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Abstract. As a promising strategy to adjust the order in the variable-order BDF algo-
rithm, a time filtered backward Euler scheme is investigated for the molecular beam

epitaxial equation with slope selection. The temporal second-order convergence in
the L2 norm is established under a convergence-solvability-stability (CSS)-consistent

time-step constraint. The CSS-consistent condition means that the maximum step-

size limit required for convergence is of the same order to that for solvability and
stability (in certain norms) as the small interface parameter ε → 0+. Similar to the

backward Euler scheme, the time filtered backward Euler scheme preserves some

physical properties of the original problem at the discrete levels, including the vol-
ume conservation, the energy dissipation law and L2 norm boundedness. Numerical

tests are included to support the theoretical results.
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1. Introduction

Filtering algorithm is a kind of numerical post-processing algorithm based on the

original calculation code of complex system. It is widely used in computational fluid

industry applications [1,4] and numerical weather forecasting [23,24] to improve nu-

merical simulation, such as eliminating high-frequency oscillations to improve stability,

reducing dispersion error to improve computational accuracy, etc. Recently, the effect

of adding a simple time filter to backward Euler method is considered in [6] for the

initial value problem
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y′(t) = f
(

t, y(t)
)

for t > 0, y(0) = y0.

Consider the uniform time level tk = kτ for 0 ≤ k ≤ N with the time-step size τ :=
T/N . Given a grid sequence {vn}Nn=0, denote

∂τv
n :=

1

τ
(vn − vn−1), ∂2τ v

n :=
1

τ

(

∂τv
n − ∂τv

n−1
)

.

The time filtered backward Euler (FiBE) method in [6] approximates this problem by

the backward Euler method and uses a simple time filter to update the solution

Step1 :
1

τ

(

yn∗ − yn−1
)

= f(tn, y
n
∗ ) for n ≥ 2,

Step2 : yn = yn∗ − ν

2

(

yn∗ − 2yn−1 + yn−2
)

for n ≥ 2,

where yn∗ and yn denote unfiltered and filtered values, and ν is an algorithm param-

eter to be determined. The FiBE method improves the accuracy of the fully implicit

method to second-order by a well-calibrated post-filter with ν = 2/3. In the absence of

a better approach, time filter method solves the problem of the accuracy improvement

in a complex, possibly legacy code, and the approach is modular and requires the ad-

dition of only one line of additional code. Error estimation and variable time step are

straightforward and the individual effect of each step is conceptually clear. Recently,

this method was extended to the Navier-Stokes equations in [4]. DeCaria et al. [3]

presented several new embedded families of high accuracy methods with low cognitive

complexity and excellent stability properties.

As seen, the above time filtered approach is a promising strategy to adjust the or-

der in variable-order and variable-step BDF algorithms for gradient flow models, see

our recent analysis [7, 9–15] on the variable-step BDF2 and high-order BDF methods.

As pointed out in [6], the combination of backward Euler plus a curvature reducing

time filter gives another option for long-time numerical simulations although the BDF2

method is satisfactory in many applications. To this aim, the stability and conver-

gence of the FiBE method is investigated for the molecular beam epitaxy (MBE) model

with slope selection [18], which can be viewed as an L2 gradient flow of the Ehrlich-

Schwoebel energy functional

E[Φ] =

∫

Ω

[

ε2

2
|∆Φ|2 + F (∇Φ)

]

dx, (1.1)

where

F (v) =
1

4

(

|v|2 − 1
)2

is a nonlinear energy density function. In recent years, many of time stepping methods,

including the stabilized semi-implicit scheme [25], the Crank-Nicolson scheme [19],

the convex splitting scheme [20], and operator splitting schemes [8, 16, 17, 27] have

been constructed and analyzed for the MBE growth model and related nonlinear mod-

els, also see [2,5,7,12,21,22] and references therein.
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Consider the MBE model on Ω = (0, L)2 ⊂ R
2 and 0 ≤ t ≤ T ,

∂tΦ = −κµ, µ :=
δE

δΦ
= ε2∆2Φ−∇ · f(∇Φ) (1.2)

subjected to the initial data Φ(x, 0) := Φ0(x). Here the mobility coefficient κ > 0,

the interface width parameter ǫ > 0, Φ is a periodic height function and f(v) :=
F ′(v) = (|v|2 − 1)v is the nonlinear bulk. As well known, the MBE system with peri-

odic boundary conditions preserves the volume conservation 〈Φ(t), 1〉 = 〈Φ(0), 1〉, the

energy dissipation law
dE

dt
+ κ‖µ‖2 = 0, (1.3)

and the following L2 norm stability estimate:

‖Φ‖2 ≤ ‖Φ0‖2 +
κ

2
|Ω| t, (1.4)

where |Ω| denotes the volume of Ω and the norm ‖v‖ :=
√

〈v, v〉 is generated by the

L2 inner product

〈u, v〉 :=
∫

Ω

uvdx.

For simplicity, we only consider the time approximation in this paper. Our theo-

retical results including unique solvability, stability and convergence estimates, can be

easily extended to the fully discrete scheme preserving the discrete integration-by-parts

formulas by using the finite difference, finite element or pseudo-spectral approxima-

tions in space. The backward Euler method reads

∂τφ
n = −κµn, µn := ε2∆2φn −∇ · f(∇φn) for n ≥ 1. (1.5)

Adding an extra line of code, we get the following FiBE scheme for the MBE model (1.2):

Step1 :
1

τ
(φn∗ − φn−1) = −κµn∗ , µn∗ := ε2∆2φn∗ −∇ · f(∇φn∗ ) for n ≥ 2, (1.6)

Step2 : φn = φn∗ − 1

3
(φn∗ − 2φn−1 + φn−2) for n ≥ 2, (1.7)

where φn∗ and φn denote the unfiltered and filtered solutions, respectively. As seen,

the computational cost of (1.7) is nearly negligible so that the computational cost of

the FiBE method (1.6)-(1.7) is the same as that of the backward Euler scheme. Also,

we will prove that the FiBE method is second-order convergent under a convergence-

solvability-stability (CSS)-consistent time-step constraint, see Table 1, where the time-

step constraints for the solvability, convergence and stability of the backward Euler and

BDF2 schemes can be derived by following the present analysis. The CSS-consistent

condition means that the maximum step-size limit required for convergence is of the

same order to that for solvability and stability (in certain norms) as the small interface

parameter ε→ 0+, cf. [26]. The main contributions are two-fold:
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Table 1: The CSS-consistent time-step conditions.

FiBE scheme Backward Euler scheme BDF2 scheme

Convergence τ ≤ 4κ−1ǫ2/(3 + 2
√
3) τ ≤ 2κ−1ǫ2 τ ≤ κ−1ǫ2/2

Solvability τ ≤ 4κ−1ǫ2 τ ≤ 4κ−1ǫ2 τ ≤ 6κ−1ǫ2

Energy stability τ ≤ 4κ−1ǫ2 τ ≤ 4κ−1ǫ2 τ ≤ 2κ−1ǫ2

L2 norm stability τ = O(1) τ = O(1) τ = O(1)

• The FiBE scheme (1.6)-(1.7) is uniquely solvable if the time-step size τ ≤ 4κ−1ǫ2,

see Theorem 2.1. Theorem 2.2 states that the filtered solution φn is second-order

convergent in the L2 norm if the step size τ is small such that τ ≤ 4κ−1ǫ2/(3 +
2
√
3).

• Theorem 3.1 says that the method is unconditionally stable in the L2 norm, while

it also preserves a (modified) discrete energy dissipation law if τ ≤ 4ε2/κ, see

Theorem 3.2.

The rest of the paper is organized as follows. In Section 2, we verify the volume

conservation and unique solvability of the FiBE scheme (1.6)-(1.7), and establish the

L2 norm convergence. The discrete energy dissipation law and L2 norm stability are

addressed in Section 3. Some numerical tests are included in the last section to show

the effectiveness of the FiBE method.

2. Solvability and L
2 norm convergence

The time discrete scheme (1.6)-(1.7) is volume conservative and uniquely solvable.

Taking the inner product of (1.6) by τ and applying the Green’s formula, one can check

that
〈

φk∗ − φk−1, 1
〉

=
〈

− κτµk∗ , 1
〉

= 0 for k ≥ 1.

It leads to 〈φk∗ , 1〉 = 〈φk−1, 1〉. By using the filtering step (1.7), a simple induction yields

the volume conversation law, that is,

〈φn, 1〉 = 〈φn−1, 1〉 = · · · = 〈φ0, 1〉, n ≥ 1.

Theorem 2.1. If the time step size τ ≤ 4ε2/κ, the FiBE scheme (1.6)-(1.7) is unique

solvable.

Proof. For any fixed time-level index n ≥ 1, let

V
∗ :=

{

z ∈ L2(Ω) | 〈z, 1〉 = 〈φn−1, 1〉
}

be a subspace of L2(Ω). Define the following functional G[z] on the space V
∗:

G[z] :=
1

2τ
‖z − φn−1‖2 + κε2

2
‖∆z‖2 + κ

4
‖∇z‖4l4 −

κ

2
‖∇z‖2.
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Since ‖v‖4
L4 ≥ 2‖v‖2 − |Ω| due to the fact (a2 − 1)2 ≥ 0, the functional G[z] is coercive

on V
∗,

G[z] ≥ 1

2τ
‖z − φn−1‖2 + κ

4
‖∇z‖4l4 −

κ

2
‖∇z‖2 ≥ 1

2τ
‖z − φn−1‖2 − κ

4
|Ω| .

Also, G[z] is strictly convex functional on V
∗. Actually, for any λ ∈ R and ψ ∈ V

∗, one

has

d2

dλ2
G[z + λψ]

∣

∣

∣

λ=0

=
1

τ
‖ψ‖2 + κε2‖∆ψ‖2 + 2κ‖∇z · ∇ψ‖2 + κ

〈

|∇z|2, |∇ψ|2
〉

− κ‖∇ψ‖2

≥ 1

τ
‖ψ‖2 + κε2‖∆ψ‖2 + κ〈ψ,∆ψ〉 ≥

(

1

τ
− κ

4ε2

)

‖ψ‖2 ≥ 0,

where the Cauchy-Schwarz inequality and Young’s inequality have been used in third

step. Thus, the functional G[z] has a unique minimizer φn∗ , if and only if it solves the

equation

0 =
d

dλ
G
[

z + λψ
]

∣

∣

∣

λ=0
=

〈

1

τ
(z − φn−1) + κε2∆2z − κ∇ · f(∇z), ψ

〉

.

The arbitrariness of ψ ∈ V
∗ implies that the unique minimizer φn∗ satisfies the following

Euler-Lagrange equation:

0 =
1

τ

(

φn∗ − φn−1
)

+ κε2∆2φn∗ − κ∇ · f(∇φn∗ ),

which is just the backward Euler step (1.6). Then the FiBE scheme is uniquely solvable

because the filtering step (1.7) is linear. This completes the proof.

To prove the L2 norm convergence, we need the following algebraic identity, which

can be verified by direct calculations. Appendix A presents a detailed proof for inter-

esting readers.

Lemma 2.1. For any real sequence {wn |n ≥ 0}, it holds that

2w∗,n(w∗,n −wn−1) =
3

4
w2
n +

1

4
(3wn − 2wn−1)

2

−
[

3

4
w2
n−1 +

1

4
(3wn−1 − 2wn−2)

2

]

+
3

2
(wn − 2wn−1 + wn−2)

2 for n ≥ 2,

where

w∗,n :=
3

2
wn −wn−1 +

1

2
wn−2.
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From the filtering step (1.7), we have

φk∗ =
3

2
φk − φk−1 +

1

2
φk−2 for k ≥ 2, (2.1)

so that
1

τ

(

φk∗ − φk−1
)

=
3

2
∂τφ

k − 1

2
∂τφ

k−1 , D2φ
k for k ≥ 2,

where D2φ
k denotes the second-order two-step BDF approximation of ∂tΦ at t = tk.

Thus the unfiltered step (1.6) can be written as

D2φ
k + κε2∆2φk∗ − κ∇ · f

(

∇φk∗
)

= 0 for k ≥ 2. (2.2)

To simplify the error analysis, introduce an auxiliary (exact) solution

Φ∗(tk) :=
3

2
Φ(tk)− Φ(tk−1) +

1

2
Φ(tk−2) for k ≥ 2. (2.3)

The unfiltered solution φk∗ can be viewed as a discrete approximation of Φ∗(tk) such

that

Φ∗(tk)− φk∗ =
3

2

[

Φ(tk)− φk
]

−
[

Φ(tk−1)− φk−1
]

+
1

2

[

Φ(tk−2)− φk−2
]

for k ≥ 2. (2.4)

Then the time consistency error ξk
Φ

of the first step (1.6) at t = tk is defined by

ξkΦ : =
1

τ

(

Φ∗(tk)− Φ(tk−1)
)

+ κε2∆2Φ∗(tk)− κ∇ · f
(

∇Φ∗(tk)
)

=
1

τ

(

Φ∗(tk)− Φ(tk−1)
)

− ∂tΦ(tk) + κε2∆2
[

Φ∗(tk)−Φ(tk)
]

− κ∇ ·
[

f
(

∇Φ∗(tk)
)

− f
(

∇Φ(tk)
)]

,

where Φ∗(tk) is defined by (2.3). Reminding the following facts,

1

τ

[

Φ∗(tk)− Φ(tk−1)
]

= D2Φ(tk),

Φ∗(tk)− Φ(tk) =
τ2

2
∂2τΦ(tk),

it is not difficult to find that

∥

∥ξkΦ
∥

∥ ≤ Cφτ
2 for k ≥ 2, (2.5)

provided the solution Φ is sufficiently regular. For simplicity of presentation, we use

the following notation |||vk|||:

|||vk||| =
∣

∣

∣

∣

∣

∣[vk, vk−1]
∣

∣

∣

∣

∣

∣ :=

√

3

4
‖vk‖2 + 1

4
‖3vk − 2vk−1‖2 for k ≥ 1. (2.6)
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With this definition (2.6) and the inequality
√
a2 + b2 ≤ |a|+ |b|, it is easy to know that

√
3

2
‖vk‖ ≤ |||vk||| ≤

√
3

2
‖vk‖+ 1

2
‖3vk − 2vk−1‖

≤ 3 +
√
3

2
‖vk‖+ ‖vk−1‖ for k ≥ 1. (2.7)

Theorem 2.2. If the step size τ is sufficiently small such that τ ≤ 4ε2/(3 + 2
√
3)κ, the

filtered solution φn of the FiBE scheme (1.6)-(1.7) is convergent in the L2 norm,

|||Φn − φn||| ≤ 2 exp

(

3κtn−1

ε2

)

(

|||Φ1 − φ1|||+ Cφtn−1τ
2
)

for 2 ≤ n ≤ N,

or equivalently,

‖Φn − φn‖ ≤ 3 exp

(

3κtn−1

ε2

)

(

‖Φ1 − φ1‖+ ‖Φ0 − φ0‖+Cφtn−1τ
2
)

for 2 ≤ n ≤ N.

Proof. Let

en := Φ(tn)− φn

be the error between the exact solution and the filtered solution. Eq. (2.4) shows that

en∗ := Φ∗(tn)− φn∗ =
3

2
en − en−1 +

1

2
en−2 for n ≥ 2. (2.8)

We get the following error system:

ek∗ − ek−1

τ
+ κε2∆2ek∗

= κ∇ ·
(

|∇Φ∗(tk)|2∇Φ∗(tk)− |∇φk∗ |2∇φk∗
)

− κ∆ek∗ + ξkΦ. (2.9)

Considering the inner product of (2.9) and 2τek∗ , we obtain

2
〈

ek∗ − ek−1, ek∗
〉

+ 2κτε2‖∆ek∗‖2

= −2κτ
〈

|∇Φ∗(tk)|2∇Φ∗(tk)− |∇φk∗ |2∇φk∗ ,∇ek∗
〉

+ 2κτ‖∇ek∗‖2 + 2τ
〈

ξkΦ, e
k
∗

〉

for k ≥ 2. (2.10)

For the first term in (2.10), Lemma 2.1 yields

2
〈

ek∗ − ek−1, ek∗
〉

≥ |||ek|||2 − |||ek−1|||2 for k ≥ 2.

For any vectors u,v ∈ R2, we can check that

〈

|u|2u− |v|2v,u− v

〉

=
1

2

∥

∥|u|2 − |v|2
∥

∥

2
+

1

2
|u− v|2

(

|u|2 + |v|2
)

≥ 0.
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Thus the nonlinear term in the right side of (2.10) is non-positive and can be dropped.

The second term at the right side of (2.10) can be estimated as

2κ
∥

∥∇ek∗
∥

∥

2 ≤ 2κε2
∥

∥∆ek∗
∥

∥

2
+

κ

2ε2
∥

∥ek∗
∥

∥

2
.

Therefore, it follows from (2.10) that

|||ek|||2 ≤ |||ek−1|||2 + κτ

2ε2
∥

∥ek∗
∥

∥

2
+ 2τ

∥

∥ξkΦ
∥

∥

∥

∥ek∗
∥

∥ for k ≥ 2,

and, by summing k from 2 to n,

|||en|||2 ≤ |||e1|||2 + κτ

2ε2

n
∑

k=2

∥

∥ek∗
∥

∥

2
+ 2τ

n
∑

k=2

∥

∥ξkΦ
∥

∥

∥

∥ek∗
∥

∥ for n ≥ 2. (2.11)

By using the formula (2.8), one can check the simple fact

ek∗ =
6

(
√
3 + 1)2

√
3 + 1

4

(
√
3

2
ek
)

+

√
3 + 1

4

(

3

2
ek − ek−1

)

+
1

2

(
√
3

2
ek−1

)

− 1

2

(

3

2
ek−1 − ek−2

)

.

We apply the inequality

|a|+ |b| ≤
√

2(a2 + b2)

and the definition (2.6) to get

∥

∥ek∗
∥

∥ ≤
√
3 + 1

4

(

∥

∥

∥

∥

√
3

2
ek
∥

∥

∥

∥

+

∥

∥

∥

∥

3

2
ek − ek−1

∥

∥

∥

∥

)

+
1

2

(

∥

∥

∥

∥

√
3

2
ek−1

∥

∥

∥

∥

+

∥

∥

∥

∥

3

2
ek−1 − ek−2

∥

∥

∥

∥

)

≤
√
3 + 1

2

√
2

2
|||ek|||+

√
2

2
|||ek−1|||. (2.12)

By choosing some integer n0 (1 ≤ n0 ≤ n) such that

|||en0 ||| = max
1≤k≤n

|||ek|||,

it is easy to get
∥

∥ek∗
∥

∥ ≤ (
√
3 + 1)

√
6

4
|||en0 |||.

Now we take n := n0 in the estimate (2.11) to obtain

∣

∣

∣

∣

∣

∣en0

∣

∣

∣

∣

∣

∣

2 ≤
∣

∣

∣

∣

∣

∣e1
∣

∣

∣

∣

∣

∣

2
+
κτ

2ε2

n0
∑

k=2

∥

∥ek∗
∥

∥

2
+ 2τ

n0
∑

k=2

∥

∥ξkΦ
∥

∥

∥

∥ek∗
∥

∥
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≤ |||e1|||2 + (
√
3 + 1)

√
6

4

κ

2ε2

n0
∑

k=2

τ
∥

∥ek∗
∥

∥|||en0 |||

+
(
√
3 + 1)

√
6

2

n0
∑

k=2

τ
∥

∥ξkΦ
∥

∥|||en0 |||.

Then dividing both sides of the inequality by |||en0 ||| one gets

|||en0 ||| ≤ |||e1|||+ (
√
3 + 1)

√
6

4

κ

2ε2

n0
∑

k=2

τ
∥

∥ek∗
∥

∥+
(
√
3 + 1)

√
6

2

n0
∑

k=2

τ
∥

∥ξkΦ
∥

∥

such that

|||en||| ≤ |||en0 ||| ≤ |||e1|||+ (
√
3 + 1)

√
6

4

κ

2ε2

n
∑

k=2

τ
∥

∥ek∗
∥

∥+
(
√
3 + 1)

√
6

2

n
∑

k=2

τ
∥

∥ξkΦ
∥

∥

≤ |||e1|||+ (3 + 2
√
3)κ

8ε2
τ |||en|||+ 3(2 +

√
3)κ

8ε2

n−1
∑

k=1

τ |||ek|||+ (
√
3 + 1)

√
6

2

n
∑

k=2

τ
∥

∥ξkΦ
∥

∥.

Under the time-step constraint τ ≤ 4ε2/(3 + 2
√
3)κ, one has

|||en||| ≤ 2|||e1|||+ 3(2 +
√
3)κ

4ε2

n−1
∑

k=1

τ |||ek|||+ (3 +
√
3)
√
2

n
∑

k=2

τ
∥

∥ξkΦ
∥

∥

≤ 2|||e1|||+ 3κ

ε2

n−1
∑

k=1

τ |||ek|||+ 7
n
∑

k=2

τ
∥

∥ξkΦ
∥

∥.

Then, with the time consistency bound (2.5), the discrete Grönwall inequality yields

the first error estimate. Then the equivalence relationship (2.7) arrives at the second

estimate and completes the proof.

As seen, the filtered solution φn of the FiBE scheme (1.6)-(1.7) is second-order

accurate if the first-level solution φ1 is second-order accurate. Actually, the backward

Euler scheme (1.5) at the first time level is adequate since in such case one has, cf. the

proof of [26, Theorem 3.1],

‖Φ1 − φ1‖ ≤ 2‖Φ0 − φ0‖+ Cφτ
2.

Recalling the definition (2.8), one has
∥

∥Φ(tn)− φn∗
∥

∥ ≤
∥

∥Φ(tn)− Φn
∗

∥

∥+
∥

∥Φ∗(tn)− φn∗
∥

∥

≤ Cφτ
2 +

3

2
‖en‖+ ‖en−1‖+ 1

2
‖en−2‖

≤ 9 exp

(

3κtn−1

ε2

)

(

‖Φ1 − φ1‖+ ‖Φ0 − φ0‖+ Cφtn−1τ
2
)

. (2.13)

It says that the unfiltered solution φn∗ is also second-order convergent, see Table 2.
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3. L2 norm stability and energy dissipation law

The following result simulates the continuous L2 norm estimate (1.4) at the discrete

levels.

Theorem 3.1. The FiBE scheme (1.6)-(1.7) is unconditionally stable in the L2 norm,

∣

∣

∣

∣

∣

∣φn
∣

∣

∣

∣

∣

∣

2 ≤
∣

∣

∣

∣

∣

∣φ1
∣

∣

∣

∣

∣

∣

2
+
κ

2
|Ω|tn−1 for n ≥ 1,

where the auxiliary norm ||| · ||| is defined by (2.6).

Proof. Taking the L2 inner product of (1.6) with 2τφn∗ , and using the Green’s for-

mula, one gets

2
〈

φn∗ − φn−1, φn∗
〉

+ 2κτε2
∥

∥∆φn∗
∥

∥

2
+ 2κτ

〈

f(∇φn∗ ),∇φn∗
〉

= 0 for n ≥ 2. (3.1)

By Lemma 2.1, the first term can be bounded by

2
〈

φk∗ − φk−1, φk∗
〉

≥
∣

∣

∣

∣

∣

∣φk
∣

∣

∣

∣

∣

∣

2 −
∣

∣

∣

∣

∣

∣φk−1
∣

∣

∣

∣

∣

∣

2
.

The nonlinear term is handled by

〈

f(∇φn∗ ),∇φn∗
〉

=

∥

∥

∥

∥

|∇φn∗ |2 −
1

2

∥

∥

∥

∥

2

− 1

4
|Ω| ≥ −1

4
|Ω|.

Inserting the two estimates into (3.1), one has

|||φk|||2 − |||φk−1|||2 ≤ κτ

2
|Ω| for k ≥ 2. (3.2)

Summing this inequality from k = 2 to n yields the claimed result and completes the

proof.

To build up the discrete energy dissipation law for the FiBE scheme (1.6)-(1.7),

we need the following algebraic identity. Appendix B presents a proof for interesting

readers.

Lemma 3.1. For any real sequence {wn |n ≥ 0}, it holds that

2(w∗,n − w∗,n−1)(w∗,n −wn−1)

=
3

2
(δ1wn)

2 +
3

4
(δ1wn − δ1wn−1)

2

−
[

1

2
(δ1wn−1)

2 +
1

4
(δ1wn−1 − δ1wn−2)

2

]

+ (δ1w∗,n)
2,

where

w∗,n :=
3

2
wn − wn−1 +

1

2
wn−2, δ1wn := wn −wn−1.
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Consider the following modified energy:

E [φk] := E
[

φk∗
]

+
τ

4κ
‖∂τφk‖2 +

τ3

8κ

∥

∥∂2τφ
k
∥

∥

2
for k ≥ 2, (3.3)

where E[φk∗ ] is the discrete version of energy functional (1.1),

E
[

φk∗
]

:=
ε2

2

∥

∥∆φk∗
∥

∥

2
+

1

4

∥

∥|∇φk∗ |2 − 1
∥

∥

2
for k ≥ 2.

From the formula (2.1), we see that φk∗ → φ∞ as the solution φk approaches the steady

state φ∞, that is, φk → φ∞. In the limit φk → φ∞, we have ∂τφ
k → 0 so that E [φk] →

E[φ∞].

Theorem 3.2. If the time step size τ ≤ 4ε2/κ, the FiBE scheme (1.6)-(1.7) preserves

a modified energy dissipation law

E [φn] ≤ E [φn−1] for n ≥ 3.

Proof. For simplicity of presentation, denote

δ1v
n := vn − vn−1, δ21v

n := δ1v
n − δ1v

n−1

for any time sequence {vn |n ≥ 0}. Taking the inner product of (1.6) by κ−1δ1φ
n
∗ , one

obtains that

1

κτ

〈

φn∗ − φn−1, δ1φ
n
∗

〉

+ ε2
〈

∆φn∗ , δ1∆φ
n
∗

〉

+
〈

|∇φn∗ |2∇φn∗ , δ1∇φn∗
〉

−
〈

∇φn∗ , δ1∇φn∗
〉

= 0 for n ≥ 3, (3.4)

where the Green’s formula was used. For the first term, Lemma 3.1 yields

1

κτ

〈

φn∗ − φn−1, δ1φ
n
∗

〉

≥ 1

4κτ
‖δ1φn‖2 +

1

8κτ

∥

∥δ21φ
n
∥

∥

2 − 1

4κτ
‖δ1φn−1‖2

− 1

8κτ

∥

∥δ21φ
n−1
∥

∥

2
+

1

2κτ

∥

∥δ1φ
n
∗

∥

∥

2
.

For the second and fourth terms in (3.4), the identity 2a(a − b) = a2 − b2 + (a − b)2

leads to

ε2 〈∆φn∗ , δ1∆φn∗ 〉 =
ε2

2

∥

∥∆φn∗
∥

∥

2 − ε2

2

∥

∥∆φn−1
∗

∥

∥

2
+
ε2

2

∥

∥δ1∆φ
n
∗

∥

∥

2
,

−〈∇φn∗ , δ1∇φn∗ 〉 = − 1

2

∥

∥∇φn∗
∥

∥

2
+

1

2

∥

∥∇φn−1
∗

∥

∥

2 − 1

2

∥

∥δ1∇φn∗
∥

∥

2
.

Since

a3(a− b) =
1

2
a2
[

a2 − b2 + (a− b)2
]
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=
1

4
a4 − 1

4
b4 +

1

4
(a2 − b2)2 +

1

2
a2(a− b)2,

the nonlinear term in (3.4) can be bounded by

〈

|∇φn∗ |2∇φn∗ , δ1∇φn∗
〉

≥ 1

4

〈

|∇φn∗ |4, 1
〉

− 1

4

〈

|∇φn−1
∗ |4, 1

〉

.

Thus by collecting the above estimates, it follows from (3.4) that

E [φn]− E [φn−1] +
1

2κτ

∥

∥δ1φ
n
∗

∥

∥

2
+
ε2

2

∥

∥δ1∆φ
n
∗

∥

∥

2 − 1

2

∥

∥δ1∇φn∗
∥

∥

2 ≤ 0.

The Young’s inequality shows that

−1

2

∥

∥δ1∇φn∗
∥

∥

2 ≥ −ε
2

2

∥

∥δ1∆φ
n
∗

∥

∥

2 − 1

8ε2
∥

∥δ1φ
n
∗

∥

∥

2
.

Then we have

E [φn]− E [φn−1] +

(

1

2κτ
− 1

8ε2

)

∥

∥δ1φ
n
∗

∥

∥

2 ≤ 0 for n ≥ 3.

Then the claimed energy dissipation law follows if τ ≤ 4ε2/κ.

4. Numerical tests

This section presents some numerical tests of the FiBE method (1.6)-(1.7) with the

Fourier pseudo-spectral approximation in space. A simple fixed-point iteration algo-

rithm with the termination error 10−12 is applied to solve the resulting nonlinear equa-

tions at each time step. Since the FiBE method requires an initialization step, where

the solution at previous level as the initial guess for each iteration, the fully implicit

backward Euler scheme is used here to obtain the first level solution.

Example 4.1. We consider the exact solution

Φ(x, y, t) = cos(t) sin(x) sin(y)

of the MBE model (1.6)-(1.7) with a proper forcing term g(x, t), i.e.,

∂tΦ+ κ
(

ǫ2∆2Φ−∇ · f(∇Φ)
)

= g(x, t),

where the domain Ω = (0, 2π)2 and the model parameter κ = 1, ǫ2 = 0.1.

In our computations, we set T = 1 and use a 1282 spatial mesh with the uniform

spacings to cover the domain Ω. Since the spatial error of the Fourier pseudo-spectral

method is standard, we only examine the temporal error. The convergence order is

computed by

Order ≈ log
(

e(N)/e(2N)
)

log
(

τ(N)/τ(2N)
) ,

where the discrete L2 norm error

e(N) := max
1≤n≤N

‖Φn − φn‖.
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Table 2: Numerical accuracy of backward Euler, FiBE and BDF2 schemes.

N
Backward Euler FiBE φn

∗
FiBE φn BDF2

e(N) Order e(N) Order e(N) Order e(N) Order

40 9.28e-03 − 1.30e-04 − 5.50e-05 − 1.19e-04 −
80 4.60e-03 1.01 2.87e-05 2.18 1.58e-05 1.80 2.85e-05 2.06

160 2.29e-03 1.01 6.72e-06 2.09 4.20e-06 1.91 6.97e-06 2.03

320 1.14e-03 1.00 1.62e-06 2.05 1.08e-06 1.96 1.72e-06 2.02

640 5.72e-04 1.00 3.99e-07 2.02 2.75e-07 1.98 4.28e-07 2.01

Table 2 records the numerical results by the backward Euler, FiBE and BDF2 meth-

ods. As expected, the backward Euler method with first-order accuracy can achieve

second-order time accuracy after adding an extra code. The time filtered method has

the advantage of improving the first-order accuracy without increasing the computa-

tional complexity.

4.1. Simulation of coarsening dynamics

Example 4.2. We use the FiBE scheme to conduct the long-time dynamic simulations

of coarsening. Consider the MBE equations (1.6)-(1.7) with the initial condition

φ(x, 0) = 0.1
(

sin(3x) sin(2y) + sin(5x) sin(5y)
)

.

The spatial domain is set as Ω = (0, 2π)2 and the spatial meshes is set as 128×128. The

model parameters are chosen as κ = 1, ǫ2 = 0.1.

Numerical tests in [2] showed that the MBE model permits multi-scale behavior in

time. We run the FiBE scheme (1.6)-(1.7) with time-step size τ = 10−3 until T = 30.

In Fig. 1, the snapshots of solution profiles are taken at time t = 0, 0.05, 2.5, 5.5, 8, 30,

respectively. Time snapshots of the evolution of the model with slope selection are in

accordance with the previous observations in [2]. We plot two discrete energy curves

in Fig. 2, where E(tn) := E[φn] is the original energy calculated by the filtered solution

φn and E(tn) := E [φn] is the modified energy defined in (3.3). It is clearly seen that

both the modified energy and the free energy decay monotonically in the coarsening

process.

Appendix A. Proof of Lemma 2.1

Define

δ1wn := wn − wn−1, δ21wn := δ1wn − δ1wn−1.

One has

w∗,n =
3

2
wn − wn−1 +

1

2
wn−2 = wn +

1

2
δ21wn,

w∗,n − wn−1 = δ1wn +
1

2
δ21wn.
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(a) t = 0 (b) t = 0.05 (c) t = 2.5

(d) t = 5.5 (e) t = 8 (f) t = 30

Figure 1: The snapshot of φ at the time t = 0, 0.05, 2.5, 5.5, 8, 30.

Figure 2: Time evolutions of original energy E(t) and modified energy E(t).

Then we derive that

4w∗,n(w∗,n − wn−1)

=
(

2wn + δ21wn

)(

2δ1wn + δ21wn

)

= 4wnδ1wn + 2δ1wn

(

δ21wn

)

+ 2wnδ
2
1wn +

(

δ21wn

)2

= 4wnδ1wn + 4δ1wn

(

δ21wn

)

+ 2wn−1δ
2
1wn +

(

δ21wn

)2
. (A.1)

By using the identity

2a(a− b) = a2 − b2 + (a− b)2,

we have

4wnδ1wn = 2w2
n − 2w2

n−1 + 2(δ1wn)
2,
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4δ1wn(δ
2
1wn) = 2(δ1wn)

2 − 2(δ1wn−1)
2 + 2

(

δ21wn

)2
,

2wn−1δ
2
1wn = 2wn−1δ1wn − 2wn−1δ1wn−1

= w2
n − w2

n−1 − (δ1wn)
2 −w2

n−1 + w2
n−2 − (δ1wn−1)

2.

Thus it follows from (A.1) that

4w∗,n(w∗,n − wn−1)

= 3w2
n − 4w2

n−1 + w2
n−2 + 3(δ1wn)

2 − 3(δ1wn−1)
2 + 3

(

δ21wn

)2

=
[

3w2
n −w2

n−1 + 3(δ1wn)
2
]

−
[

3w2
n−1 − w2

n−2 + 3(δ1wn−1)
2
]

+ 3
(

δ21wn

)2

, 2G[wn, wn−1]− 2G[wn−1, wn−2] + 3
(

δ21wn

)2
,

where the functional G is non-negative due to the following fact:

G[a, b] :=
3

2
a2 − 1

2
b2 +

3

2
(a− b)2 = 3a2 − 3ab+ b2 =

3

4
a2 +

1

4
(3a− 2b)2.

It completes the proof.

Appendix B. Proof of Lemma 3.1

With the notations in Appendix A, one has

w∗,n + w∗,n−1 − 2wn−1 = δ1wn +
1

2
δ21wn +

1

2
δ21wn−1,

w∗,n − w∗,n−1 = δ1wn +
1

2
δ21wn − 1

2
δ21wn−1.

By using the identity

2a(a− b) = a2 − b2 + (a− b)2,

one gets

2(δ1w∗,n)(w∗,n +w∗,n−1 − 2wn−1)

= 2

(

δ1wn +
1

2
δ21wn

)2

− 1

2

(

δ21wn−1

)2

= 2(δ1wn)
2 + 2δ1wn

(

δ21wn

)

+
1

2

(

δ21wn

)2 − 1

2

(

δ21wn−1

)2

= 3(δ1wn)
2 − (δ1wn−1)

2 +
3

2

(

δ21wn

)2 − 1

2

(

δ21wn−1

)2
.

Thus we derive that

4(w∗,n − wn−1)(δ1w∗,n)

= 4w∗,n(δ1w∗,n)− 4wn−1(δ1w∗,n)
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= 2w2
∗,n − 2w2

∗,n−1 + 2(δ1w∗,n)
2 − 4wn−1(δ1w∗,n)

= 2(δ1w∗,n)
2 + 2(w∗,n + w∗,n−1 − 2wn−1)(δ1w∗,n)

= 3(δ1wn)
2 +

3

2

(

δ21wn

)2 − (δ1wn−1)
2 − 1

2

(

δ21wn−1

)2
+ 2(δ1w∗,n)

2.

It leads to the claimed identity of Lemma 3.1.
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