. Thus, even the earliest CUDA implementations of LBM has shown
successful acceleration in comparison with CPU codes [18, 19]. This trend continues in
the recent works [20–23].

In the computing model popularized by nVidia, the role of CPU is limited to the role
of a control unit. This makes its SIMD-extended computing power redundant. As a re-
sult, the most advanced GPU workstations, such as nVidia DGX, contain heavy nodes
with 8-16 GPU for each 1-2 CPU. The recent exaFlOps-scale supercomputers with AMD
GPU, such as Frontier, have similar architecture [24]. In such systems, the CPU-GPU bot-
tleneck is circumvented by introduction of direct inter-GPU links, such as nVidia NVlink,
AMD Infinity Fabric, or through a commutator. The communication may not involve
CPU at all, and that makes heterogeneous computation even more GPU-centered. Some
relevant LBM codes for hybrid supercomputer [10,25] are made according to this model,
while CPU is used for data management.

Thus, of the two models that we discussed here, the first one (uniform code for pro-
cessor and device) does not provide enough control on parallelism and memory transfer,
and the second one does not take advantage of the CPU SIMD extensions. Therefore, both
can not be used in the search for the most efficient heterogeneous code implementations.
Here, we aim to develop a model for heterogeneous computing in the CPU/GPU hybrid
hardware with the following essential features: the data is distributed between CPU and
GPU address spaces, and they are processed while taking full advantage of GPU SIMT
and CPU SIMD capabilities.

LBM codes where both CPU and GPU are used for floating point computations have
been developed, where CPU handles a part of LBM calculation [21, 26, 27] or some addi-
tional physics [28].

1.2 Memory wall problem

The main difficulty on the way to this goal is the so-called problem of ’memory wall’.
The problem for fluid simulations is well illustrated by the Roofline model [29]. Roofline
is the graph of theoretical performance limit in the axes of performance vs arithmetic
intensity (AI). Arithmetic intensity of an computing task is one measure of its locality;
it is defined as operations performed per byte of data throughput. One performance
limit is the peak computing performance in FlOp/s (floating point operations per second)
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Figure 1: Roofline model for LBM (Section 2.1) on AMD Ryzen R9 5950X and GPU nVidia RTX 3080.

(horizontal line). The second one is computed as memory throughput times AI (slanted
line). With less AI, the performance is limited by memory bandwidth. Such problems
are called memory-bound. Stencil schemes are often memory-bound [29], as are many
common LBM variations. Computationally heavy collision operators [30, 31] can make
LBM codes compute-bound, but here we study the classic formulations. See Fig. 1 for a
sample Roofline for the LBM problem studied in this paper (Section 2.1).

The value of the compute-bound peak is different whether parallelization methods
are used or not. This value, however, does not matter if the problem is severely memory-
bound. Therefore, to take advantage of SIMT/SIMD, one has to choose implementation
algorithms with higher AI. Moreover, the memory-bound peak of the cache levels is dif-
ferent. As an example, in GPU, the acceleration in comparison to CPU codes is visible
when the data is localized in the GPU memory. This is the reason why GPU acceler-
ated simulations are often limited in size: if the data is localized in CPU RAM and sent
through PCI-e, the performance peak is much less (Fig. 1).

The decrease in the ratio of memory bandwidth performance to peak computing per-
formance is a trend in computer hardware evolution, thus, the memory wall problem
is relevant for the future of simulation methods. Data localization is important for both
computing models discussed in the beginning of this section.

1.3 Algorithms

In regards to minimizing the load on memory bandwidth, it is often seen as optimal to
have one load and one store operation per one value update (according to the numerical
scheme) per one time step [32]. This goal is stated however under the assumption of an
implementation, which we refer to as stepwise or traditional. That is, there is an outer loop
over time steps; all mesh data is updated at least once before the update for a second time
step is started anywhere. Let us note that given data from a subdomain of a simulation
task, one can update all nodes, then all nodes in a smaller area (with a halo of a stencil
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size), and then all nodes in even smaller area, and so on. This way, the time update on a
gradually decreasing subset of data can be performed without reading additional data.

We refer to non-stepwise implementations as temporal blocking [33–38] in this text,
even though there exist different terms for similar notions in literature, such as polyhe-
dral optimizations [39, 40], loop tiling, time skewing, wavefront blocking [41–45]. LBM
codes with temporal blocking include [10, 34, 35, 45–47]

It appears that temporal blocking is the only method to obtain sufficient locality to
implement efficient heterogeneous CFD codes. A prominent LBM code where temporal
blocking allowed to overcome CPU-GPU communication bottleneck is described in [10].
LRnLA (Locally Recursive non-Locally Asynchronous) algorithms [48] can handle both
temporal blocking and multi-level parallelism in a unified theoretical framework. With
LRnLA algorithm construction, the localization of sub-tasks in the higher memory lev-
els is possible for all levels of memory hierarchy [48], and all levels of parallelism are
accounted for [49]. LRnLA algorithms were previously developed for the LBM method.
With LRnLA implementations of D3Q19 LBGK (LBM with BGK collision term [4]), per-
formance records were obtained on CPU and GPU. In [50] the obtained performance for
single precision D3Q19 LBGK is up to 7.5 billion lattice cell updates per second (GLUps)
on a single TeslaV100-PCIe GPU, and up to 10 GLUps on a single RTX 3090. In [51],
the maximum obtained performance is 1 GLUps on one Ryzen R9 3900X processor. In
all these cases, the performance is greater than the theoretical memory-bound peak of
D3Q19 LBGK implemented with stepwise algorithms. The first LRnLA LBM code in
which CPU was used to store data is reported in [52]. CPU computing power, however,
was not used, but CPU-GPU communication bottleneck was overcome and data were
stored in CPU RAM.

Therefore, adding to the requirements stated in the end of Section 1.1, we aim for a
heterogeneous code where the communication bottlenecks are avoided by the use of ad-
vanced algorithms for data localization. Naturally, in the decomposition of a simulation
task into sub-tasks, one should take account of the strength and weaknesses of CPU and
GPU: GPU shows higher parallel performance, and CPU has advanced cache hierarchy
and low computing latency.

In Section 2, we compile the required information from the previous works of LRnLA
algorithm developments for LBM. The section is concluded (Section 2.6) with the propo-
sition of a new heterogeneous code design. The relevance of such design is discussed
in Section 3.1 on the basis of the Roofline performance analysis. The implementation
techniques for the introduced algorithms are proposed in Section 4.

2 LRnLA algorithm construction

2.1 LBM

In classical LBM, fluid dynamics is represented by discrete distribution function values
on a Cartesian mesh. There are Q values fq (PDF — particle distribution function) per
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node. LBM is a two-step numerical scheme. One of these steps is a local collision opera-
tion at node xxxi at the discrete time instant tk:

fq(xxxi,t
k)=Ωq( f ∗1 (xxxi,t

k),··· , f ∗Q(xxxi,t
k)), q=1,··· ,Q. (2.1)

Here Ωq is a collision operator. For example,

Ωq( f ∗1 (xxxi,t
k),··· , f ∗Q(xxxi,t

k))=−
f ∗q − f

eq
q

τ
,

where τ is a relaxation parameter which controls fluid viscosity and f
eq
q is a weighted

discrete approximation of the equilibrium function evaluated at density ρ=∑
Q
q=1 f ∗q , mo-

mentum density ρuuu=∑
Q
q=1 f ∗q cccq. LBM with this collision operator is also called LBGK. We

use the basic second-order variation of the equilibrium [1, 2]. The second step of LBM is
the streaming step, which consists of Q separate transfers of fq values in the cccq direction
from each node to its neighbors.

f ∗q (xxxi+cccq,tk+1)= fq(xxxi,t
k), q=1,··· ,Q. (2.2)

In this paper the vectors cccq are taken from one or more of the following shells:

shell 0, 1 point: (0,0,0);

shell 1, 6 points: (±1,0,0),(0,±1,0),(0,0,±1);

shell 2, 12 points: (±1,±1,0),(±1,0,±1),(0,±1,±1);

shell 3, 8 points: (±1,±1,±1). (2.3)

2.2 Algorithm construction

Modern computers are among the most complex achievements of scientific progress, thus
it is hard to find any specialist who understands the whole picture (including hardware,
compilers, programming, numerical aspects of the method) enough to make an ideal
solution to the high-performance implementation problem.

The LRnLA method provides a model of algorithm construction which makes writing
temporal blocking enabled codes convenient, and at the same time gives control over
hierarchical parallelism and data localization.

Let us review the basics of algorithm construction in the LRnLA method [48]. A de-
pendency graph (DG) is an acyclic unidirectional graph. Its nodes represent operations,
and the links are data transfers: the outgoing links are the results of the operations, the
incoming links are arguments. LRnLA algorithm is defined through (1) a shape in the
dependency graph space; (2) a rule of subdivision of the shape. The shape covers some
of the dependency graph nodes and corresponds to a task of execution of these nodes.
The subdivision of a shape corresponds to subdivision of the tasks into sub-tasks. The
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dependencies across every subdivision plane have to be unilateral. The shapes that ap-
pear after subdivision either have data dependencies between them or not; in the latter
case they can be performed asynchronously. The subdivision starts from a task of updat-
ing of all nodes in the simulation for NT time steps. The subdivision is performed several
times recursively, until one sub-task is an elementary scheme update.

In LBM, the operation of collision in node xj at time tk can be placed in the {xxx j,t
k}

position in the 1T3D (3D and time) space of the dependency graph. The streaming oper-
ation can be positioned anywhere on the link between two collision nodes [50]. One full
LBM update for a node is a set of one collision node and Q streaming operations to or
from it, depending on the streaming pattern [50, 53, 54].

Let us take a rectangular grid with size 2N along each of the three coordinate axis
directions, and define a task to perform the LBM update in all nodes NT times. The
dependency graph of this task fits in a rectangular box with size 2N×2N×2N×NT ; it is
the initial task. Let us subdivide the task into sub-tasks of one LBM update for all nodes
on a time layer. This corresponds to subdividing the rectangular box into flat boxes with
size 2N×2N×2N×1. The subdivision into flat 2N×2N×2N×1 is a manifestation of the
existence of an outer loop in time iterations in the majority of the simulation codes. This
kind of algorithms are called stepwise in this paper. Here, we refer to temporal blocking as
any non-stepwise kind of initial subdivision of the task. It is possible if the dependencies
are local, i.e. the stencil has a finite size much smaller than 2N. In this paper, the length
of stencil dependencies is assumed to be equal to 1.

Let us state the desirable features of the subdivision. We desire higher operational
intensity to conceal communication bottlenecks. Furthermore, it is convenient for a sub-
division to use similar shapes that tile the whole 1T3D domain. The shapes should have
adjustable parameters, so as to control localization in memory and degree of parallelism.
The number of levels of recursive subdivision is flexible in theory. In practice, the subdi-
vision has to correspond to the hardware architecture. It is reasonable to subdivide into
task with the aim of either localization of a task in the faster memory level, or with the
aim of distributing computations between parallel processes. ConeTorre and TorreFold
algorithms are convenient for these purposes, and were successfully used with LBM on
CPU an GPU before. That is why they are used here for a 3D heterogenous LBM code.

The ConeTorre<L,NT> shape is a prism in 1T3D (Fig. 2(a,c)). The bases of the prism
are 3D cubes with size L mesh steps along each coordinate direction. The upper cube
is shifted by {NT,NT,NT,NT} in relation to the lower cube. It is subdivided with t=
const planes into ConeTorre<L,nt> algorithms, nt < NT, which have to be executed in a
sequence. If nt = 1, the subdivision is referred to as stepwise, since there exists a loop
over time in the ConeTorre<L,NT> sub-task. The advantage of the ConeTorre<L,NT> is
the potential for data reuse: at each iteration of the time loop, the data that follows the
cube gnomon† are loaded and saved. With larger L, the amount of data in the gnomon is
less than the data in the volume of the cube. Thus, the AI is high.

†In Euclidean geometry, a gnomon is the part of a shape that remains after a similar shape has been taken
away from one of its corners.
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Figure 2: ConeTorre<N,NT> shape (N=NT) and its subdivision, projected onto 1T2D. TorreFold (b), ConeTorre
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Figure 3: Dependencies in a TorreFold: between ConeTorres (b), and between stages of ConeTorres (a).
Shapes of the same color are independent. In (c), the traditional stepwise parallel decomposition is illustrated
for comparison

The TorreFold<L,NT> algorithm has the same shape, but the subdivision is differ-
ent (Fig. 2(b)). The both base cubes are subdivided into smaller cubes, and, in the re-
sult, several ConeTorre<M,NT> shapes are obtained, M < L. There are asynchronous
ConeTorre<M,NT> sub-tasks among the shapes that are obtained in this subdivision (Fig. 3).
The TorreFold<L,NT> sub-task includes implementation of a parallel execution and syn-
chronization between ConeTorre<M,NT> sub-tasks, or between time iterations inside them.

The localization abilities of TorreFold and ConeTorre are further illustrated in Sec-
tion 3.1.

In contrast to the parallel stepwise codes, the data exchange in TorreFold is only from
right to left and from bottom to top (Fig. 3).

One more subdivision technique is relevant to the current work, which concerns the
processing of the boundary condition. The initial task is not a prism, but a 1T3D rectan-
gle, and this does not present an issue: empty operations can be added on the other side
of the boundary, and the boundary nodes represent operations which correspond to the
boundary condition. The boundary condition is assumed to have local dependencies as
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well. However, one very common boundary condition can not be implemented this way:
the periodic boundary. With it, the nodes on one side of the domain depend on the data
produced on the other side of the domain. The use of wavefront-type temporal blocking
is impossible without additional considerations.

To solve it, smashing [55] and folding [56] methods are used. The positioning of the
DG operations in the 1TdD space is modified. The DG is folded in half in each coordinate
direction. This way, the nodes in x = N− j and N+ j−1 are both positioned in N− j,
j= 0,··· ,N. The points x = 0 and x = 2N−1 are both position in x = 0. The boundaries
of such dependency graph are at x = 0 and x = N. Similar folding takes place in y and
z, so that 8 nodes are superimposed onto each other in each node of a N×N×N×NT

rectangular domain. In the new DG, the dependencies of the periodic boundary are local,
and TorreFold<N,NT> subdivision is applied.

This transform invert the coordinate directions in the mirrored sub-domains. This
results in the minimal changes in the result interpretation, and no changes in the collision
operation are required. The boundary nodes contain operations that handle transition of
the streamed PDF into the mirrored sub-domain.

Since 8 operations which are non-local (with exception of the boundary) are now
placed in the same sub-task with any kind of DG subdivision, the most suitable paral-
lelization method for their execution is vectorization.

The algorithms which are constructed with LRnLA subdivision on the folded domain
are denoted ReFold.

2.3 Related work

The algorithms may be understood as a generalization of wavefront-type temporal block-
ing. Wavefront was introduced for loop optimization in [44]. As a loop optimization
method, it had entered modern compiler optimization techniques. Wavefront loop traver-
sal is still used and explicitly coded in modern simulation codes [45]. ConeTorre is a one
of the proper many-dimensional generalization of the wavefront. Without ConeTorre,
in a 3D simulation, if the common wavefront optimization is used in the nested loops
in x and t, the resulting sub-task in the 1T3D domain is a prism with a base of at least
1×Ny×Nz. For large problems, such base can not be localized on the higher memory lev-
els. Thus, ConeTorre with a base of L3 cells has a more compact base, and L is a parameter
that can be adjusted to the hardware.

In the area of temporal blocking, there are two more popular approaches: decompo-
sition into pyramids/diamonds/trapezoids, and the halo approach [41]. In the pyramids
approach, one would update a cube of L3 cells, then a cube of (L−2)3 cells inside is,
and continue to perform all updates for which the data exchanges are not needed until a
pyramid in 1T3D is updated. This method is inconvenient, since, to perform all other up-
dates, inverted pyramids, as well as other shapes such as differently oriented tetrahedra
are required. A large variation of shapes is difficult for a human to describe and code,
and for compiler to optimize. ConeTorre/TorreFold tile the space uniformly.
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Another approach, the halo approach, was used in LBM Heterogenous code previ-
ously [10]. In it, parallel processors perform several computations on a group of L3 cells
without communication. After this, the data in the halo are incorrect and are erased;
but due to the overlap of the L3 cubes and excessive computations the final result is cor-
rect. ConeTorre is performed without redundant operations. Additionally, the LRnLA
method of construction allows taking advantage of all levels of data localization, not just
host-device communication as in [10].

Another related area of study is polygonal (polyhedral) optimization [57]. One fun-
damental paper of this topic [58] introduced the theory of dependency graph decomposi-
tion. However, we prefer to not use the achievements of this research field. In polygonal
optimization, the rules for automatic search of best graph traversal and parallelization
method are found and coded. This way, it is supposed that a program is written in a
usual way, with ordinary loops over time and space; and the automatic optimization
would transform the loops. In the LRnLA approach, the programmer is still considered
the expert on the hardware model, and decides on the decomposition rules and param-
eters himself. The greatest disadvantage of the automatic polygonal optimization is the
fact that it can not transform the data layout for the most efficient access, and works with
whatever is provided to it. LRnLA approach gives simple advice to the design of the data
layout: whatever is used in one sub-task should be localized in memory.

2.4 Data structure

LRnLA algorithms are built for better localization of data in the higher memory levels.
The successful implementation of the constructed algorithm depends on the memory
access pattern. This topic is widely discussed in LBM implementations [9, 53, 54, 59–61].
The goal is not only the locality of data that are accessed in one sub-task, but also data
alignment and coalescing. Ideally, the data are aligned in the order that they are accessed.

For the purpose of locality the data are stored in the AoS (array of structure) fashion.
That is, the data that are updated in a DG node are stored as a continuous structure in the
memory: the data cell; and there is a space-filling curve traversing the coordinate space
of the DG which converts the spatial x–y–z position into a 1D index of the data cell in the
memory address space.

For the purpose of alignment, the space-filling curve follows the algorithm access
patterns. This is not trivial for ConeFold algorithms. The sequentially accessed lattice
cells are along the direction of the cube diagonal. That is why the recently developed
FArSh (Functionally Arranged Shadow) data structure [62] is used here.

This way, two types of data storage are implemented. The data structure which is
aligned with the axes directions is referred to as tiles. This structure covers the whole
domain at a constant time.

The data which is aligned with the slope of ConeTorre is referred to as FArSh. It is
composed of lines of cells {x′+ j,y′+ j,z′+ j, j}, j=0,··· ,NT. The {x′,y′,z′} coordinates are
on the current computation wavefront (Fig. 4).
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Figure 4: Data structure (1T2D). Groups of cells are stored in Tiles (blue) in the Z-order. Cells are stored in
lines in FArSh (red). ConeTorre (one is pictured) loads bases (group by group) from Tiles and slopes (line by
line) from FArSh. It stores the results overwriting the FArSh which it has read, so that the FArSh before and
after ConeTorre stores cells that correspond to different positions. Left and right figures are the states of FArSh
before/after the pictured ConeTorre.

The input for ConeTorre or ConeFold sub-task is the tile for its lower base and a FArSh
portion for its slopes. Its output is the tile for its upper base and a FArSh portion for its
upper slopes. The data that is input and output to and from a ConeTorre is organized
in FArSh and tiles as well. The input and output ConeTorre<n,NT> bases is an array
of (n/2)3 groups. At each iteration, ConeTorre<n,NT> loads a gnomon of cells, nG =
n3−(n−1)3 cells total. Thus, FArSh for ConeTorre<n,NT> is an array of nG lines of NT

cells. Tiles are implemented with a recursive Morton Z-order curve. The wavefront is
a space with one less dimension. Thus, first, the 3D space coordinate is projected in the
{1,1,1} direction onto the cube gnomon x′,y′,z′→ i1,i2, where i1, i2 span a hexagon. Then
the time coordinate t is added. Two dimensions of the FArSh i1, i2 that span a hexagon are
implemented with a Z-curve in the 3 continuous areas of the hexagon [62]. Finally, tiles
is a 3D Z-curve array of groups (group is a cube of 8 cells), and FArSh is a 2D Z-order
array of lines of cells.

Each cell in the groups in tiles, and each cell in FArSh contains a full set of LBM
populations in any order.

The same FArSh is used for input and output of data on the ConeTorre slopes: the
cells are read from the right side, and the newly updated cells on the left side are written
into the same memory positions.

2.5 LRnLA cell for LBM

The closure of the ConeFold subdivision is an LRnLA cell, the elementary update. By
tiling the LRnLA cell in space and time, the whole dependency graph can be obtained,
with exceptions for boundary conditions.

The type of the elementary LBM update can be chosen among many proposed stream-



V. Levchenko and A. Perepelkina / Commun. Comput. Phys., 33 (2023), pp. 214-244 225

t

t
x

x
y

Figure 5: The compact scheme in the dependency graph. Ω are the collision operations. Streaming of fq for
cccq =000 is omitted.

ing patterns [54, 63, 64]. The positioning of each pattern on the dependency graph is dis-
cussed in [50]. The compact elementary update is proposed in [50, 51, 62]. We choose it
for the implementation since it provides optimal use of the memory throughput.

Consider the following update scheme:

1. group cells into cubes of 2d and perform the collision;

2. perform streaming operations which are between the cells of each group (’compact’
sub-step);

3. regroup each cell with its other neighbors

4. perform streaming operations which are inside the group (’decompact’ sub-step).

This is a full LBM step. Now, perform the cyclic shift of these sub-steps, so that the
update starts with step 3. Steps 4–1–2 (’decompact’–’collision’–’compact’) are enacted in
the same group configuration. No outside neighbors of any group are required. This is a
compact update.

Step 3 is where the data load and save takes place. Inside the base of the ConeTorre,
the group are redefined, so that the new groups are shifted in relation to the previous
configuration. At the gnomons of its base, the cells are read from FArSh (on the right
side) and saved into FArSh (on the left side).

The advantage of the compact streaming scheme is that the update of a cubic group
of 2d cells requires only the data of this group, all values in a group are updated, and the
elementary update contains a full set of streaming and collision operations of a full LBM
update. The asynchronous ConeTorre in Fig. 2(b) do not access the same data cells at all
during the iterations.

In the current work, an LRnLA cell contains two tiers: the identical updates of two
compact groups with coordinates (2ix,2iy,2iz,2it) and (2ix+1,2iy+1,2iz+1,2it+1), for ix,
iy, iz, it =0,··· ,N/2−1. When RefoldConeFold is used, every update of a group at (N−
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ix,N−iy,N−iz,it) is simultaneous with an update at (N+ix−1,N+iy−1,N+iz−1,it), ix,
iy, iz, it =0,··· ,N−1. This LRnLA cell can be used to construct the ConeTorre shape in a
uniform direction.

The update is vectorized. Thus, the LRnLA cell contains the compact update of two
vectorized groups, 8×16 cells in 16 groups total. The term group hereafter means a cube
of 8 cells, and a vectorized group is a set of 8 groups in the positions mirrored around the
center of the domain.

2.6 LRnLA subdivision on a heterogenous system

The previous LRnLA LBM code on GPU has shown performance that is superior to other
known approaches [62]. Its GPU acceleration is efficient due to the uniformity of the
computations. The presence of any inclusions introduces thread diversions, and some
tiers of the ConeTorres have to be replaced with conditional statements or masks, and
a notable performance drop is expected, so no boundary condition was used in [62].
That is why here it was decided to use GPU for the main part of computation and CPU
for processing the boundary. In total, one or several GPUs process the 8 separate inner
portions, and CPU cores process the boundaries of each N3 block when the domain is
folded and vectorized. ReFold algorithms [56] process the periodic boundary uniformly.
The use of AVX vectorization is essential in the efficiency of ReFold implementation.
Thus, we take advantage of the AVX vectorization at the same time.

In the current version, the domain with size 2N×2N×2N×NT cells is folded and
ReFoldTorreFold is applied. Two parameters MaxRank and minRank control the size of the
problem and CPU/GPU load balancing: N=2MaxRank+1, n=2minRank+1. Here n=NT.

The TorreFold<N,NT>, which covers the whole folded dependency graph, is subdi-
vided into TorreFold<n,NT>. After the first subdivision, the boundary TorreFold<n,NT>

are assigned to CPU, and the inner ones are to be processed in GPU (Fig. 6).

On CPU, the implementation is based on the previous works [49,56]. The sub-tasks of
TorreFold<n,NT> are distributed between standard C++ threads. They are subdivided
into TorreFold<n/2,NT>, and recursively down to ConeTorre<2,NT>. This ConeTorre is
a for loop of tiers of compact updates on a groups shifted by {1,1,1} with each iteration.

Since the domain is folded, the data array element is a vectorized group. Manual
AVX vectorization is used, that is, the vector and vector operations are defined explicitly
in the code. One AVX vector contains PDF values in 8 cells in the domain, which are in
the same place after folding.

On GPU, the implementation is inherited from [62]. TorreFold<n,NT> sub-tasks are
performed on GPU, one per GPU at a time. The GPU computation is scalar, so, the FArSh
data which is output from the TorreFold<n,NT> on CPU is unfolded: from vectorized
cells into scalar cells, and from one FArSh array of vectorized cells to 8 FArSh arrays
of scalar cells. Thus, there are 8 FArSh arrays, which are potentially distributed among
8 GPUs on a heavy node. If this is realized, there are 8 absolutely independent tasks of
updating (N−2n)3 lattice cites for NT steps in time. A GPU stores all required FArSh, and
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Figure 6: (a) The simulation domain projected to 1T1D and 2D. (b) The simulation domain is folded for
ReFold<N,NT>. (c) ReFold is subdivided into TorreFold<n,NT>. In 1T1D projection the TorreFold shape is
shown, the boundary shapes are executed on CPU, the inner shapes are executed in GPU. In the 2D projection,
only the lower bases are depicted. Only one TorreFold is outlined in full. This TorreFold updates the 4 outlined
data potions simultaneously.

the data for one TorreFold<n,NT> base cube. TorreFold<n,NT> sub-tasks are performed
one-by-one on it: the base is loaded from CPU RAM, TorreFold<n,NT> is processed, and
the data is saved back to GPU.

On GPU, TorreFold<n,NT> is recursively subdivided into ConeTorre<8,NT>, which
are distributed between SMs. ConeTorre<8,NT> is a loop, and on each iteration of this
loop, 16 CUDA-thread warps execute the tiers of the compact update on 83 cells.

3 Theoretical performance analysis

3.1 Roofline analysis

With the recursive subdivision of LRnLA algorithm construction, the memory hierarchy
can be included in the Roofline analysis [48]. For a specific illustration, let us take CPU
AMD Ryzen R9 5950X, 16 cores, 2 channels of DDR4@3200, 128GB RAM and GPU nVidia
RTX 3080, 10 GB GDDR6X RAM. As a sample problem, let us take a cube of 2N×2N×2N
cells and the problem of LBGK update in all cells n=NT steps in time.

We plot the third axis of the Roofline to show the storage size of the memory level.
If the task is localized on some level of the memory hierarchy, its sub-tasks are executed
with the data bandwidth of that storage. Thus, the localization shows which Roofline of
the cache-aware Roofline model limits the performance.

We estimate the peak by following the recursive LRnLA decomposition. The AI of
some task is estimated and its peak is found. The performance of the task can not be
higher than the performance of the sub-tasks, so the AI of the sub-tasks is found and the
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Table 1: Computational parameters of single-precision LBGK variants.

Shells - 1 2 1,2 3 1,3 2,3 1,2,3

Q Q1 Q7 Q13 Q19 Q9 Q15 Q21 Q27

S , byte per cell 4 28 52 76 36 60 84 108

FlOp per cell 30 78 150 198 126 174 246 294

FlOp per value 30 11.1 11.5 10.4 14 11.6 11.7 10.9

O, 2× FMA per cell 30 114 246 330 206 290 422 506

O/NQ, 2× FMA per value 30 16.3 18.9 17.4 22.9 19.3 20.1 18.7

peak is estimated. The actual peak is the minimum of the two. Decomposition is fol-
lowed from the task of update of all nodes down to one cell update. In this top-to-bottom
approach, in general, the AI and the peak tend to decrease. However, when one task
operates with a sufficiently small data size, it is localized in the higher level of memory,
and its limit on the Roofline is higher. The correct estimation of the compute-bound peak
should be made with account for FMA (fused multiply-add) operations. On the chosen
hardware, the rates of execution of float addition operations, float multiplication oper-
ations, and fused multiply-add operations are the same. The peak performance of the
processor is declared under the assumption that each FMA operation corresponds to two
FlOp (floating-point operations). Such a perfect balance of multiplications and additions
is uncommon in real calculations. For our code, we carefully computed both metrics: the
total number of FlOp, and the total number of FMA operations.

Along with the standard GFlOps (billion of floating-point operations per second) met-
ric, we measure the performance in GLUps (billions of lattice site updates per second).
Since the problem is memory-bound, the number of values stored and updated in a lat-
tice site is important. Thus, we introduce one more metric: GPUps, billions of population
updates per second, which is GLUps×Q.

The LBM scheme parameters are compiled in Table 1. All possible configurations of
shells (2.3) were included in the study. Only a few of these are relevant in simulations.
Others are included to study the performance trends.

3.2 Limits of stepwise implementation

Let us illustrate the problems of the stepwise code. To perform one LBGK step update,
(2N)dO operations are required, and 2(2N)dS bytes have to be loaded and stored. This is
an ideal case. In practice, for many streaming schemes in 3D, some data are loaded from
the memory at least twice, since the cell data are accessed from the neighbor cells. This
overhead depends on the domain traversal. For the compact update, the AI is estimated
as ideal, since it is guarantees that no cells are accessed twice, and the data are modified
in-place. Let us consider the CPU computation first. For large enough problems, the
data is localized in the CPU RAM. The AI is ISW = (2N)dO/2(2N)dS . The Roofline
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Figure 7: Limits of stepwise implementations. The limit of the two step implementation is shown with a red
arrow (CPU), fused collision and streaming is shown with black arrow (CPU) and a green arrow at the same
place (GPU). Other limits are illustrated to see how many steps have to be fused to reach compute-bound
domain. The color scale on the color map below is the same as the vertical axis scale: performance.

limitation is shown in Fig. 7 (black), which is very low in comparison to the compute
peak. Furthermore, the model illustrates that if the domain is iterated twice over in one
LBM update, as it was in the early 2-step implementations [54] and even some recent
ones [65], the limit is even less (red). Indeed, fusing collision and streaming doubles the
performance peak.

It can be seen from the same graph that an LBGK code which could reach the compute
peak for CPU needs to have 20 full steps fused. The memory bandwidth and compute
peak for GPU computations is higher, and we estimate that 15 LBM steps should be
fused to approach compute-bound domain. The situation for heterogenous computation
is more difficult. If the data is stored in CPU RAM, the GPU performance is limited with
PCIe4 bandwidth ΘCPU-GPU.

To reach compute-bound peak under these conditions, the AI should exceed ΠGPU
ΘCPU-GPU

where ΠGPU is the peak GPU performance. We estimate that 350 LBM steps should be
fused. Such fusion is not adequate without temporal blocking approach, and any block-
ing introduces some overhead.

3.3 Limits of the current implementation

For the algorithm proposed in the current work, refer to Table 2 and Figs. 8, 9, 12. In the
table, along with the estimated AI parameter, we compiled the estimates on the total data
required to perform the corresponding sub-task: when the values are scalar (loc.S) and
when the domain is folded and vectorized (loc.V). The former is relevant for the tasks
performed on GPU, the latter is for the tasks performed on CPU.
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Table 2: Algorithm decomposition for N=256.

x-scale t-scale loc.V loc.S AI

Cs
512 512 32 9.5G 69.6

RefoldTF<256,32> 256 32 3.2G 9.5G 37.1

ConeFold<32> 32 32 69M 8.7M 9.6

TorreFold<16,32> 16 32 26.7M 3.3M 6.2

TorreFold<8,32> 8 32 5.6M 719K 3.7

TorreFold<4,32> 4 32 1.04M 134K 2.5

TorreFold<2,32> 2 32 152K 19K 2.2

LRnLA cell 2 2 8.9K 1.1K 2.3

Cell 1 1 608 76 1.1

StepWise 512 1 9.5G 2.2

Let us study the Roofline limitation of the code proposed in the current work. The
whole task is an update of a 3D cube Cs

2N for n time iterations. Its data is stored in the
array of 8 instances of structure cubeLR<Group, MaxRank> (Section 4, Listing 1, line 30),
where MaxRank is Rmax and N=2Rmax+1. The elements of this structure are scalar groups
located in the Z-order curve. To perform the Cs

2N, (2N)dnO operations are required and
(2N)dS bytes are to be loaded and saved. Thus the AI is ICs

2N
=n(2N)dO/2(2N)dS .

In the ReFold, the domain is folded to obtain a cube of vectorized cells with size N.
It is subdivided into TorreFold<n,n>. Such shape with equal sizes is also referred to as
ConeFold<n> [48, 56]. ReFold contains all operations of the cube, and it controls the data
exchange between CPU and GPU. The TorreFold<n,n> tasks that are performed in CPU
input and output the tiles cubeLR<GroupV, minRank> (Section 4, Listing 1, line 38) on
the cube gnomon, where minRank is Rmin and n=2Rmin+1. There are Γ−

Nd/nd such cubeLR

instances in total, where Γ−
Md = Md−(M−1)d is the number of cells in the gnomon of

a cube with size M. TorreFold<n,n> tasks on CPU output these data, then they are
unfolded into 8 instances of scalar structures cubeLR<Group, minRank>, which are sent
to GPU. In total, Sexch

RTF = 2dnΓ−
(N−n)dS data are exchanged. This size is used to estimate

the AI of the ReFold<N,n> on the Roofline. Its total data size and operations number are
the same as for the Cs

2N , but more exchanges are required, thus, its AI is lower. In the
Table 2, for ReFoldTF<256,32>, loc.S and loc.V show the estimations of the whole size of
the domain and its vectorized portions correspondingly.

Next, the number of operations and the data IO for TorreFold<n,n> (ConeFold<n>)
depend on the type of the cells (scalar in or vector BC), and number of boundary planes
of the cube this TorreFold<n,n> intersects. Let us introduce νO, so that νO = 2 if the
TorreFold<n,n> intersects only one face of the cube, νO =1 if it intersects two faces (it is
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near the edge of the cube), and νO =0 if it is in the corner. Then

Oin,BC
CF =

nd+1Oin,BC

d+1−νO
, S in,BC

CF =
2nd(d+1)S in,BC

d+1−νO
, OBC=2dOin, SBC=2dS in. (3.1)

The AI for both inner and boundary shapes is

I in,BC
CF =

nO

2(d+1)S
. (3.2)

The TorreFold<n,n> task is decomposed into TorreFold<m,n> sub-tasks, 2< m< n on
CPU and 8<m<n on GPU. Both for vector and scalar operations, the AI is

I in,BC
CT =

nmdO

2
(

md+nΓ−
md

)

S
. (3.3)

I in
CT and IBC

CT are equal for scalar calculations on GPU and vector calculations on CPU.
Thus, the arrows that illustrate them on our Roofline graphs overlap. However, as it can
be seen in the Table 2, the data footprint is different.

3.4 Roofline of CPU computation

Fig. 8 illustrates the Roofline analysis for the one thread performance. That is, if all Tor-
reFolds are executed in CPU, and only one CPU thread is used. The compute peak is
lower, so even the stepwise algorithm is close to compute-bound. In a subdivision, we
start from the ’Cube’ and subdivide the tasks until one cell update. At first, the limitation
is the CPU RAM, but the data required in the TorreFold<8,32> task fits in the L3 cache.
Thus, the performance of its sub-tasks, TorreFold<4,32>, is limited with the L3 cache
bandwidth. The AI of TorreFold<2,32> overlap the AI of the ideal stepwise algorithm.
Finally, the compact update is localized in the L2 cache, the resulting peak is compute-
bound. The performance obtained in our code implementation is 4.3 GPUps, and it is
close to the peak. This proves that vectorization is used efficiently.

Fig. 9 illustrates the Roofline analysis for the multicore CPU performance. The com-
pute peak is higher, so the performance drop in the result of the first major subdivision
is relevant. In this version, after the first subdivision, both scalar (inner) and vector (BC)
sub-tasks are performed on CPU. The AI match, so the arrows in the Roofline graph over-
lap. But scalar sub-tasks require 8 times less data, so the scalar ConeFold<32> is localized
in the L3 cache, and its sub-tasks are not limited with the RAM bandwidth, unlike simi-
lar vectorized shapes. The performance result, obtained in the code, is 15.5 GPUps, and
it is close to the estimated peak as well. Moreover, it is larger than the theoretical peak
performance of the ideal stepwise implementation.
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Figure 8: Performance limit study of the one thread execution. The performance obtained in the benchmarks is
shown with the cross mark, it is 4.3 GPUps (0.23 GLUps). The color scale on the color map below is the same
as the vertical axis scale: performance.
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Figure 9: Performance limit study of the 16 cores. The performance obtained in the benchmarks is shown with
the cross mark, it is 15.5 GPUps (0.82 GLUps). The color scale on the color map below is the same as the
vertical axis scale: performance.

3.5 Heterogeneous implementation efficiency

We run several tests to see the efficiency of heterogeneous approach (Fig. 10). In the
current code, for a fixed size of the domain N, the fraction of the computations performed
on CPU is controlled with the n parameter (see Section 2.6).
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Figure 10: Performance vs GPU/CPU balance. Lattice grid (2N)3 =5123.

n is also an algorithmic parameter, it is the number of steps fused in a ConeTorre. We
compare the performance to CPU-only runs, and the dependency of performance on n is
also present. With higher n, a less portion of computations is performed with GPU. With
lower n, the PCie4 bandwidth becomes the bottleneck.

The GPU-only code, implemented with ConeTorre, shows higher performance [62].
However, the tests in [62] are made for homogeneous simulation domain, and if any
conditional statements are introduced the performance deteriorates. CPU computation
is introduced here to enable the inclusions, and to add to the computing power as well.

In Fig. 11 we study the performance dependence on the data updated per cell. Larger
shapes in the LRnLA subdivision provide higher AI in general, so the performance is
higher with higher Rmax. With less Q the data are localized in the faster memory level on
the earlier stages of the recursive subdivision, thus, performance declines with Q. With
lower Rmax, the lower performance, and the atypical behavior is caused by an additional
reason: the degree of parallelism is lower.

In Fig. 12, the proposed heterogeneous code is studied. The ReFold is applied. The
boundary part is processed on CPU in the vectorized code. Then the domain is unfolded,
and eight inner parts are performed on GPU. Then the domain is folded and the remain-
ing boundary is processed on CPU. The CPU part on the right boundary is performed
first. It outputs FArSh data that is unfolded and sent to GPU. After the GPU part is pro-
cessed, FArSh is folded back and sent back to CPU.

The AI of the each of the eight inner parts of the ReFold (the combinations of all inner
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ConeFold<n> of one eighth of the domain) is

I in
RTF=

n(N−n)dO

2
(

(N−n)d+nΓ−
(N−n)d

)

S
=

n

1+d n
N−n +o

(

n
N−n

)

O

2S
.

The AI of the boundary part is:

IBC
RTF=

2dn
(

Nd−(N−n)d
)

O

2·2d
(

ndΓ−
Nd/nd+nΓ−

Nd

)

S
=

n

2+ d−1
2

n
N +o

(

n
N

)

O

2S
.

The result for these two AI is different, and, in Fig. 12, the arrow for ReFoldTF<224,32>
(inner part) is to the right of the arrow for ReFoldTF<256,32>. The arrow for
ReFoldTF<224,32> is limited by the PCie4 bandwidth, since the CPU-GPU data exchange
takes place.

On GPU, all FArSh data for the current inner GPU part is assumed to be already in
GPU, and the tiles are in the CPU memory. The tiles are sent to GPU for each ConeFold<n>

execution, and saved back after ConeFold<n> is finished. The AI of ConeFold<n> is

I in
CF=

nO

2S
. (3.4)

It is higher than the AI of the shape of all inner ConeFold<n> tasks combined. This is not
shown in Fig. 12 since it does not introduce new limits.

The sub-tasks of ConeFold<n> are localized in the GPU.
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Figure 12: Performance limit study of the heterogeneous code. The performance obtained in the benchmarks is
shown with the cross mark, it is 25 GPUps (1.31 GLUps). The color scale on the color map below is the same
as the vertical axis scale: performance.

Thus, we obtain the two performance limits from the heterogeneous Roofline study.
One is the performance limit of the boundary computation on CPU (ΠBC

CPU)). The second
one is performance limit of the 8 inner portions of the domain on GPU that is determined
the GPU performance and PCIe4 bandwidth (Πin

GPU).
The total peak is estimated with the use of the ratio of the data processed on GPU and

CPU:
OCPU

OCv
N

=
nNd−n(N−n)d

nNd
,

OGPU

OCv
N

=
n(N−n)d

nNd
.

And we obtain

Π≤min

(

Πin
GPU

(

1−
n

N

)d
,ΠBC

CPU

(

1−
(

1−
n

N

)d
))

. (3.5)

This is higher than the CPU peak. The bottleneck is determined by the n parameter,
which should be smaller than the N size for efficient parallelization. It can be increased
in the implementation if more computer RAM is installed.

4 Implementation details

4.1 Heterogeneous code

There are many tools and libraries for the use of acceleration techniques of the modern
hardware. In the heterogeneous code, only one tool is not sufficient. The use of universal
programming directives such as openACC does not allow enough control over the data



236 V. Levchenko and A. Perepelkina / Commun. Comput. Phys., 33 (2023), pp. 214-244

Listing 1: A sample of the code that can be compiled for all types of required instruction sets

1 namespace lbm {//LBM constants

2 const ftype w0 = 1./3. , w1 =1./18. , w2 =1./36. , w3 = 0.0;

3 // prefix for constant arrays are different in C++ and CUDA

4 CONST_PREFIX int ci [][3] = {

5 {-1, 0, 0,}, // 0

6 { 0,-1, 0,}, // 1

7 { 0, 0,-1,}, // 2

8 ...}

9 // Cells are either scalar or vectorized; controlled with floatT .

10 template <class floatT > struct Cell {

11 floatT fq[lbm ::NQ];

12 ...

13 // Functions are compiled for host or for the device

14 FUNC_PREFIX floatT bgk(int iq , floatT eqfq) {

15 using namespace lbm;

16 return fq[iq] - dtau *( fq[iq] - eqfq * get_wiq (iq) );

17 ...}

18 ...};

19 // A group is 8 cells ; it is convenient to use one cell vector instead

20 // This way the update of cells in a group is also vectorized

21 typedef Cell <ftypeV > group;

22 // A vectorized group is a set of 8 groups mirrored around the center of the domain .

23 typedef array <Cell <ftypeV >,8> groupV ;

24
25 //All data is stored in tiles and FArSh

26 // The main data portion is scalar

27 // There are 8 instances of theCube structure that can be distributed between GPU

28 struct theCube {

29 // Recursive implementation of 3D Z-order curve of groups

30 cubeLR <3, group , MaxRank >* tiles=NULL;

31 // scalar FArSh is allocated on GPU

32 // gnomon of a cube with (N-n)^3 cells

33 // the length of the line in time is n

34 FArSh4cube <Cell <ftype >, N-n, n> mold;

35 };

36 //on the boundary , data is vectorized

37 struct theCubeGnomon {

38 cubeLR <3, groupV , minRank >* tiles=NULL;

39 FArSh4cube <Cell <ftypeV >, N, n> mold; //< vector FArSh is stored in CPU

40 ...};

localization throughout the simulations (see also Section 1.1). The code, however, should
not become too complex. The use of same data structures (FArSh and Tile) for all input
and output in GPU and CPU is one step in this directions.

The memory allocation and task scheduling are essentially different. However, here,
we made a successful attempt to make the computation kernel itself portable between
CUDA and vectorized CPU code. This concerns the LBM method itself: its constants,
methods for initialization, calculation of moments, collision. It is implemented through
preprocessor commands (Listing 1).

We define data types: ftype for scalar (single or double precision) type and ftypeV

for vectors of 8 values.
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4.2 Elementary update

The implementation of the compact streaming can differ with different memory lay-
out [50, 51, 62]. Here we use its latest development that is described in [62] (Listing 2). In
it, the code is succinct due to the special numbering of PDF in a group. In each group, the
cells are mirrored across the center. For example, in cells with ix=0, f0 corresponds to the
ccc0={−1,0,0} velocity, and in cells with ix =1 it corresponds to the ccc0={1,0,0} velocity.

In the current code, the implementation is improved further by integrating collision
into streaming (Listing 3). To perform the collision, all PDF at the current lattice cite
should be collected to compute the moments. On the other hand, all the required data is
already inside the group at the start of the compact tier. The moments can be computed
before the data is streamed. A similar trick was used before in [66]. When the moments
are known beforehand, the PDF values can be updated in the collision without reading
all other PDF values.

Listing 2: Elementary update on GPU

1 __device__ const int3 ci3 [] = {{-1, 0, 0,}, ... };

2 ...

3
4 Cell ct; // temporary cell in the CUDA thread register

5 // in the ConeTorre loop:

6
7 ct.collision (dtau );

8
9 for (int iq=0; iq < Nq; iq ++) { // compact

10 if (ci3[iq].x > 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 1);

11 if (ci3[iq].y > 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 2);

12 if (ci3[iq].z > 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 4);

13 }

14
15 .... // FArSh exchange and cell ct shift

16
17 for (int iq=0; iq < Nq; iq ++) { //de- compact

18 if (ci3[iq].x < 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 1);

19 if (ci3[iq].y < 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 2);

20 if (ci3[iq].z < 0) ct.fi[iq] = __shfl_xor_sync(0 xFFFFFFFF , ct.fi[iq], 4);

21 }

The elementary update on GPU is implemented exactly as in [62] (Listing 2).

4.3 ConeTorre

ConeTorre is essentially a loop over time iterations (Listing 4, line 29). On CPU, one
iteration is the fused_tier (Listing 3). On GPU, one iteration is the loop over L f (an
integer parameter) iterations. It is implemented exactly as was reported in [62].
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Listing 3: Fused Tier

1 void fused_tier (groupT & g, FArSh4group <ftypeT >& f4g ) {

2 array <MFCell <ftypeT >,8> mM; // moments required for the collision

3 #pragma unroll 1

4 for(int ic=0; ic <8; ic++) {

5 g[ic]. calculate_moments(mM[ic]);

6 //the PDF with zero velocity can be updated as is:

7 g[ic].fq[Nq] = g[ic]. bgk(Nq , mM[ic].F0);

8 }

9 // zero velocity PDF is not streamed. Its FArSh exchange is here.

10 //7 cells are in a gnomon of the 8-cell cube: the data is swapped with FArSh

11 for(int ic=1; ic <7; ic++) swap(f4g [ic]->fq[Nq], g[ic].fq[Nq]);

12 // the eighth element of the group is cyclically shifted inside the base

13 swap_left (f4g [0]-> fq[Nq], g[0]. fq[Nq], g[7].fq[Nq]);

14 #pragma unroll Nq

15 for (int iq=0; iq < Nq; iq ++) { // loop over all streamed PDFs

16 array <ftypeT ,7> ffq; // temporary value for swapping

17 for (int ic=0; ic <7; ic++) ffq [ic] = f4g[ic]->fq[iq];

18 #pragma unroll 2

19 //the collision is before streaming:

20 for (int ic=0; ic <8; ic++) g[ic].fq[iq] = g[ic].bgk (iq , mM[ic]);

21 // compact + FArSh exchange + decompact

22 const int flagC =(ci[iq ][0] >0?1:0)+( ci[iq ][1] >0?2:0)+( ci[iq ][2] >0?4:0);

23 const int flagD =(ci[iq ][0] <0?1:0)+( ci[iq ][1] <0?2:0)+( ci[iq ][2] <0?4:0);

24 for (int ic=0; ic <7; ic++) f4g [ic]->fq[iq] = g[ic^flagC ].fq[iq];

25 g[0^ flagD ].fq[iq] = g[7^ flagC ].fq[iq];

26 for (int ic=1; ic <7; ic++) g[ic^flagD ].fq[iq] = ffq [ic];

27 g[7^ flagD ].fq[iq] = ffq [0];

28 }

29 }

4.4 TorreFold

TorreFold<n,NT> is executed either on CPU, or on GPU (Listing 4). On CPU, it is pro-
cessed with one thread. It contains iteration over the bottom base (n/2)3 groups in the
reverse order of the Z-order curve, that is, from the rightmost corner of the base. At each
iteration, a ConeTorre<2,NT> is started from that group. Thus, the recursive decompo-
sition of TorreFold<n,NT> into TorreFold<n/2,NT> and so on until ConeTorre<2,NT> is
not coded explicitly. The decomposition is realized through the traversal over the groups
of the domain.

On GPU, TorreFold<n,NT> distributes ConeTorre<8,NT> sub-tasks between GPU
SMs (see [62]).

5 Conclusion

As the trend towards heterogeneous hardware continues for future supercomputers, fu-
ture HPC simulations should also be heterogeneous and take advantage of all computing
acceleration methods. We used LRnLA methods both for CPU and GPU computations,
and, in the current work, we presented the first LRnLA code for heterogeneous LBM
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Listing 4: TorreFold<n,NT> on CPU

1 template <int dim , int rank > void TorreFold :: update ( // here dim=3, n=2^( minRank+1)

2 array <int , dim > coor , // 3D index of the upper base cube of the TorreFold

3 int it0 , // time index

4 ConeFold * CF) { // wait condition

5 //The TorreFold is started if the 3 (or less for boundary) TorreFolds

6 // that it depends on are executed

7 if(/* wait */) return ;

8 // Here the height of TorreFold is Nt=n

9 const int Nt=1<<( rank +1)

10 // Position of the lower base

11 array <int ,dim > Cbot; for(int c=0; c<dim ; c++) Cbot[c] = coor[c]-1;

12 #ifdef CALC_on_GPU

13 update_on_GPU(rank , LRindex <dim >:: zip(Cbot), LRindex <dim >:: zip(coor), it0 , Nt);

14 #else // CALC_on_GPU

15 // indexes of the top and bottom bases in the tiles array

16 long int Itop=LRindex <dim >:: zip(coor ); Itop <<= (dim*rank );

17 long int Ibot=LRindex <dim >:: zip(Cbot ); Ibot <<= (dim*rank );

18 const long int NNN =1L<<( dim*rank);// number of groups in the base

19 #pragma omp parallel for num_threads (8)

20 for(int ic0 =0; ic0 <(1<< dim ); ic0 ++) {

21 auto& cube= cube_data_arr[ic0 ];

22 group * grBot =& cube.tiles -> get_data (Ibot);// tiles array of the bottom base

23 group * grTop =& cube.tiles -> get_data (Itop);// tiles array of the upper base

24 // loop over groups in the base in the reverse Z-curve index order :

25 for(long int i=NNN -1; i >=0; i--) {

26 group floor=grBot[i];// the current group

27 // Find the position in FArSH

28 FArSh4group <ftype > f4g; f4g.align (Ibot+i, cube.mold , it0 );

29 for (f4g.it =0; f4g.it<Nt; ++ f4g) // this loop is the ConeTorre <2,Nt>

30 fused_tier (floor , f4g );

31 grTop[i] = floor;// group in the upper base is saved

32 }

33 }

34 #endif // CALC_on_GPU

35 // communicate execution to the next TorreFold

36 if(CF) /* post */;

37 }

simulations.

The code design uses temporal blocking. The recursive LRnLA subdivision, along
with the convenient data storage structures, allows a uniform description for all levels of
parallelism, data localization sites, and data exchange configurations.

The use of compact streaming in LBM simplifies the task. Without it, in ConeTorre, a
halo of one cell around the ConeTorre projection has to be loaded. The compact update
has no outside dependencies. This leads to better localization, fewer data in FArSh arrays,
and even more asynchrony between ConeTorres.

The code is implemented for a heterogeneous system. The computations are writ-
ten in such a way as to be understood as scalar or vector instructions on CPU, or GPU.
Efficient use of AVX vectorization is an essential step in making the contribution of many-
core CPU to the overall performance significant, and our benchmarks have proven our
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success in this effort.

With the Roofline model, we have illustrated the advantages of the proposed design.
The theoretical performance study revealed the bottlenecks. The main bottleneck is set by
the n parameter. n should be much smaller than the N size for two reasons. With a higher
N/n ratio, a larger portion of the calculation is delegated to GPU, and a higher degree of
parallelism is available in the algorithm. The size of the domain, in turn, can be increased
in the implementation if more computer RAM is installed. In a result, we conclude that
larger problems can be simulated with higher efficiency in the heterogeneous system.
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[2] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and
Erlend Magnus Viggen. The lattice Boltzmann method. Springer International Publishing,
10(978-3):4–15, 2017.

[3] Guy R McNamara and Gianluigi Zanetti. Use of the Boltzmann equation to simulate lattice-
gas automata. Physical Review Letters, 61(20):2332, 1988.

[4] Yue-Hong Qian, Dominique d’Humières, and Pierre Lallemand. Lattice BGK models for
Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.

[5] Pierre Lallemand, Dominique d’Humieres, Li-Shi Luo, and Robert Rubinstein. Theory of the
lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids. Physical
Review E, 67(2):021203, 2003.

[6] Christian Feichtinger, Johannes Habich, Harald Köstler, Ulrich Rüde, and Takayuki Aoki.
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