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Abstract. PonD is a method to extend LBM calculations to arbitrary ranges of Mach
number and temperature. The current work was motivated by the issue of mass, mo-
mentum and energy conservation in the PonD method for LBM. The collision guar-
antees their conservation, thus, the study involves all aspects of the streaming step:
both coordinate and velocity space discretizations, gauge transfer method, resolution
of the scheme implicitness. After obtaining the expressions for the change of moments
in the system in a time update of the scheme, it was found that the scheme can be for-
mulated as explicit in some cases. Thus, we found the sufficient conditions to make
Pond/RegPonD computations explicit and mass, momentum, and energy conserving.
The scheme was implemented in the explicit form, and validated for several test cases.

AMS subject classifications: 76N15, 52B10, 65D18, 68U05, 68U07, 65Z05, 65D99

Key words: LBM, compressible, off-grid.

1 Introduction

Mathematical models of fluid physics are based on the Navier-Stokes-Fourier equations
(NSFE) at macroscale and on the Boltzmann equation at mesoscale. The Boltzmann equa-
tion defines the evolution of the particle distribution function, and the system of Navier-
Stokes-Fourier equations describes the behaviour of its velocity moments. Both models
are expressions of the conservation principles. Thus, the property of conservation for the
numerical methods in CFD (computational fluid dynamics) is as important as accuracy
and stability [1].
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The equations for the moments are often modeled with finite difference, finite vol-
ume, or finite element methods [2]. The Boltzmann equation can be modeled with sev-
eral kinetic schemes, such as discrete velocity models [3,4] and gas-kinetic schemes [5,6].
Among these, the Lattice Boltzmann method [7, 8] (LBM) is a very popular method for
simulation of fluid dynamics with a kinetic description. The difficulty of the kinetic de-
scription is the fact that particle distribution function (PDF) is a 7-dimensional function
of 3 coordinates, 3 velocity components and time. Lattice-Boltzmann handles the inte-
gration in the velocity space with a small set of Q discrete velocities, thus, gas kinetics is
described through the evolution of Q PDF values, which are functions of time and space.

On the one hand, LBM is a node-based method of particle populations propagation
on a lattice, which exhibits fluid behaviour. Just like the Chapman-Enskog analysis [9]
gives NSFE from the statistics of particle motion, the similar method can be used to obtain
NSFE from the motion of virtual particles in LBM. The moment conservation properties
are naturally provided by the method construction. On the other hand, it is a method of
discretization of the Boltzmann equation [10]. That is its power, since it expresses physics
from the kinetic perspective. And that is its weakness, since the discretization of the PDF
in the velocity space relies on its closeness to the equilibrium distribution with fixed fluid
velocity and temperature.

This issue leads to the understanding that the LBM area of application is limited to
low Mach number flows, and problems with very small temperature variations. The
examples of such applications are melting and solidification of metals [11, 12], mete-
orology [13], biological fluid simulation [14], flows in porous media [15], particulate
flows [16], automotive industry [17], computer graphics [18].

At the same time, the LBM is very attractive from the computational point of view.
The computing cost is significantly less in comparison with the advanced methods of
discretization of NSFE, and the method is easy to implement in a parallel program. The
locality of the LBM stencil and the simplicity of the calculation in many widely-used vari-
ations of the method makes it an attractive platform for the development of the advanced
algorithms [19–21], and HPC codes [22].

The latter property in particular raises the question if the method can be used in all
parameter ranges of hydrodynamics problems.

Successful simulation of compressible flows are known from the earliest days of LBM
existence [23]. Nowadays, there are two major ways to extend LBM capabilities to the
compressible regime. One is to use more points in the velocity space to enable accurate
integration of higher PDF moments [24–29]. To support high order moment tensor inte-
gration in 3D, the number of required points can be several times larger than that in the
original LBM, which leads to the memory and performance limitations of the method. At
the same time, the velocity and temperature ranges remain limited [30].

The second popular method family is known as DDF (Double Distribution Function)
methods [31, 32]. The second distribution function is used for higher order moments, for
which the accurate computation would require large velocity sets. This way, smaller ve-
locity sets are used for both distributions, but the data storage is doubled. Alternatively,
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the thermal equation may be discretized in a Finite Difference or Finite Volume way in
hybrid LBM methods [33, 34].

Some compressibility errors may be dealt with by corrective terms in the equations [35–
39].

Commercial use of LBM in aeroacoustics has started in 2000-s [40–44] There are known
applications to transonic and supersonic aeroacoustics [45–47]. Compressible LBM mod-
els are developed enough to be implemented in commercially available software such as
Simulia PowerFLOW [45, 48], ProLB [33, 49].

However, even putting this kind of success into consideration, one may note that
the LBM models that are extended to describe compressible regimes are comparable in
complexity to the conventional CFD methods, while the Mach number and temperature
limitations are still present.

In this context, the introduction of the Particles-on-Demand method [50] has come as
a major inspiration. In PonD, the velocity set for the streaming step is scaled and shifted
adaptively, thus the streaming vectors adapt to the current flow velocity and tempera-
ture. This way, the PDF are streamed from off-grid positions. The conversion of a PDF
set from one stencil to another is performed through moment matching. The paper [50]
included figures which illustrate that the Mach number can be arbitrarily large in simu-
lations, and the temperature can be varied in a wide range, while the LBM formulation
remains simple, that is, the basic collision operator is used with a trivial expression for
equilibrium, and the velocity set is the minimal set that supports the required moments.

At the same time, the PonD method in [50] was quite raw, and involved multiple
issues to be solved in later works. Let us discuss some issues.

Interpolation of the off grid values leads to the loss of the conservation properties of
the numerical scheme. In the Semi-Lagrangian methods [51–54], the populations are
streamed from the off-grid positions. In the context of LBM, this kind of issue is resolved
by resolving spatial discretization with finite-difference [55–58], finite-volume [59], fi-
nite element [60], Taylor expansion and least squares approximation [61] methods. In-
terpolation may be avoided by restricting the adaptive stencils to fit the grid [62, 63], or
introducing second propagation step [64, 65]. In [50], Lagrangian interpolation was used
to find off-grid values and stream them onto the grid nodes. There are works that ad-
dress the conservation properties of PonD [66]. It was reported that some interpolation
methods provide mass conservation in the scheme [67].

While the compressibility issues of LBM are dealt with by change of the reference
equilibrium, the real compressibility is impossible before the scheme stability is ad-
dressed. PonD [50] inherits the problems on discontinuities, such as shock waves, from
the LBM method. The issue is resolved with the use of limiters [67]. The numerical dis-
persion introduced by the interpolation is yet to be studied [68].
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The off-grid positions the PDFs are streamed from are unknown until the streaming
itself is conducted, so the scheme streaming step is implicit. The predictor-corrector
was used in [50] and in later PonD simulations [52, 67] to resolve the implicitness. It was
shown experimentally that predictor-corrector procedure converges in up to 4 steps for
many cases. However, this procedure multiplies the computing cost of the simulation.

The LBM streaming step becomes computationally heavy in PonD. To make the PonD
method ready for industrial applications it should be made not only adequate in the ap-
proximation order and stability, but also viable for large-scale 3D simulations. The large
part of the computing cost comes from the moment matching gauge transform. If the
analytical expression for the gauge transfer matrix is not found, inversion of a matrix is
required in each node at each time step. Furthermore, this is repeated several times due
to the predictor-corrector scheme. In [50] the analytical expression in a simple form is
found for the velocity sets that are a direct product form of the optimal one-dimensional
Gauss-Hermite quadrature. These velocity sets are not optimal in 2D and 3D since the
exact expressions for the required hydrodynamical moments can be obtained with fewer
points in the velocity space. The optimal multidimensional cubatures are not used in
most LBM simulations since their points can’t be scaled to match the grid nodes, and in-
terpolation of the off-grid values is often avoided. But, in PonD, there is nothing to loose
since the streaming positions are already off-grid, and the search of optimal high-order
cubatures has become relevant again [54]. Obtaining the explicit gauge transfer expres-
sion even for the smallest 3D velocity sets is a difficult task, and the matrix inversion at
each lattice node at each time step is a costly operation. To tackle this issue, an alternative
way of gauge transfer has been introduced in the RegPonD method [69, 70].

The current work was motivated by the issue of mass, momentum and energy conser-
vation in PonD. The collision guarantees their conservation, thus, this study involves all
aspects of the streaming step: both coordinate and velocity space discretizations, gauge
transfer method, resolution of the scheme implicitness. After obtaining the expressions
for change of the moments in the system in a time update of the scheme, it was found
that the scheme can be formulated as explicit in some cases. Thus, we found sufficient
conditions to make Pond/RegPonD computations explicit and mass, momentum, and
energy conserving. The scheme was implemented in the explicit form, and validated for
several test cases.

2 Shifted and scaled stencils for LBM

The particle DF in the Boltzmann equation [9] in D dimensional space:

∂ f (xxx,ξξξ,t)
∂t

+ξξξ
∂ f (xxx,ξξξ,t)

∂xxx
= Ω̂ f , (2.1)
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where Ω is a collision operator, can be approximated by its projection onto the space
spanned by the first N Hermite polynomials [10, 71, 72]:

f (xxx,ξξξ,t)≈ f N(xxx,ξξξ,t)=ω(ξξξ)
N

∑
n=0

1
n!

aaa(n)(xxx,t)HHH(n)(ξξξ), (2.2)

where coefficients aaa(n)(xxx,t) are the Hermite moments of f [71, 73]:

aaa(n)(xxx,t)=
∫

f (xxx,ξξξ,t)HHH(n)(ξξξ)dξξξ, (2.3)

and ω(xxx) is the weight function

ω(xxx)=
1

(2π)D/2 e−|xxx|2/2. (2.4)

As in [73], xxx, ξξξ are D-dimensional vectors, and aaa(n), HHH(n) are symmetrical n-rank tensors
in D-dimensions. These tensors have (D+n−1)!

(D−1)!n! unique components.
The flow density ρ, velocity uuu and temperature T are obtained from the raw moments

mmm(n). mαβγ are the components of the mmm(n) tensor, α+β+γ=n,

mαβγ =
∫

f ξα
xξ

β
y ξ

γ
z dξξξ,

ρ=m000=
∫

f dξξξ, ρuuu=(m100,m010,m001)
T=

∫
fξξξdξξξ, (2.5)

ρ(u2+T)=m200+m020+m002=
∫

fξξξ2dξξξ.

The collision operator Ω̂ is taken in the BGK form [74,75]: −( f − f eq)/τ, where f eq is the
equilibrium distribution:

f eq(ρ,uuu,T,ξξξ)=
ρ

(2πT)D/2 e−(ξξξ−uuu)2/(2T)=
ρ

TD/2 ω

(
ξξξ−uuu√

T

)
. (2.6)

We do not use other collision operators in this paper, since the focus is on the PonD-
specific scheme features. Many advanced collision operators [39, 76–78] may be used
together with PonD to improve scheme stability.

Let us perform the LBM construction [8, 10] in an arbitrary frame of reference. Let us
take a gauge λ={uuuλ,Tλ} with arbitrary values uuuλ and Tλ (which, in general, are not the
moments of f but are some constant parameters of the method), and consider another
expansion of a PDF:

f (xxx,ξξξ,t)= f (xxx,
√

Tλvvv+uuuλ,t)=ω(vvv)
∞

∑
n=0

1
n!

dddλ(n)(xxx,t)HHH(n)(vvv). (2.7)
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vvv= ξξξ−uuuλ
√

Tλ
is the velocity in a moving reference frame λ. In the classic LBM construction [10],

λ= λ0 = {000,1}. Hermite moments in a scaled gauge are denoted dddλ(n). The conversion
from raw moments to dddλ(n) is discussed in Appendix A. f λN is another approximation of
f (xxx,ξξξ,t).

f λN(xxx,
√

Tλvvv+uuuλ,t)=
ω(vvv)
√

Tλ
D

N

∑
n=0

1
n!

dddλ(n)(xxx,t)HHH(n)(vvv), (2.8)

dddλ(n)(xxx,t)=
∫

f λN(xxx,ξξξ,t)HHH(n)(vvv)dξξξ=
∫ √

Tλ
D

f λN(xxx,
√

Tλvvv+uuuλ,t)HHH(n)(vvv)dvvv

=
Q

∑
q=1

(
√

Tλ
D

wq
f λN(xxx,

√
Tλcccq+uuuλ,t)

ω(cccq)

)
HHH(n)(cccq)=

Q

∑
q=1

f λ
q HHH(n)(cccq),

f λ
q =wq

N

∑
n=0

1
n!

dddλ(n)(xxx,t)HHH(n)(cccq). (2.9)

If values uuuλ and Tλ are the actual macro values at point xxx and time t then:

f eq,λ
q =ρwq. (2.10)

By evaluating the Boltzmann equation at the eeeq =
√

Tλcccq+uuuλ nodes and multiplying the
resulting expressions by wq/ω(cccq) we get:

∂ f λ
q

∂t
+eeeq

∂ f λ
q

∂xxx
= Ω̂( f1, f2,··· , fQ), q=1,··· ,Q.

The raw moments are computed as

mmm(n)=
Q

∑
i=1

f λ
i eee(n)q . (2.11)

This way, LBM is formulated in relation to some gauge λ.
In the PonD method, the gauge varies for each node for every time step. To relate the

equations for different gauges, the moment matching condition is used

M̂λ f λ
q = M̂λ′

f λ′
q , (2.12)

where M̂λ is the matrix of transformation to the raw moment space. Thus, when the
variables f λ′

q are known, the following expression is used to find f λ
q in another gauge

f λ
q =(M̂λ)−1M̂λ′

f λ′
q . (2.13)

For the velocity sets in the product form of one-dimensional quadratures the M̂λ matrix is
square, and the symbolic expression for the transfer matrix (M̂λ)−1M̂λ′

is found [50, 66].
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In the RegPonD method, the gauge transform is implemented through the Hermite
expansion of the PDF. The data are stored on the grid as a set of raw moments mmm(n), which
are transformed to dddλ(n) for the required λ, and PDFs are computed with (2.9).

LBM, PonD and RegPonD contain two sub-steps. In the collision, the PDFs are changed
locally in the lattice nodes. Since gauge λ is matched to the current temperature and flow
rate of the node, the equilibrium distribution form is trivial:

f λ∗
q (xxx,t)=−

f λ
q (xxx,t)− f λ,eq

q (ρ)

τ
; f λeq

q =ρwq; ρ=∑
q

f λ
q (xxx,t). (2.14)

The streaming step becomes implicit, since the streaming vectors are unknown until after
the streaming:

f λ
q (xxx,t)= f λ∗

q (xxx−eeeq,t), eeeq =
√

Tλcccq+uuuλ, (2.15)

ρuuuλ =(m100,m010,m001)
T=∑

q
eeeq f λ

q (xxx,t), (2.16)

ρ(uλ2+Tλ)=m200+m020+m002=∑
q

f λ
q (xxx,t)|eeeq|2.

3 Prediction of moments in PonD

3.1 Method concept

The predictor-corrector step is used in the original PonD method since, as can be seen
in (2.15), the streaming for each node xxxj is performed from the xxxj−eeeq positions, where eeeq

vectors depend on uuuλ, Tλ which can only be computed after the streaming. At the same
time, if all calculations of a scheme update for one node are inserted into one another, the
moments can be found explicitly in some cases. This method of prediction of moments
on the next time step is proposed in [66] for 1D. Let us remind the idea, and extend it to
3D.

Let us consider a streaming into the origin point xxx = (0,0,0) in 3D: f λ
q (0,t+δt) =

f λ
q (−eeeλ

q ,t). The moments mmm(n) are computed as polynomials in eeeλ
q . Their components

in 3D are:

mαβγ(t+δt)=
Q

∑
q=1

f λ
q (−eeeq,t)eα

qxeβ
qyeγ

qz. (3.1)

The values streamed to the origin are approximated in the −eeeq position one way or an-
other. Let us take some polynomial approximation

f λ
q (−eeeλ

q ,t)=
L

∑
i
Li(−eeeλ

q ) f λ
q (rrri,t), (3.2)
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where Li(−eeeλ
q ) is the approximation coefficient, rrri are the points of the spatial reconstruc-

tion stencil. Li(−eeeλ
q ) may be chosen as Lagrange interpolation coefficients. In that case,

(3.2) is the expression for the Lagrange interpolation. If Li(−eeeλ
q ) are expressed as any

polynomials of the position:

Li(−eeeλ
q )=∑

l
Ale

αl
qxeβl

qyeγl
qz (3.3)

Let Nl=maxl(αl+βl+γl) be the maximum order of a monomial in this sum. By inserting
(3.3) into (3.1) and performing the sum in Q we get

mαβγ(t+δt)=
Q−1

∑
q=0

L

∑
i

(
∑

l
Ale

αl
qxeβl

qyeγl
qz

)
f λ
q (rrri)eα

qxeβ
qyeγ

qz

=
L

∑
i

∑
l

Almα+αl ,β+βl ,γ+γl (rrri). (3.4)

With this expression, some of the moments in the origin point are computed through the
values of the moments in the neighboring points as a finite difference expression. The
f λ
q and eeeλ

q values are defined in the yet unknown gauge λ, however, the moments on the
RHS do not depend on λ if moment matching is valid for them.

If the expression is symmetrical and uniform for all nodes, the moments in the LHS
are conserved. If velocity and temperature can be predicted through this expression, the
eeeq vectors are known before streaming, the scheme is explicit, and predictor-corrector
iterations are not needed. The conditions of applicability of PoMPonD are detailed in the
next section.

Thus, we propose the PoMPonD (Prediction of Moments Particles-on-Demand)
method, where the moments are predicted with the (3.4) expression for an iteration-free
streaming. It can be used both in PonD and RegPonD formulations of the moment match-
ing.

3.2 PoMPonD with RegPonD

As an extension of RegPonD, PoMPomD method is as follows. All mesh data are stored
as mmm(n), n=0,N. Thus, mmm(n) are interpolated instead of fq.

mmm(n)(−eeeλ
q ,t)=

L

∑
i
Li(−eeeλ

q )mmm
(n)(rrri,t). (3.5)

Since mmm(n) linearly depend on f λ
q (see (2.11)), the derivation of PoMPonD above remains

valid. Let us show this. f λ
q are expressed through (2.9) where dddλ(n) are linearly expressed

through the interpolated mmm(n). The coefficients in the latter linear expression depend on
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the yet unknown target gauge λ, but, whatever λ may be equal to, the expression for
interpolation is also the same due to linearity

dddλ(n)(−eeeλ
q ,t)=

L

∑
i
Li(−eeeλ

q )ddd
λ(n)(rrri,t). (3.6)

Inserting this into (2.9) and rearranging the summation proves that (3.2) is valid in Reg-
PonD.

3.3 Algorithm

According to the PoMPonD in RegPonD formulation, for each node at xxx one needs to

• Predict moments mmm(0), mmm(1), and diagonal components of mmm(2) at t from moments
mmm(0),··· ,mmm(2+Nl) at t−∆t, and calculate λ′(xxx,t) from these moments.

• For each cccq, q=1,Q:

– find mmm(n)(xxx−(
√

Tcccq+uuu)) with interpolation,

– calculate dddλ′(n) from mmm(n) in the computed gauge λ′(xxx,t) (see Appendix A),

– calculate f λ′
q from dddλ′(n) with (2.9),

– stream f λ′
q to the point xxx,

– perform collision.

• Calculate new values of mmm(n) and store them.

With some parameters regular PonD/RegPonD schemes become equivalent to this
scheme unintentionally, as was observed in [66].

4 Variations of the numerical methods

The PoMPonD method inherits the flexibility of LBM. Let us study some of the possi-
ble parameter variations which are relevant to the introduced idea. In Section 4.4, the
relationship between the parameters, for which PoMPonD is valid, is discussed.

4.1 Velocity Sets

The choice of a velocity set is a basic variation of LBM. In PonD and RegPonD, there is no
limitation set by the distance between mesh nodes, and more quadratures variations are
possible. Optimal quadratures are preferred to get the required order with less quadra-
ture nodes. The optimal 1D quadratures are found from the zeros or Hermite polyno-
mials. A multidimensional quadrature of the same order can be found as the Cartesian
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Figure 1: Two dimensional velocity sets used in the simulations.

product of the 1D optimal quadrature. However, a quadrature with the same order and
lesser number of nodes exists for relevant cases.

The optimal many-dimensional cubature rules can be found in the reference litera-
ture [79, 80], open libraries [81], other LBM works [10, 54, 82].

For the reasons explained in Section 4.4, in this work, we had to use high-order mul-
tidimensional velocity sets. Several issues were discovered with the sets that are rarely
used in the LBM simulations. The D3Q45 cubature in [82] is presented in the form that
is difficult for a human to retype from text, and it is more convenient to obtain from
the source [83]. The 7-th order 27-point 3D cubature E27

3,7 in [10] was retyped from the
source [79] with a hard to identify misprint. The incorrect 7-th order 16-point 2D cuba-
ture E16

2,7 in [10] was copied from the source [79], where it is similarly incorrect, as it is
in [81] which used the same source. Indeed, the 16-point 7-th order 2D cubature can be
obtained by a direct product of the optimal D1Q4 quadrature, thus, other 16-point 7-th
order sets are not relevant, and the origin of the mistake in [79] is unknown.

Thus, we had to make a velocity set generator for our purposes, which is described in
Appendix B. A similar approach for on-grid LBMs was used before in [84]. For a given
set of cubature points, the generator finds weights for the optimal order cubature, checks
the order of the cubature, and outputs the solution to be inserted in the program code of
the simulation. We take the velocity sets from the sources [79, 83]. It was found that the
symmetric sets in the form of regular polygons can be rotated while retaining the order.
Thus, we tested an original rotation of the D2Q7 set in the current work (Listing 1).

The cubatures that were used for our simulations are presented in Table 1. The 2D
sets are shown in Fig. 1. Note that the distance of the points from the center increases
with the order, thus, the reference lattice temperature has to be set sufficiently low.
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Table 1: Velocity sets for Gaussian quadrature rules.

Code Velocities Weights

D1Q3
(0,0)
±
√

3
2/3
1/6

D1Q4
±
√

3−
√

6

±
√

3+
√

6

(3+
√

6)/12
(3−

√
6)/12

D1Q5
(0,0)

±
√

5+
√

10

±
√

5−
√

10

8/15
7−2

√
10/60

7+2
√

10/60

D1Q7 Roots of H(7)(x)=0 found numerically

D2Q7
(0,0)

2(cos nπ
3 ,sin nπ

3 ), n=1,6
1/2

1/12

D2Q9
(0,0)

(±1,0),(0,±1)
(±1,±1)

4/9
1/9

1/36

D2Q12

(±
√

6,0),(0,±
√

6)

(±
√
(9−3

√
5)/4,±

√
(9−3

√
5)/4)

(±
√
(9+3

√
5)/4,±

√
(9+3

√
5)/4)

1/36
(5+2

√
5)/45

(5−2
√

5)/45

D2Q16

(±
√

3+
√

6,±
√

3+
√

6)

(±
√

3−
√

6,±
√

3−
√

6)

(±
√

3+
√

6,±
√

3−
√

6)

(±
√

3−
√

6,±
√

3+
√

6)

(5−2
√

6)/48
(5+2

√
6)/48

1/48
1/48

D2Q25 Cartesian product formula from D1Q5

D2Q49 Cartesian product formula from D1Q7

D3Q13

(0,0,0)

(±
√

5+
√

5
2 ,±

√
5−

√
5

2 ,0),

(0,±
√

5+
√

5
2 ,±

√
5−

√
5
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D3Q64 Cartesian product formula from D1Q4

D3Q125 Cartesian product formula from D1Q5
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4.2 RegPond regularization order

The vectors of moments on both sides of expression (2.12) should be Q values long for
the matrix to be reversible. In the original paper [50], the velocity space discretization is
taken as a product form of a one-dimensional quadrature. If there are Q discrete veloci-
ties in D dimensions and Q=QD

1 for some integer Q1, the moment matrix has the form
Ml1l2···lD = el1

qx1 el2
qx2 ···e

lD
qxD where each index lxα is 1,··· ,Q1. Evidently, not all of these mo-

ments are present in the Chapman-Enskog derived hydrodynamics, and not all of them
can be obtained with valid quadrature rules. Nevertheless, the linear transformation is
deterministic and preserves correct moments.

In RegPonD, the set of moments that are used in the expansion can be varied: any
moments can be included in the sum, whether they are computed correctly with the
Gaussian quadrature or not. If we take the same velocity set for PonD and RegPonD, and
use the same set of moments in (2.9) and (2.12), the results match due to the uniqueness
of linear basis transformation.

On the other hand, in RegPonD, we can omit the moments that are physically irrel-
evant. The choice of moments in the Hermite expansion is one of the parameters of the
method. In this work, we take all moments with the order equal or less than some integer
Nreg.

The choice of the moments influence the computational complexity both in PonD and
RegPonD. In the original moment matching (2.12), the moment set determines the size
of the matrix to be inverted. In RegPonD, raw moments mmm(n) have to be converted to
shifted scaled Hermite moments ddd(n). The number of operations required for the conver-
sion increases with Nreg. We use an efficient implementation of this conversion, which is
described in Appendix A.

Thus, the minimal Q and Nreg values that allow accurate simulation should be found.

4.3 Reconstruction of the off-grid PDF

Let us study some variations of spatial approximation of the off-grid values. We choose
the method among polynomial approximations so that the sum in (3.4) is possible.

The approximation is not necessary an interpolation, since we do not require the val-
ues of the approximating polynomial to match on-grid PDF values. Smaller order is
desirable in the chosen polynomial, and interpolation on the smallest 3D stencil contains
high-order terms.

To enable summation in (3.4) all Q values that are streamed into one point are to be
approximated with one function of the position. B-splines contain segments that are ex-
pressed as polynomials with different coefficients. To use PoMPonD, we have to require
all Q values to fall into one segment. There are several segments per cell, and the eeeq
length is of the order of cell size. Thus, B-splines are not considered in this work.

Let us consider streaming into xxx=0 point. Let us denote for convenience

f = fq
∣∣
−eeeq

, eeeq =eee, f ijk = fq
∣∣
(ijk) ,
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0 1-1 -ex

Figure 2: 3-point interpolation in 1D.

and the moments of order α,β,.. in each component as mαβ···
xy··· in the position (x,y,···), and

in the position −eeeq if the position index is omitted.

Example 1. D=1, L=3, Nl =2, the interpolation stencil contains three points x−1=−1,
x0=0, x1=1. 9 coefficients should be found: A(l)

j , j=−1,0,1, l=0,1,2.
Lagrange polynomial interpolation provides the following coefficients :

Li(x)=
L

∏
k=1,i ̸=k

(x−xk)

(xi−xk)
.

In the −eeeq position (Fig. 2),

L0(−eq)=1−e2
q, L1(−eq)=

1
2
(e2

q−eq), L−1(−eq)=
1
2
(e2

q+eq).

The solution is the system found in [66]

f = f 0+ex

(
−1

2
f+1+

1
2

f−1
)
+e2

x

(
1
2

f−1− f+0+
1
2

f+1
)

(4.1)

and the expression for moment prediction is

mmml =mmm(l+0)
0 − 1

2
mmml+1

+1 +
1
2

mmml+1
−1 −mmml+2

0 +
1
2

mmml+2
+1 +

1
2

mmml+2
−1 . (4.2)

Example 2. In 2D, if the direct product Lagrange interpolation is used as in previous
works [50, 66], RHS of (3.2) would contain monomials of an order higher than 2:

f = f 000−ey

(
1
2

f 010+
−1
2

f 0−10
)
+e2

y

(
− f 000+

1
2

f 010+
1
2

f 0−10
)
−ex

(
1
2

f 100+
−1
2

f−100
)

+e2
x

(
− f 000+

1
2

f 100+
1
2

f−100
)
+exey

(
1
4

f 110+
−1
4

f 1−10+
−1
4

f−110+
1
4

f−1−10
)

−exe2
y

(
−1
2

f 100+
1
4

f 110+
1
4

f 1−10+
1
2

f−100+
−1
4

f−110+
−1
4

f−1−10
)

−e2
xey

(
−1
2

f 010+
1
2

f 0−10+
1
4

f 110+
−1
4

f 1−10+
1
4

f−110+
−1
4

f−1−10
)

+e2
xe2

y

(
f 000+

−1
2

f 010+
−1
2

f 0−10+
−1
2

f 100+
1
4

f 110+
1
4

f 1−10+

−1
2

f−100+
1
4

f−110+
1
4

f−1−10
)

. (4.3)
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This is a fourth order polynomial, but the interpolation is second order.

Example 3. Let us drop the terms of the order o(e3
x) and smaller. In that case, the spatial

dependency of fq is approximated with a polynomial that is not equal to the PDF values
at the lattice nodes.

f = f 00+exey
1
4
( f 11− f 1−1− f−11+ f−1−1)−ey

1
2
( f 01− f 0−1)

+e2
y

(
− f 00+

1
2

f 01+
1
2

f 0−1
)
−ex

1
2
( f 10− f−10)+e2

x

(
− f 00+

1
2

f 10+
1
2

f−10
)

. (4.4)

Other polynomial forms can be found with the least square minimization [85].

Example 4. Let us take 19-point stencil with D=3. Let us require the approximation to
take the form

f =A f 000−Beqx( f 100
q − f−100)−Beqy( f 010− f 0−10)−Beqz( f 001− f 00−1)+··· ,

where A, B, are the yet unknown coefficients, chosen symmetrically in some cases. All fq
values on the RHS are expanded into Taylor series in relation to the (−eeeq) position and
the coefficients are matched. The Taylor expansion can be made valid for up to 3-rd order
with the following expression:

f = f 000− 1
2

ex( f 100− f−100)− 1
2

ey( f 010− f 0−10)− 1
2

ez( f 001− f 00−1)

+
1
2

e2
x( f 100+ f−100−2 f 000)+

1
2

e2
y( f 010+ f 0−10−2 f 000)+

1
2

e2
z( f 001+ f 00−1−2 f 000)

+
1
4

exey( f 110+ f−1−10− f 1−10− f−110)+
1
4

ezey( f 011+ f 0−1−1− f 01−1− f 0−11)

+
1
4

exez( f 101+ f−10−1− f 10−1− f−101). (4.5)

And the expression for the moments is:

mαβγ =m000
αβγ−

1
2
(m100

α+1βγ−m−100
α+1βγ)−

1
2
(m010

αβ+1γ−m0−10
αβ+1γ)−

1
2
(m001

αβγ+1−m00−1
αβγ+1)

+
1
2
(m100

α+2βγ+m−100
α+2βγ−2m000

α+2βγ)+
1
2
(m010

αβ+2γ+m0−10
αβ+2γ−2m000

αβ+2γ)

+
1
2
(m010

αβγ+2+m0−10
αβγ+2−2m000

αβγ+2)+
1
4
(m110

α+1β+1γ+m−1−10
α+1β+1γ−m1−10

α+1β+1γ−m−110
α+1β+1γ)

+
1
4
(m011

αβ+1γ+1+m0−1−1
αβ+1γ+1−m01−1

αβ+1γ+1−m0−11
αβ+1γ+1)

+
1
4
(m101

α+1βγ+1+m−10−1
α+1βγ+1−m10−1

α+1βγ+1−m−101
α+1βγ+1). (4.6)
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The moment update scheme is a finite-difference expression, and the right and the left
flux terms can be separated if needed. This form allows to see that fluxes of the neigh-
boring points cancel each other on the grid, and the moments, for which the expression
is valid, are conserved in streaming.

4.4 Validity conditions

In [66] and [69], it was experimentally found that some simulations conserve mass ex-
actly, and in [66] the reason was shown for 1D simulations. There, PoMPonD was out-
lined as a suggestion, but the predictor-corrector procedure was still used, even though
it was observed to converge to the same value that was predicted explicitly. Here, with
the scheme variations reported in the current work, we can finally tell the sufficient con-
ditions under which the PonD/RegPonD scheme become explicit.

Let us consider (3.4) expression once more. It is valid under the assumption that the
moments on the RHS are invariant in the gauge transformation. The moments included
in (3.4) should be computable both in the original gauge and the final gauge, and the
values should match in the two gauges. To predict density, we require the validity of
(3.4) up to α+β+γ ≡ Nm = 0, and up to Nm = 1 and Nm = 2 to predict first and second
moments. For this, in RegPonD, the moments on the RHS of (3.4) have to be included in
the reconstruction formula (2.9): Nreg ≥Nm+Nl .

Then, we require the support of this computation in the velocity set. Since the PDF
is the polynomial of order Nreg ≥Nm+Nl and the moments of the order Nm+Nl have to
be computable, the approximation order that has to be supported by the velocity set is
NQ ≥ (Nm+Nl)+Nreg ≥ 2(Nm+Nl). The parameter requirements and the velocity sets
that support such schemes are reported in Table 2.

When eeeq =
√

Tcccq+uuu are scaled both with temperature and velocity, the trace of the
second moment tensor should be known before the streaming. With (3.4), the second
moment can be predicted if the conditions of the third row of Table 2 are satisfied. For
athermal simulations, the satisfaction of the conditions in the second row of the table in
enough.

There is no Nreg parameter in PonD. For the validity of (3.4) in PonD, the moments of
the RHS should be included in the moment matrix that is used for moment matching.

Another important requirement is that all interpolation or approximation of fq
streamed to one location are performed with the same stencil. In PonD [50], this may
take place unintentionally, and mass can be incidentally conserved. Here we rely on the
requirement in the scheme construction, and we have to make sure the lattice tempera-
ture is low enough for the velocity stencil to fit into the interpolation stencil. This imposes
Courant-like condition on the length of the scheme dependencies. It appears that another
mass-conservative scheme DuGKS-PoND [86] has this limitation as well.

Other validity conditions may be satisfied even when the requirements of Table 2 are
not met; the conditions are sufficient but not necessary. For example, any finite velocity
set in 1D satisfies the condition ∏Q

q′ (cq−cq′) = 0 for any q. In D1Q3, it reads c3
q−cq = 0,
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Table 2: Parameter requirements for moment prediction.

For In (2.9) quadrature order Velocity set for Nl =2
prediction of Nreg ≥ NQ ≥ direct product minimal

mass, 0+Nl (0+Nl)+Nreg 1D D1Q3
Nm =0 2D D2Q9 D2Q7

3D D3Q27 D3Q13
momentum, 1+Nl (1+Nl)+Nreg 1D D1Q4

Nm =1 2D D2Q16 D2Q12
3D D3Q64 D3Q27e

energy, 2+Nl (2+Nl)+Nreg 1D D1Q5
Nm =2 2D D2Q25

3D D3Q125 D3Q45

and the third order moment is equal to the first one. Thus, its value is not lost in the mo-
ment conversion that takes account of the moments up to the second order. Additionally,
some cubatures may be exact for some components of higher order moment tensors. We
expect that more symmetries may be found, and that the optimal parameters may not
necessarily satisfy the conditions in Table 2.

The conditions, however, are not satisfied with the minimal schemes found in [69] for
RegPonD simulations. With RegPonD, athermal problems can be simulated with mini-
mal cubatures of the 5-th order, such as D2Q7 and D2Q13. To be able to predict moments
and make the scheme explicit, the minimal order of the cubature is 7.

4.5 Other

It is interesting to note that the collision and streaming steps are interchangeable in the
current scheme. Indeed, BGK collision requires the data from other fq only in the form
of the conserved moments. In PoMPonD, the conserved moments are predicted before
reconstruction of fq, thus, the collision can be performed immediately. It can be useful to
remember for the future developments of LBM methods that PDF values do not have to
be collected in the same place to collide with each other.

5 Simulation results

5.1 1D Riemann problems

Let us start with the 1D Riemann problem reported in [66]
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Figure 3: 1D Riemann problem tests.

ρ|x<0=1, ρ|x≥0=1;
P|x<0=0.1, P|x≥0=0.02;
u|x<0=0, u|x≥0=0.

(5.1)

According to the minimal requirements for validity of PoMPond, the problem is solved
with NReg=4, D1Q5 quadrature, 3 point stencil for finding the off-grid values ((4.1), (4.2)).

The computation is effectively identical to the one in [66]. RegPonD and PonD are
identical since there are exactly 5 PDFs for each node, which are converted to 5 mo-
ments and back. PoMPonD and PonD are identical since the predictor-corrector itera-
tions should give the same solution as the proposed finite difference scheme for uuu, T.

Let us check the validity requirements that were derived in Section 4.4 by changing
one parameter at a time.

First, we decrease NReg. With NReg = 3 the solution changes, and energy is not con-
served. With NReg = 2 the solution can not be correct since the regularization looses the
third order moment which is required in the Chapman-Enskog equation. In the trial
simulation, it diverged.

Second, we return NReg = 4 and change the quadrature. D1Q5 has approximation
order equal to 9, so it is enough to find the fourth moment of the fourth order polyno-
mial, thus, energy is conserved exactly. The order of approximation of D1Q4 is 7, and
it is enough to find second order tensor of the fourth order polynomial, thus, mass is
conserved.
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5.2 Shear wave test

The shear wave test in [50] has proved Galilean invariance of the PonD method in arbi-
trarily high Mach number flows. In [69], the simulation was recreated with the RegPonD
method.

RegPonD allows smaller velocity sets to simulate the same physical phenomena, and,
in [69], it was shown that D2Q7 is the smallest velocity set valid for the task. Let us study
if the Galilean invariance is satisfied with PoMPonD, and what is the smallest velocity
set to support it.

The initial conditions are:

ut(x,y)=0.05sin
(

2π
x+y

S

)
, uℓ=Ma

√
T, (5.2)

ux =(ut−uℓ)/
√

2, uy =(ut+uℓ)/
√

2, ρ=1

in an S×S domain in 2D. According to the Navier-Stokes solution, the decay rate of the
velocity amplitude is κ=(τ−0.5)|kkk2|T, where kkk={2π/S,2π/S,0}.

For an athermal problem, only the velocity of the new gauge should be predicted.
According to Table 2, if the interpolation order is at least 2, Nreg ≥ 3 and NQ ≥ 6 are
required. Thus, at least 12 discrete velocities should be used.

Another issue is that the fixed interpolation stencil introduces the limitation on the
maximum streaming distance. Whatever is the chosen stencil for spacial approximation,
we require all eeeq vectors to fall into the convex hull of this stencil. The more rigorous
theoretical stability analysis is left for future studies, and here we test stability with the
simulation runs (Fig. 4).

The longest discrete velocity among the studied cubatures is from the D2Q49 set, and
its value is close to 4. To be sure it fits the stencil, T=0.25/42 is set for all simulations in
this section.

We start with Ma=0, S=128, τ=0.6 parameters to study the validity of the scheme.
After 3000 time steps, the mass gain per cell, the difference between predicted uuu and its
value after streaming uuu′ at one randomly chosen reference node, and the error in the fitted
decay rate are studied (Table 3).

Experiment #1 satisfies the outlined conditions, and it is proven with the computation
result: the velocity is predicted with the error of the order of the machine zero. In exper-
iments #2–#5, we tested some deviations in the cubature rule and Nreg. As expected, the
error in the prediction of the reference velocity is observed when the validity conditions
are not satisfied. Mass gain, however, remained small, which is probably caused by the
symmetry of the problem.

In the experiment #6, we show that the 2D Lagrange interpolation is not suited for
explicit simulations in PoMPonD. To satisfy the presented conditions, the order of the
cubature should be at least 10, and it is proven in the experiment #7, where the prediction
of velocity is valid. Such high order of approximation for athermal problems does not
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Table 3: Shear wave decay computation results. The ’valid’ column shows if the validity conditions are satisfied.

# valid stencil cubature Nreg mass gain |uuu−uuu′|/|uuu| |κ−κ′|/κ′

1 yes (4.4) D2Q12 3 -2.9e-13 2.8e-16 7.8e-03
2 no (4.4) D2Q7 3 9.0e-13 4.0e-11 7.8e-03
3 no (4.4) D2Q12 2 -4.3e-13 2.1e-10 7.7e-03
4 no (4.4) D2Q7 2 9.2e-13 4.2e-11 7.8e-03
5 yes (4.4) D2Q25 4 -3.4e-12 1.4e-15 7.8e-03
6 no (4.3) D2Q12 3 7.3e-08 2.6e-08 5.0e-02
7 yes (4.3) D2Q49 5 2.4e-12 8.3e-16 7.3e-03
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Figure 4: Error in decay rate vs Ma number.

seem adequate in practice. Experiments have also shown that the error in the decay rate
depends more on the spatial interpolation method than on any other scheme parameter.

Let us take cases 1 and 7 from Table 3 and test the Galilean invariance of the method
by increasing the background flow rate. The results are presented in Fig. 4. The critical
Mach number when some eq becomes greater than the mesh space is 7.4 for case 1 and 5.6
for case 7. However, in the case 1, the simulation becomes unstable at Ma=4. It appears
that the fact that the approximating polynomial does not match on-grid PDF values for
case 1 is crucial for the diagonal propagation, and the limit on streaming distances is
more strict.

Finally, the spatial approximation introduces numerical dispersion. With Ma=0 the
dependency of the fitted decay rate error on the ppw (points per wavelength) is plotted
in Fig. 5.
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5.3 Performance considerations

The use of explicit moment prediction allows to update a node in one iteration. In [50]
and [69] the simulations converged in 1-3 predictor-corrector iterations. These figures
are provided for problems with smooth variations of flow variables, more iterations are
observed near shock waves. Therefor, we can estimate that the number of required cal-
culations per time step is at least 1-3 times less in PoMPonD.

On the other hand, implicit schemes are often preferred since they allow larger time
steps, thus, less time steps total are required for the same results. The same is true here,
since we had to introduce Courant-like condition: the length of eeeq should be less than the
stencil size for spatial approximation.

In [69], the shear wave test was performed with TL =1/3. If we estimate the highest
temperature for which eeeq falls inside the approximation stencil, we require ≈ 1.5 more
time steps than was used there. Additionally, D2Q12 set was used here and D2Q7 was
used in [69].

In total, the effective performance gain in the current case is marginal. Therefore, the
main advantage of PoMPonD is the guaranteed moment conservation.

6 Conclusion

In the course of restoring conservation properties to the PonD method, we have discov-
ered its interesting property. It appears that the scheme that is formulated as implicit
can become explicit with some variation of the method. The explicit formulation of the
RegPonD is proposed in this work, and it is called PoMPonD. This variation intercon-
nects various aspects of the scheme: spatial discretization, velocity discretization, and
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reconstruction of the PDF values. Thus, we studied the variations and found the validity
conditions of the newly introduced PoMPonD.

The explicit formulation, as well as the low order polynomials for the spatial inter-
polation that are introduced here, reduce the computation cost of the method. About
1-4 predictor-corrector iterations were required in PonD and RegPonD. Thus, without
predictor-corrector iteration, the amount of operations is reduced several times.

We have shown that lower order polynomials are preferred in the spatial approxima-
tion. The influence of the choice on the numerical dispersion and isotropy remains to be
studied.

Unfortunately, the minimal order of the velocity set that is required for the new PoM-
PonD method has a higher number of points than was reported sufficient for the same
problem previously [70].
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Appendices

A Moment space conversion

Multiple times in the simulation a set of M= (D+n)!
D!n! moments mmm(n) has to be converted to

a set of dddλ(n) moments. The conversion has to be implemented with a minimal number
of operations. The set of moments mmm(n) is discarded after that, so the conversion can po-
tentially be in-place, without creation of a second data array. We have found an efficient
procedure for the moment conversion. The procedure can be useful in other aspects of
LBM methods, such as conversion to central moment space [87], temperature scaled mo-
ments [76], and obtaining high-order moments of the equilibrium distribution for given
uuu, T.

The dddλ(n) moments can also be obtained through the recursive expressions from the
raw moments mmm(n). Let us recall their definition:

ddd(n)(xxx,t)=
∫ √

T
D

f (xxx,
√

Tvvv+uuu,t)HHH(n)(vvv)dvvv; mmm(n)(xxx,t)=
∫

f (xxx,ξξξ,t)HHH(n)(ξξξ)dξξξ,

and vvv= ξξξ−uuu√
T

. The recursive expression for Hermite polynomials reads [73]

H(n+1)
α+1βγ(vvv)=vxH(n)

αβγ(vvv)−αH(n−1)
α−1βγ(vvv).

After multiplication by f (ξξξ) and integrating both sides of the equation with respect to ξξξ,
we obtain:∫

H(n+1)
α+1βγ(vvv) f (ξξξ)dξξξ=

∫
(ξx−ux)√

T
H(n)

αβγ(vvv) f (ξξξ)dξξξ−
∫

αH(n−1)
α−1βγ(vvv) f (ξξξ)dξξξ.
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Let λl be the coefficients of the polynomial

H(n)
αβγ(vvv)=H000

αβγ =∑
l

λ
(n)
l ξαl

x ξ
βl
y ξ

γl
z .

Let us define Hijk
αβγ polynomials as

Hijk
αβγ =∑

l
λ
(n)
l ξαl+i

x ξ
βl+j
y ξ

γl+k
z ; H(n)

αβγ(vvv)=H000
αβγ(vvv).

That is, the coefficient before ξαl+i
x ξ

βl+j
y ξ

γl+k
z in Hijk

αβγ is equal to the coefficient before

ξαl
x ξ

βl
y ξ

γl
z in the Hermite polynomial H(n)

αβγ(vvv) for each l. Similarly, let us define dijk
αβγ so

that
d(n)αβγ =d000

αβγ =∑
l

λ
(n)
l mαl βlγl , dijk

αβγ =∑
l

λ
(n)
l mαl+i,βl+j,γl+k.

Then ∫
H000

α+1βγ f (ξξξ)dξξξ=
1√
T

∫ (
H100

α+1βγ−uαH000
αβγ

)
f (ξξξ)dξξξ−

∫
αH000

α−1βγ f (ξξξ)dξξξ,

d000
α+1βγ =

1√
T

(
d100

α+1βγ−uαd000
αβγ

)
−αd000

α−1βγ. (A.1)

The same expression can be written for other axes. Let θ= 1√
T

. Even though a new set of

variables dijk
αβγ is introduced, the conversion can be implemented in such a way that it is

not necessary to allocate any storage for them. Here is the complete system that is used
for the conversion from mαβγ to dαβγ:

dαβγ
000 =mαβγ,

dijk
α+1βγ = θ

(
di+1jk

αβγ −uxdijk
αβγ

)
−αdijk

α−1βγ,

dijk
αβ+1γ = θ

(
dij+1k

αβγ −uydijk
αβγ

)
−βdijk

αβ−1γ,

dijk
αβγ+1= θ

(
dijk+1

αβγ −uzdijk
αβγ

)
−γdijk

αβγ−1,

dαβγ =d000
αβγ. (A.2)

It can be observed that this system is stencil scheme in the α–β–γ space (Fig. 6). The
dependencies in the graph show the proper order of computation, and even some asyn-
chronous portions can be observed. It is evident from the dependencies that one can con-
vert moments in-place: one column of the dependency graph illustration corresponds to
a code variable, and no more than M variables are required at any time. Since the data
copy is not needed, even for large sets of moments the conversion can be localized in
GPU registers (for GPU codes) or L1 cache (for CPU codes).
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Figure 6: A 1D stencil projection (a) and a sample dependency graph (b) for the problem of moment space
conversion (A.2).

Thus, the system (A.2) should be implemented for the moment conversion. We made
a Python script that generates code for all equations in the system in the target program-
ming language. The input parameters are the number of dimensions and the maximal
order of moments. The use of such code is very convenient, since the conversion of 3D
tensors of the orders 4 and higher contains many terms. The expressions are not hard to
find with some computer algebra system, but they become large and hard to debug. Ad-
ditionally, simple expressions such as (A.2) are more suitable for compiler optimizations.

B Automatic generation of velocity sets

B.1 Definitions

Consider the general form of the expression (2.3)

∫ +∞

−∞
ω(xxx) f (xxx)dx≈

Q

∑
q=1

wq f (cccq). (B.1)

Here wq are the cubature weights and cccq, q=1,··· ,Q is the set of the cubature points. The
curature formula B.1 has the order of approximation of NQ if the equality holds exactly,
provided that f (xxx), xxx ∈ RD is a polynomial of the total degree no higher than NQ. By
definition, Hermite polynomials in 3D are given by the following expression [73]

HHH(n)
αβγ =

(−1)n

ω(xxx)
dα

dxα

dβ

dyβ

dγ

dzγ
ω(xxx), (B.2)
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where ω(xxx) is defined in (2.4).

B.2 System of equations

Let us use the orthogonality of Hermite polynomials, HHH(0)=1:

∫ ∞

−∞
HHH(n)(xxx)ω(xxx)dx=δn0=

Q

∑
q=1

HHH(n)(cccq)wq. (B.3)

It is a system of linear algebraic equations with unknown weights wq. We require the
system to be satisfied up to the maximal possible order NQ, and the maximum NQ con-
sidered in this work is 11. Let us calculate the size of the resulting system of equations.

The number of polynomials of the order n is

D−1
∏
i=1

(n+i)

(D−1)! (Fig. 7).
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Figure 7: The number of unique tensor components vs the order of polynomial.

B.3 Optimization

The size of the system can be significantly reduced. We define a shell Si, i=0,1,··· as a set
of points equidistant from the center, with some kind of a symmetry. When the points of
the shell have equal weights, the equations of the system at the odd orders are satisfied
trivially. For example, regular polygons and Platonic solids define sets of points with the
same weights.

Let’s use this to optimize calculations. We break the original system into shells, we
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get:

w0 ∑
cccq∈S0

HHH(n)(cccq)+w1 ∑
cccq∈S1

HHH(n)(cccq)+···=δn0. (B.4)

The system obtained in this way is significantly smaller.
The number of equations in the system is found in the following manner. First, we

build a matrix by appending rows in the order of increasing n. The order of rows with
same n which represent different components of the tensor of a given order n is arbitrary.
If, after appending a row, the rank of the matrix is not increased, there is a linear depen-
dence of the current row on some of the previous ones. In this case, the row is erased and
the next component is tested. This is repeated until the rank of the matrix is equal to the
number of shells. Then the matrix is inverted and the weights are found.

B.4 Program interface

The generator is written in C++17. The input is a set of user-defined shells. Since many
cubatures consist of several regular shapes, basic classes describing regular polygons and
polyhedra were implemented in the program interface. Some shells can be set manually
by specifying the points.

The output is an array of weights wq for each shell, and the order NQ of the cubature
rule that was obtained. With this information, the output can be configured to generate
code for any programming language. The sample output in Listing 1 corresponds to
D2Q7. It was generated for the simulations in the current paper, which are implemented
with CUDA.

Listing 1: Code example of CUDA code generator

1 //ORDER -5

2 #define DIM 2

3 const int Nq = 7, NQ = Nq;

4 __device__ const ftype3 ciq[] = {

5 {1.414213562373095368 , 1.414213562373095145 , 0.000000000000000000} ,

6 { -0.517638090205041368 , 1.931851652578137069 , 0.000000000000000000} ,

7 { -1.931851652578136846 , 0.517638090205042145 , 0.000000000000000000} ,

8 { -1.414213562373095590 , -1.414213562373095145 , 0.000000000000000000} ,

9 {0.517638090205040702 , -1.931851652578137291 , 0.000000000000000000} ,

10 {1.931851652578137069 , -0.517638090205041479 , 0.000000000000000000} ,

11 {0.000000000000000000 , 0.000000000000000000 , 0.000000000000000000} ,

12 };

13 const ftype w0 = 0.083333333333333315;

14 const ftype w1 = 0.500000000000000222;

15 __device__ const ftype wiq[] = {w0 , w0 , w0 , w0 , w0 , w0 , w1};

A more detailed description of the software can be found in [88].
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[53] Dominik Wilde, Andreas Krämer, Dirk Reith, and Holger Foysi. Semi-Lagrangian lattice
Boltzmann method for compressible flows. Phys. Rev. E, 101:053306, May 2020.

[54] Dominik Wilde, Andreas Krämer, Dirk Reith, and Holger Foysi. High-order semi-



172 E. Zipunova et al. / Commun. Comput. Phys., 33 (2023), pp. 144-173

Lagrangian kinetic scheme for compressible turbulence, 2020.
[55] Takeshi Kataoka and Michihisa Tsutahara. Lattice Boltzmann method for the compressible

euler equations. Phys. Rev. E, 69:056702, May 2004.
[56] Nianzheng Cao, Shiyi Chen, Shi Jin, and Daniel Martinez. Physical symmetry and lattice

symmetry in the lattice Boltzmann method. Physical Review E, 55(1):R21, 1997.
[57] Weiping Shi, Wei Shyy, and Renwei Mei. Finite-difference-based lattice Boltzmann method

for inviscid compressible flows. Numerical Heat Transfer: Part B: Fundamentals, 40(1):1–21,
2001.

[58] Abbas Fakhari and Taehun Lee. Finite-difference lattice Boltzmann method with a block-
structured adaptive-mesh-refinement technique. Physical Review E, 89(3):033310, 2014.

[59] Haowen Xi, Gongwen Peng, and So-Hsiang Chou. Finite-volume lattice Boltzmann method.
Physical Review E, 59(5):6202, 1999.

[60] Mohammad Hossein Saadat and Ilya V Karlin. Arbitrary Lagrangian–Eulerian formulation
of lattice Boltzmann model for compressible flows on unstructured moving meshes. Physics
of Fluids, 32(4):046105, 2020.

[61] C Shu, XD Niu, and YT Chew. Taylor-series expansion and least-squares-based lattice
Boltzmann method: Two-dimensional formulation and its applications. Physical Review E,
65(3):036708, 2002.

[62] Nicolò Frapolli, Shyam S Chikatamarla, and Iliya V Karlin. Lattice kinetic theory in a co-
moving Galilean reference frame. Physical Review Letters, 117(1):010604, 2016.

[63] Christophe Coreixas and Jonas Latt. Compressible lattice Boltzmann methods with adaptive
velocity stencils: An interpolation-free formulation. Physics of Fluids, 32(11):116102, 2020.

[64] Chenghai Sun. Lattice-Boltzmann models for high speed flows. Physical Review E, 58(6):7283,
1998.

[65] Chenghai Sun. Adaptive lattice Boltzmann model for compressible flows: Viscous and con-
ductive properties. Physical Review E, 61(3):2645, 2000.

[66] Vadim Levchenko, Anastasia Perepelkina, Andrey Zakirov, and Boris Korneev. On the con-
servativity of the particles-on-Demand method for the solution of the discrete Boltzmann
equation. Keldysh Institute Preprints, 35:19, 2019.

[67] Karlin I.V. Ehsan R., Dorschner B. Particles-on-demand for high Mach number flows. Pre-
sented at DSFD 30, 2021. https://youtu.be/QKayqbJkKM0.

[68] Florian Renard, Gauthier Wissocq, Jean-François Boussuge, and Pierre Sagaut. A linear
stability analysis of compressible hybrid lattice Boltzmann methods. Journal of Computational
Physics, 446:110649, 2021.

[69] E.Zipunova, A.Perepelkina, A.Zakirov, and S.Khilkov. Regularization and the particles-on-
demand method for the solution of the discrete Boltzmann equation. Journal of Computational
Science, 53:101376, 2021.

[70] E Zipunova, A Perepelkina, and A Zakirov. Applicability of regularized particles-
on-demand method to solve Riemann problem. Journal of Physics: Conference Series,
1740(1):012024, jan 2021.

[71] Harold Grad. On the kinetic theory of rarefied gases. Communications on Pure and Applied
Mathematics, 2(4):331–407, 1949.

[72] Xiaowen Shan and Xiaoyi He. Discretization of the velocity space in the solution of the
Boltzmann equation. Phys. Rev. Lett., 80:65–68, Jan 1998.

[73] Harold Grad. Note on N-dimensional Hermite polynomials. Communications on Pure and
Applied Mathematics, 2(4):325–330, 1949.

[74] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in



E. Zipunova et al. / Commun. Comput. Phys., 33 (2023), pp. 144-173 173

gases. I. Small amplitude processes in charged and neutral one-component systems. Physical
Review, 94(3):511, 1954.

[75] Yue-Hong Qian, Dominique d’Humières, and Pierre Lallemand. Lattice BGK models for
Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.

[76] Xuhui Li, Yangyang Shi, and Xiaowen Shan. Temperature-scaled collision process for the
high-order lattice Boltzmann model. Physical Review E, 100:013301, 2019.

[77] Iliya V. Karlin, Alexander N. Gorban, S. Succi, and V. Boffi. Maximum entropy principle for
lattice kinetic equations. Phys. Rev. Lett., 81:6–9, Jul 1998.

[78] Christophe Coreixas, Bastien Chopard, and Jonas Latt. Comprehensive comparison of colli-
sion models in the lattice Boltzmann framework: Theoretical investigations. Physical Review
E, 100(3):033305, 2019.

[79] Arthur H Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971.
[80] I.P. Mysovskikh. Interpolating Cubature Formulae. Nauka, Moscow, 1981. In Russian.
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