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Abstract. In this paper, we derive and analyze a conservative Crank-Nicolson-type

finite difference scheme for the Klein-Gordon-Dirac (KGD) system. Differing from
the derivation of the existing numerical methods given in literature where the nu-

merical schemes are proposed by directly discretizing the KGD system, we translate

the KGD equations into an equivalent system by introducing an auxiliary function,
then derive a nonlinear Crank-Nicolson-type finite difference scheme for solving the

equivalent system. The scheme perfectly inherits the mass and energy conserva-
tive properties possessed by the KGD, while the energy preserved by the existing

conservative numerical schemes expressed by two-level’s solution at each time step.

By using energy method together with the ‘cut-off’ function technique, we establish
the optimal error estimate of the numerical solution, and the convergence rate is

O(τ2 + h2) in l∞-norm with time step τ and mesh size h. Numerical experiments

are carried out to support our theoretical conclusions.
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Key words: Klein-Gordon-Dirac equation, nonlinear finite difference scheme, conservation,
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1. Introduction

In this paper, we consider the Klein-Gordon-Dirac (KGD) equation in d (d = 1, 2)

dimensions [17]
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∂ttφ(t, x)−∆φ(t, x) + φ(t, x)

= gΨ∗(t, x)σ3Ψ(t, x), x ∈ R
d, t > 0,

i∂tΨ(t, x) + i

d∑

j=1

σj∂jΨ(t, x)− ωσ3Ψ(t, x)

= gφ(t, x)σ3Ψ(t, x), x ∈ R
d, t > 0.

(1.1)

The Klein-Gordon-Dirac equation is a fundamental model in quantum electrody-

namics and describes the dynamics of a complex-value Dirac vector field Ψ(t, x) :=
(ψ1(t, x), ψ2(t, x)) ∈ C

2 interacting with a neutral real-valued meson field φ := φ(t, x) ∈
R through the Yukawa potential [13,25,27,33,36] with a coupling constant 0 < g ∈ R.

Note that ω > 0 is the radio between the mass of the electron and the mass of the

meson, i =
√
−1 is the imaginary unit, t is time, x ∈ R

d is the spatial coordinate vector.

In 2D, x = (x1, x2)
T , ∂j = ∂/∂xj , j = 1, 2 and ∆ =

∑2
j=1 ∂

2
j . In addition, Ψ∗ is the

conjugate transpose of Ψ, σ1, σ2 and σ3 are the Pauli matrices given as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

The KGD system (1.1) is dispersive and conserves the total mass

M(t) := ‖Ψ(t, ·)‖2L2 =

∫

Rd

|Ψ(t, x)|2dx ≡ ‖Ψ(0, ·)‖2L2 , (1.3)

and energy

E(t) :=
1

2

∫

Rd

|∂tφ(t, x)|2dx+
1

2

∫

Rd

|∂xφ(t, x)|2dx +
1

2

∫

Rd

|φ(t, x)|2dx

+

∫

Rd

[
iΨ∗(t, x)

d∑

j=1

σj∂jΨ(t, x)− ωΨ∗(t, x)σ3Ψ(t, x)

− gφ(t, x)Ψ∗(t, x)σ3Ψ(t, x)

]
dx ≡ E(0), t ≥ 0. (1.4)

For the KGD system (1.1), we introduce an auxiliary function u := ∂tφ to rewrite it into

the following equivalent system:

∂tu(t, x)−∆φ(t, x) + φ(t, x) = gΨ∗(t, x)σ3Ψ(t, x), x ∈ R
d, t > 0,

∂tφ(t, x) = u(t, x), x ∈ R
d, t > 0,

i∂tΨ(t, x) + i

d∑

j=1

σj∂jΨ(t, x)− ωσ3Ψ(t, x)

= gφ(t, x)σ3Ψ(t, x), x ∈ R
d, t > 0.

(1.5)
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Corresponding to (1.3)-(1.4), the system (1.5) still preserves the total mass

M (t) := ‖Ψ(t, ·)‖2L2 =

∫

Rd

|Ψ(t, x)|2dx ≡ ‖Ψ(0, ·)‖2L2 , (1.6)

and energy

E(t) :=
1

2

∫

Rd

|u(t, x)|2dx +
1

2

∫

Rd

|∇φ(t, x)|2dx +
1

2

∫

Rd

|φ(t, x)|2dx

+

∫

Rd

[
iΨ∗(t, x)

d∑

j=1

σj∂jΨ(t, x)− ωΨ∗(t, x)σ3Ψ(t, x)

− gφ(t, x)Ψ∗(t, x)σ3Ψ(t, x)

]
dx ≡ E(0), t ≥ 0. (1.7)

There have been extensive theoretical studies on the KGD (1.1) system, includ-

ing the local and global well-posedness of the Cauchy problem and the existences

of bound state solutions, for which we refer to [2, 14, 15, 19, 20, 23, 24, 32, 35] and

references therein. For the numerical part, different kinds of numerical methods, in-

cluding the finite difference time domain (FDTD) methods and spectral methods have

been proposed and analyzed for efficient computations of wave propagation in classical

quantum physics, i.e., dispersive waves in the Gross-Pitaevskii equation [3], the Klein-

Gordon equation [7,8,12,22,29,34,40,43], the Dirac equation [1,4–6,26,28,30,39],

the Klein-Gordon-Schrodinger equations [10, 21], the Klein-Gordon-Zakharov equa-

tions [11, 16, 37], the Maxwell-Dirac equations [9, 31], etc. However, the approaches

for KGD (1.1) proposed in the literature [17, 41, 42] are limited. To the best of our

knowledge, there has not been any numerical work on the KGD (1.5) which is equiv-

alent to (1.1). As well as, in the construction of the finite difference scheme, the

nonlinear term of Klein-Gordon part is treated as n and n+ 1 layers which is not men-

tioned in existed literatures. Thus, the aim of this paper is to design a new conservative

Crank-Nicolson-type finite difference (CNFD) scheme for KGD (1.5) and analyze the

effectiveness and accuracy of the scheme.

In this paper, we propose and analyze a conservative CNFD scheme for KGD (1.5)

with periodic boundary conditions. We prove that the scheme perfectly inherits the

conservative properties of KGD system in the discrete sense. In the process of error

analysis, we apply the energy method and the ‘cut-off’ function technique to obtain the

convergence order of the scheme under proper assumptions about the exact solutions.

Moreover, in the numerical calculation, our scheme can be started directly, i.e. we do

not need to calculate the value of the first layer time alone.

The remaining part of this paper is arranged as follows. In Section 2, we introduce

a new conservative CNFD scheme and state our main results. Section 3 is devoted to

the error analysis. Numerical results are shown in Section 4 to demonstrate the error

behavior. Finally, some conclusions are drawn in Section 5. Throughout the paper, we

adopt the standard notations for Sobolev spaces and write p . q to represent that there

exists a constant C > 0 independent of the discrete parameters, such that |p| ≤ Cq.
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2. A new conservative scheme and the main results

In this section, we shall derive a new finite difference scheme for the KGD system.

For simplicity of notations, here we only illustrate the numerical method in one di-

mension, and extension to two-dimensional case is straightforward with some small

modifications. We truncate the whole space onto a finite interval Ω = (a, b) with pe-

riodic boundary conditions in practical computation, which is large enough to ignore

the truncation error. The initial-boundary value problem of the one-dimensional (1D)

KGD system reads

∂tu(t, x)− ∂xxφ(t, x) + φ(t, x) = gΨ∗(t, x)σ3Ψ(t, x), x ∈ Ω, t > 0,

∂tφ(t, x) = u(t, x), x ∈ Ω, t > 0,

i∂tΨ(t, x) + iσ1∂xΨ(t, x)− ωσ3Ψ = gφ(t, x)σ3Ψ(t, x), x ∈ Ω, t > 0,

u(t, a) = u(t, b), ∂xu(t, a) = ∂xu(t, b), t ≥ 0,

φ(t, a) = φ(t, b), ∂xφ(t, a) = ∂xφ(t, b), t ≥ 0,

Ψ(t, a) = Ψ(t, b), ∂xΨ(t, a) = ∂xΨ(t, b), t ≥ 0,

φ(0, x) = φ0(x), u(0, x) = φ1(x), Ψ(0, x) = Ψ0(x), x ∈ Ω,

(2.1)

where φ := φ(t, x) ∈ R and Ψ := Ψ(t, x) = (ψ1(t, x), ψ2(t, x))
T ∈ C

2. The periodic

initial-boundary value problem (2.1) conserves the total mass

M(t) := ‖Ψ(t, ·)‖2L2(Ω) =

∫

Ω
|Ψ(t, x)|2dx ≡ ‖Ψ0‖2L2(Ω), (2.2)

and energy

E(t) :=
1

2

∫

Ω
|u(t, x)|2dx+

1

2

∫

Ω
|∂xφ(t, x)|2dx+

1

2

∫

Ω
|φ(t, x)|2dx

+

∫

Ω

[
iΨ∗(t, x)σ1∂xΨ(t, x)− ωΨ∗(t, x)σ3Ψ(t, x)

− gφ(t, x)Ψ∗(t, x)σ3Ψ(t, x)

]
dx ≡ E(0), t ≥ 0. (2.3)

2.1. A conservative CNFD scheme

Choose temporal step size τ := ∆t > 0 and denote time steps as tn := nτ for

n = 0, 1, . . . . Choose mesh size h := ∆x = b−a
M

with M being an even positive integer

and denote grid points as xj := a+ j∆x, j = 0, 1, . . . ,M .

Denote

X̃M =
{
U = (U0, U1, U2, · · · , UM )T | Uj ∈ R, j = 0, 1, . . . ,M, U0 = UM

}
,

XM =
{
U = (U0, U1, U2, · · · , UM )T | Uj ∈ C

2, j = 0, 1, . . . ,M, U0 = UM

}
,
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and we always use U−1 = UM−1 and U1 = UM+1 if they are involved. Introduce some

finite difference discretization operators for U ∈ XM or X̃M

δ+x U
n
j =

Un
j+1 − Un

j

h
, δxU

n
j =

Un
j+1 − Un

j−1

2h
, δ2xU

n
j =

Un
j+1 − 2Un

j + Un
j−1

h2
,

U
n+ 1

2
j =

Un+1
j + Un

j

2
, δ+t U

n
j =

Un+1
j − Un

j

τ
, δ2tU

n
j =

Un+1
j − 2Un

j + Un−1
j

τ2
.

The discrete inner product, standard l2-norm, H1-seminorm and l∞-norm for U, V ∈
XM (or U, V ∈ X̃M ) are given as

(U, V ) := h
M−1∑

j=0

V ∗
j Uj, ‖U‖ :=

√√√√h
M−1∑

j=0

|Uj |2,

|U |1 :=

√√√√h
M−1∑

j=0

|δ+x Uj|2, ‖U‖∞ := max
0≤j≤M−1

|Uj |.

Let φnj , u
n
j and Ψn

j be numerical approximations of φ(tn, xj), u(tn, xj) and Ψ(tn, xj),
respectively, for j = 0, 1, . . . ,M and n = 0, 1, . . . , and denote

φn =
(
φn0 , φ

n
1 , · · · , φnM

)T ∈ X̃M ,

un =
(
un0 , u

n
1 , · · · , unM

)T ∈ X̃M ,

Ψn =
(
Ψn

0 ,Ψ
n
1 , · · · ,Ψn

M

)T ∈ XM

as the solution vector at t = tn. Based on the above basics, we propose the following

nonlinear CNFD scheme to discrete the KGD system (2.1) for j = 1, . . . ,M :

δ+t u
n
j − δ2xφ

n+ 1
2

j + φ
n+ 1

2
j =

g

2

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j +

(
Ψn

j

)∗
σ3Ψ

n
j

]
, n > 0, (2.4)

δ+t φ
n
j = u

n+ 1
2

j , n > 0, (2.5)

iδ+t Ψ
n
j + iσ1δxΨ

n+ 1
2

j − ωσ3Ψ
n+ 1

2
j = gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j , n > 0. (2.6)

Meanwhile, the periodic boundary and initial conditions in (2.1) are discretized as

un+1
M = un+1

0 , un+1
−1 = un+1

M−1, u0j = φ1(xj), n ≥ 0, j = 0, 1, . . . ,M,

φn+1
M = φn+1

0 , φn+1
−1 = φn+1

M−1, φ0j = φ0(xj), n ≥ 0, j = 0, 1, . . . ,M,

Ψn+1
M = φn+1

0 , Ψn+1
−1 = Ψn+1

M−1, Ψ0
j = Ψ0(xj), n ≥ 0, j = 0, 1, . . . ,M.

(2.7)

The above scheme is time symmetric and time reversible, i.e. the scheme (2.4)-(2.6)

is unchanged under τ ↔ −τ , n+ 1 ↔ n and taking complex conjugates. In numerical

calculation, eliminate the intermediate item un for n ≥ 0 in the scheme (2.4)-(2.6),
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we obtain the following equivalent nonlinear implicit finite difference scheme for j =
1, . . . ,M :

δ2t φ
n
j − 1

4
δ2x
(
φn−1
j + 2φnj + φn+1

j

)
+

1

4

(
φn−1
j + 2φnj + φn+1

j

)

=
g

4

[(
Ψn−1

j

)∗
σ3Ψ

n−1
j + 2

(
Ψn

j

)∗
σ3Ψ

n
j +

(
Ψn+1

j

)∗
σ3Ψ

n+1
j

]
, n > 0, (2.8)

− 4

τ

(
δ+t φ

0
j − u0j

)
+ 2δ2xφ

1
2
j + g

[(
Ψ1

j

)∗
σ3Ψ

1
j +

(
Ψ0

j

)∗
σ3Ψ

0
j

]
+ φ0j = φ1j , n > 0, (2.9)

iδ+t Ψ
n
j + iσ1δxΨ

n+ 1
2

j − ωσ3Ψ
n+ 1

2
j = gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j , n > 0. (2.10)

The computations of the scheme (2.8)-(2.10) can be arranged as follows: φ0, ψ0 are

given by the initial conditions, φ1 is updated by (2.9), then Ψ1 is obtained by (2.10),

and then φ2 is updated by (2.8), for n ≥ 2, φn and Ψn are available, φn+1 is updated

by (2.8) and Ψn+1 is updated by (2.10).

2.2. Mass and energy conservation

As the discrete version (or approximation) of the initial-boundary value problem

(2.1) possessing the conservative properties (2.2)-(2.3), the proposed scheme (2.4)-

(2.7) still possesses similar conservative properties which can be viewed as the discrete

version of (2.2)-(2.3).

Theorem 2.1. The nonlinear CNFD scheme (2.4)-(2.7) preserves the total mass and en-

ergy in the discrete sense, i.e.,

Mn := ‖Ψn‖2 ≡M0, n ≥ 0 (2.11)

and

En :=
1

2
‖u‖2 + 1

2
‖δ+x φn‖2 +

1

2
‖φn‖2 + ih

M−1∑

j=0

(
Ψn

j

)∗
σ1δxΨ

n
j

− ωh

M−1∑

j=0

(
Ψn

j

)∗
σ3Ψ

n
j − gh

M−1∑

j=0

φnj
(
Ψn

j

)∗
σ3Ψ

n
j ≡ E0, n ≥ 0. (2.12)

Proof. Firstly, we prove the mass conservation (2.11). To do this, we make the inner

product of τ(Ψn+1 +Ψn) with (2.6), then take the imaginary part to obtain

Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
(
iδ+t Ψ

n
j + iσ1δxΨ

n+ 1
2

j − ωσ3Ψ
n+ 1

2
j

)}

= Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j

}
, (2.13)
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where Im{a} means taking the imaginary part of complex value a. Simple calculations

gives the left three items of (2.13)

Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
iδ+t Ψ

n
j

}
(2.14)

= Re

{
h

M−1∑

j=0

(
Ψn+1

j +Ψn
j

)∗(
Ψn+1

j −Ψn
j

)
}

= ‖Ψn+1‖2 − ‖Ψn‖2,

Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
iσ1δxΨ

n+ 1
2

j

}
(2.15)

= Re

{
τh

2

M−1∑

j=0

(
Ψn+1

j +Ψn
j

)∗
σ1δx

(
Ψn+1

j +Ψn
j

)
}

=
τh

4

M−1∑

j=0

[(
Ψn+1

j +Ψn
j

)∗
σ1δx

(
Ψn+1

j +Ψn
j

)
+ δx

(
Ψn+1

j +Ψn
j

)∗
σ1

(
Ψn+1

j +Ψn
j

)]
= 0,

Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
ωσ3Ψ

n+ 1
2

j

}
(2.16)

= −hτωi
4

M−1∑

j=0

[(
Ψn+1

j +Ψn
j

)∗
σ3

(
Ψn+1

j +Ψn
j

)
−

(
Ψn+1

j +Ψn
j

)∗
σ3

(
Ψn+1

j +Ψn
j

)]
= 0,

where Re{a} means taking the real part of complex value a. From (2.16), by using the

fact that (Ψn+1
j +Ψn

j )
∗σ3(Ψ

n+1
j +Ψn

j ) is real, we get

Im

{
h

M−1∑

j=0

τ
(
Ψn+1

j +Ψn
j

)∗
gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j

}
= 0. (2.17)

Inserting (2.14)-(2.17) into (2.13) gives

‖Ψn+1‖2 − ‖Ψn‖2 = 0, (2.18)

which immediately gives (2.11).

Secondly, we prove the energy conservation (2.12). To do this, we compute the

discrete inner products of (2.4) with δ+t φ
n, (2.5) with δ+t u

n, (2.6) with 2δ+t (Ψ
n), re-

spectively, then take the real part of the third result to obtain

h

M−1∑

j=0

δ+t φ
n
j δ

+
t u

n
j − h

M−1∑

j=0

δ+t φ
n
j δ

2
xφ

n+ 1
2

j + h

M−1∑

j=0

δ+t φ
n
j φ

n+ 1
2

j

= h
M−1∑

j=0

δ+t φ
n
j

g

2

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j +

(
Ψn

j

)∗
σ3Ψ

n
j

]
, (2.19)
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h
M−1∑

j=0

δ+t u
n
j δ

+
t φ

n
j = h

M−1∑

j=0

δ+t u
n
j u

n+ 1
2

j , (2.20)

Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
iδ+t Ψ

n
j + h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
iσ1δxΨ

n+ 1
2

j

− h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
ωσ3Ψ

n+ 1
2

j

}

= Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j

}
. (2.21)

By simple calculations, (2.19) and (2.20) become

h

M−1∑

j=0

δ+t φ
n
j δ

+
t u

n
j +

1

2τ

(∥∥δ+x φn+1
∥∥2 −

∥∥δ+x φn
∥∥2
)
+

1

2τ

(
‖φn+1‖2 − ‖φn‖2

)

=
g

2τ
h

M−1∑

j=0

(
φn+1
j − φnj

) [(
Ψn+1

j

)∗
σ3Ψ

n+1
j +

(
Ψn

j

)∗
σ3Ψ

n
j

]
, (2.22)

h

M−1∑

j=0

δ+t u
n
j δ

+
t φ

n
j =

1

2τ

(
‖un+1‖2 − ‖un‖2

)
. (2.23)

For the left three terms and the right one term of (2.21), we have

Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
iδ+t Ψ

n
j

}
= 2Im

{∥∥δ+t Ψn
∥∥2
}
= 0, (2.24)

Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
iσ1δxΨ

n+ 1
2

j

}

= Im

{
h

τ

M−1∑

j=0

(
Ψn+1

j −Ψn
j

)∗
σ1δx

(
Ψn+1

j +Ψn
j

)
}

= − ih

2τ

M−1∑

j=0

(
Ψn+1

j −Ψn
j

)∗
σ1δx

(
Ψn+1

j +Ψn
j

)
− δx

(
Ψn+1

j +Ψn
j

)∗
σ1

(
Ψn+1

j −Ψn
j

)

= − ih
τ

M−1∑

j=0

[(
Ψn+1

j

)∗
σ1δxΨ

n+1
j −

(
Ψn

j

)∗
σ1δxΨ

n
j

]
, (2.25)

Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
ωσ3Ψ

n+ 1
2

j

}
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= Re

{
ωh

τ

M−1∑

j=0

(
Ψn+1

j −Ψn
j

)∗
σ3

(
Ψn+1

j +Ψn
j

)
}

=
ωh

2τ

M−1∑

j=0

[(
Ψn+1

j −Ψn
j

)∗
σ3

(
Ψn+1

j +Ψn
j

)
+

(
Ψn+1

j +Ψn
j

)∗
σ3

(
Ψn+1

j −Ψn
j

)]

=
ωh

τ

M−1∑

j=0

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j −

(
Ψn

j

)∗
σ3Ψ

n
j

]
, (2.26)

Re

{
h

M−1∑

j=0

2δ+t
(
Ψn

j

)∗
gφ

n+ 1
2

j σ3Ψ
n+ 1

2
j

}

=
gh

4τ

M−1∑

j=0

(
φn+1
j + φnj

)[(
Ψn+1

j −Ψn
j

)∗
σ3

(
Ψn+1

j +Ψn
j

)
+

(
Ψn+1

j +Ψn
j

)∗
σ3

(
Ψn+1

j −Ψn
j

)]

=
gh

2τ

M−1∑

j=0

(
φn+1
j + φnj

) [(
Ψn+1

j

)∗
σ3Ψ

n+1
j −

(
Ψn

j

)∗
σ3Ψ

n
j

]
. (2.27)

Inserting (2.24)-(2.27) into (2.21) yields

ih

τ

M−1∑

j=0

[(
Ψn+1

j

)∗
σ1δxΨ

n+1
j −

(
Ψn

j

)∗
σ1δxΨ

n
j

]

− ωh

τ

M−1∑

j=0

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j −

(
Ψn

j

)∗
σ3Ψ

n
j )
]

=
gh

2τ

M−1∑

j=0

(
φn+1
j + φnj

) [(
Ψn+1

j

)∗
σ3Ψ

n+1
j −

(
Ψn

j

)∗
σ3Ψ

n
j )
]
. (2.28)

Combining (2.22), (2.23) and (2.28) leads to En ≡ En−1, and the energy conservation

(2.12) holds.

2.3. Existence and uniqueness

The purpose of this section is to prove the existence of the numerical solution of

(2.4)-(2.6).

Lemma 2.1. For any given φn, un and Ψn with n = 0, 1, . . . , the solution φn+1, un+1 and

Ψn+1 of the CNFD scheme (2.4)-(2.6) exists and is unique at each time step.

Proof. For a fixed n, the scheme (2.4)-(2.6) can be written as

2

τ

(
u
n+ 1

2
j − unj

)
− δ2xφ

n+ 1
2

j + φ
n+ 1

2
j =

g

2

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j +

(
Ψn

j

)∗
σ3Ψ

n
j

]
, (2.29)
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2

τ

(
φ
n+ 1

2
j − φnj

)
= u

n+ 1
2

j , (2.30)

Ψ
n+ 1

2
j = Ψn

j − τ

2
σ1δxΨ

n+ 1
2

j − i
ωτ

2
σ3Ψ

n+ 1
2

j − i
gτ

2
φ
n+ 1

2
j σ3Ψ

n+ 1
2

j . (2.31)

Combining (2.29) and (2.30), we can get

φ
n+ 1

2
j =

(
4

τ2
+ 1− δ2x

)−1

×
(

4

τ2
φnj +

2

τ
unj +

g

2

[(
Ψn+1

j

)∗
σ3Ψ

n+1
j +

(
Ψn

j

)∗
σ3Ψ

n
j

])
. (2.32)

Note

φ
n+ 1

2
j := F

(
φnj , u

n
j ,Ψ

n+1
j ,Ψn

j

)
∈ X̃M . (2.33)

As a consequence, the solvability of the scheme (2.4)-(2.6) is equivalent to the follow-

ing finite difference equation:

Ψ
n+ 1

2
j = Ψn

j − τ

2
σ1δxΨ

n+ 1
2

j − i
ωτ

2
σ3Ψ

n+ 1
2

j − i
gτ

2
F
(
φnj , u

n
j ,Ψ

n+1
j ,Ψn

j

)
σ3Ψ

n+ 1
2

j . (2.34)

Define a map Gn : XM → XM , for W ∈ XM as

GnWj =Wj −Ψn
j +

τ

2
σ1δxWj + i

ωτ

2
σ3Wj + i

gτ

2
F
(
φnj , u

n
j ,Ψ

n+1
j ,Ψn

j

)
σ3Wj. (2.35)

It is obvious that Gn is continuous from XM → XM . Moreover, the fact for ‖W‖2 >
‖Ψn‖2

Re
{
(GnW,W )

}
= ‖W‖2 − Re

{
(Ψn,W )

}
≥ ‖W‖2

(
‖W‖2 − ‖Ψn‖2

)
> 0, (2.36)

which implies that there exists a solution W ∗ such that GnW ∗ = 0 by applying the

Brouwer fixed point theorem [3]. In other words, the scheme (2.4)-(2.6) is solvable.

The uniqueness is a direct consequence of the fact that the solutions in (2.4)-(2.6)

are updated as φ1 → Ψ1 → φ2 → Ψ2 · · · , where a linear system is solved at each

step.

2.4. Main results

Before giving our error estimate results of the proposed scheme, we make the

following two type of assumptions on the exact solution φ and Ψ of the KGD equa-

tion (2.1):

Assumption (A)

φ ∈ C4
(
[0, T ];L∞(Ω)

)
∩ C3

(
[0, T ];W 1,∞

p (Ω)
)
∩ C2

(
[0, T ];W 2,∞

p (Ω)
)

∩ C1
(
[0, T ];W 3,∞

p (Ω)
)
∩C

(
[0, T ];W 4,∞

p (Ω)
)
,

Ψ ∈ C3
(
[0, T ]; [W 1,∞

p (Ω)]2
)
∩ C2

(
[0, T ]; [W 2,∞

p (Ω)]2
)
∩C1

(
[0, T ]; [W 4,∞

p (Ω)]2
)
.



150 S. Bian et al.

Assumption (B)

φ ∈ C4
(
[0, T ];L∞(Ω)

)
∩ C3

(
[0, T ];W 1,∞

p (Ω)
)
∩ C2

(
[0, T ];W 2,∞

p (Ω)
)

∩ C1
(
[0, T ];W 3,∞

p (Ω)
)
∩ C

(
[0, T ];W 4,∞

p (Ω)
)
,

Ψ ∈ C3
(
[0, T ]; [L∞(Ω)]2

)
∩ C2

(
[0, T ]; [W 1,∞

p (Ω)]2
)
∩C1

(
[0, T ]; [W 3,∞

p (Ω)]2
)
,

where

Wm,∞
p (Ω) =

{
v | v ∈Wm,∞(Ω), ∂lxv(a) = ∂lxv(a), l = 0, 1, . . . ,m− 1

}
, m ≥ 1

with 0 < T < T ∗ (T ∗ is the maximal existence time of the solution to the KGD system

(2.1). We denote

Nφ = ‖φ‖L∞
, NΨ = ‖Ψ‖L∞

(2.37)

with
L∞ = L∞

(
[0, T ];L∞(Ω)

)
for φ,

L∞ = L∞
(
[0, T ]; [L∞(Ω)]2

)
for Ψ,

(2.38)

and the grid error functions ηn ∈ X̃M and en ∈ XM

ηnj = φ(tn, xj)− φnj , enj = Ψ(tn, xj)−Ψn
j , j = 0, 1, . . . ,M, n ≥ 0 (2.39)

with φnj and Ψn
j being the numerical approximations obtained from the proposed CNFD

scheme, then the error estimates can be established as follows:

Theorem 2.2. Under Assumption (A), there exist constants h0 > 0 and τ0 > 0 sufficiently

small, such that, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following error estimates

for the nonlinear CNFD scheme (2.4)-(2.6):

‖ηn‖+ ‖δ+x ηn‖ . h2 + τ2, ‖en‖+ ‖δ+x en‖ . h2 + τ2, (2.40)

‖ηn‖∞ . h2 + τ2, ‖en‖∞ . h2 + τ2, (2.41)

‖φn‖∞ ≤ 1 +Nφ, ‖Ψn‖∞ ≤ 1 +NΨ, 0 < n ≤ T/τ. (2.42)

Theorem 2.3. Under Assumption (B), there exist constants h0 > 0 and τ0 > 0 sufficiently

small, such that, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following error estimates

for the nonlinear CNFD scheme (2.4)-(2.6):

‖ηn‖+ ‖δ+x ηn‖ . h2 + τ2, ‖en‖ . h2 + τ2, (2.43)

‖ηn‖∞ . h2 + τ2, ‖en‖∞ . h2 + τ2, (2.44)

‖φn‖∞ ≤ 1 +Nφ, ‖Ψn‖∞ ≤ 1 +NΨ, 0 < n ≤ T/τ. (2.45)

Remark 2.1. Obviously, the assumption on the exact solution φ and Ψ given in As-

sumption (B) is weaker than that given in Assumption (A). Hence, the error estimates

given in Theorem 3.2 is weaker than those given in Theorem 2.3, and one can see in

Section 3 that the proofs of the two theorems are quite different.



Error Estimate of a New Conservative Finite Difference Scheme 151

3. Error estimates

In this section, we propose the rigorous error estimates of the CNFD scheme (2.4)-

(2.7) for solving the KGD equations (2.1).

3.1. The proof of Theorems 3.1 and 3.2

Similar to the nonlinear Schrödinger equations [3,27,38], we truncate the nonlin-

earity of the KGD equation to a global Lipschitz function with compact support in 1D.

There is a good news, in [6, 18, 37], the same main difficulties were tackled by this

method. This idea ensures that the numerical solution is close to the continuous solu-

tion if the continuous solution is bounded. Here, we apply the same cut-off technique

to choose a function ρ(s) ∈ C∞
0 (R) as

ρ(s) =





1, |s| ≤ 1,

∈ [0, 1], 1 ≤ |s| ≤ 2,

0, |s| ≥ 2.

Denote N1 = (1 +NΨ)
2, N2 = (1 +Nφ)

2 and define

fN1(Ψ) = ρ
(
|Ψ|2/N1

)
Ψ, fN2(φ) = ρ

(
|φ|2/N1

)
φ, Ψ ∈ C

2, φ ∈ R. (3.1)

Then fN1(Ψ) and fN2(φ) have compact supports, and are smooth and global Lipschitz,

i.e., there exist CN1 > 0 and CN2 > 0 such that ∀Ψ1,Ψ2 ∈ C
2, ∀φ1, φ2 ∈ R, and

∣∣fN1(Ψ1)− fN1(Ψ2)
∣∣ ≤ CN1 |Ψ1 −Ψ2|,∣∣fN2(φ1)− fN2(φ2)
∣∣ ≤ CN2 |φ1 − φ2

∣∣.
(3.2)

Set φ̂0 = φ0, Ψ̂0 = Ψ0, û
0 = φ1 and determine φ̂n, ûn ∈ X̃M and Ψ̂n ∈ XM as

follows for j = 0, 1, . . . ,M

δ+t û
n
j − δ2xφ̂

n+ 1
2

j + φ̂
n+ 1

2
j

=
g

2

[(
Ψ̂n+1

j

)∗
σ3fN1

(
Ψ̂n+1

j

)
+

(
Ψ̂n

j

)∗
σ3fN1

(
Ψn

j

)]
, n > 0, (3.3)

δ+t φ̂
n
j = û

n+ 1
2

j , n > 0, (3.4)

iδ+t Ψ̂
n
j + iσ1δxΨ̂

n+ 1
2

j − ωσ3Ψ̂
n+ 1

2
j = gf

n+ 1
2

N2,j
σ3f

n+ 1
2

N1,j
, n > 0, (3.5)

where

φ̂
n+ 1

2
j =

1

2

(
φ̂n+1
j + φ̂nj

)
, Ψ̂

n+ 1
2

j =
1

2

(
Ψ̂n+1

j + Ψ̂n
j

)
, û

n+ 1
2

j =
1

2

(
ûn+1
j + ûnj

)
,

f
n+ 1

2
N1,j

=
1

2

(
fN1

(
Ψ̂n+1

j

)
+ fN1

(
Ψ̂n

j

))
, f

n+ 1
2

N2,j
=

1

2

(
fN2

(
φ̂n+1
j

)
+ fN2

(
φ̂nj

))
.

(3.6)
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In fact, φ̂nj and Ψ̂n
j can be viewed as the approximations to φ(tn, xj) and Ψ(tn, xj)

respectively. Using the properties of ρ and standard techniques [3], it is easy to check

that the above scheme (3.3)-(3.5) is uniquely solvable for sufficiently small time step τ .

Define the error functions as

η̂nj = φ(tn, xj)− φ̂nj , ênj = Ψ(tn, xj)− Ψ̂n
j , j = 0, 1, . . . ,M, n ≥ 0. (3.7)

Concerning the errors bounds on η̂n and ên, we have the following estimates.

Theorem 3.1. Under Assumption (A), there exist constants h0 > 0 and τ0 > 0 sufficiently

small, such that, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following error estimates

for the nonlinear CNFD scheme (3.3)-(3.5):

‖η̂n‖+ ‖δ+x η̂n‖ . h2 + τ2, ‖ên‖+ ‖δ+x ên‖ . h2 + τ2, (3.8)

‖η̂n‖∞ . h2 + τ2, ‖ên‖∞ . h2 + τ2, (3.9)

‖φ̂n‖∞ ≤ 1 +Nφ, ‖Ψ̂n‖∞ ≤ 1 +NΨ, 0 < n ≤ T/τ. (3.10)

Theorem 3.2. Under Assumption (B), there exist constants h0 > 0 and τ0 > 0 sufficiently

small, such that, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following error estimates

for the nonlinear CNFD scheme (3.3)-(3.5):

‖η̂n‖+ ‖δ+x η̂n‖ . h2 + τ2, ‖ên‖ . h2 + τ2, (3.11)

‖η̂n‖∞ . h2 + τ2, ‖ên‖∞ . h2 + τ2, (3.12)

‖φ̂n‖∞ ≤ 1 +Nφ, ‖Ψ̂n‖∞ ≤ 1 +NΨ, 0 < n ≤ T/τ. (3.13)

We start with the local truncation errors of (3.3)-(3.5) ζ̂n, ξ̂n ∈ X̃M and θ̂n ∈ XM

as follows:

ζ̂nj := δ+t u(tn, xj)−
1

2
δ2x
(
φ(tn+1, xj) + φ(tn, xj)

)
+

1

2

(
φ(tn+1, xj) + φ(tn, xj)

)

− g

2

[
Ψ∗(tn+1, xj)σ3Ψ(tn+1, xj) + Ψ∗(tn, xj)σ3Ψ(tn, xj)

]
, n > 0, (3.14)

ξ̂nj := δ+t φ(tn, xj)−
1

2

(
u(tn+1, xj) + u(tn, xj)

)
, n > 0, (3.15)

θ̂nj := iδ+t Ψ(tn, xj) +
i

2
σ1δx

(
Ψ(tn+1, xj) + Ψ(tn, xj)

)

− ω

2
σ3

(
Ψ(tn+1, xj) + Ψ(tn, xj)

)

− g

4

(
φ(tn+1, xj) + φ(tn, xj)

)
σ3

(
Ψ(tn+1, xj) + Ψ(tn, xj)

)
, n > 0. (3.16)

And we have the following estimates held for ζ̂n, ξ̂n ∈ X̃M and θ̂n ∈ XM .

Lemma 3.1. Under Assumption (A) or Assumption (B), there exist constants h0 > 0 and

τ0 > 0 sufficiently small such that when 0 < h ≤ h0 and 0 < τ ≤ τ0, the local truncation

errors (3.14)-(3.16) satisfy
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(i) Under Assumption (A), we have

‖ζ̂n‖ . h2 + τ2, ‖ξ̂n‖+ ‖δ+t ξ̂n‖ . h2 + τ2,

‖θ̂n‖+ ‖δ+x θ̂n‖ . h2 + τ2, 0 ≤ n ≤ T/τ − 1.
(3.17)

(ii) Under Assumption (B), we have

‖ζ̂n‖ . h2 + τ2, ‖ξ̂n‖+ ‖δ+t ξ̂n‖ . h2 + τ2,

‖θ̂n‖ . h2 + τ2, 0 ≤ n ≤ T/τ − 1.
(3.18)

Proof. Noticing (2.1), we apply Taylor expansion to the local truncation errors

(3.14)-(3.16) under Assumptions (A), then we obtain the following inequalities with

the help of triangle inequality and the Cauchy-Schwartz inequality:

|ζ̂nj | ≤
τ2

24
‖∂tttu‖∞ +

τ2

2
‖∂xxttφ‖∞ +

h2

12
‖∂xxxxφ‖∞

+
τ2

8
‖∂ttφ‖∞ +

gτ2

4
‖∂tΨ∗‖∞‖∂tΨ‖∞,

|ξ̂nj | ≤
τ2

24
‖∂tttφ‖∞ +

τ2

8
‖∂ttu‖∞,

|δ+t ξ̂nj | ≤
τ2

24
‖∂ttttφ‖∞ +

τ2

8
‖∂tttu‖∞,

|θ̂nj | ≤
τ2

24
‖∂tttΨ‖∞ +

h2

6
‖∂xxxΨ‖∞ +

τ2

8
‖∂xttΨ‖∞

+
τ2

8
‖∂ttΨ‖∞ +

gτ2

4
‖∂tφ‖∞‖∂tΨ‖∞,

|δ+x θ̂nj | ≤
τ2

24
‖∂tttxΨ‖∞ +

h2

6
‖∂xxxxΨ‖∞ +

τ2

8
‖∂xxttΨ‖∞ +

τ2

8
‖∂ttxΨ‖∞

+
gτ2

4

(
‖∂txφ‖∞‖∂tΨ‖∞ + ‖∂tφ‖∞‖∂txΨ‖∞

)
.

These immediately imply

‖ζ̂n‖∞ + ‖ξ̂n‖∞ . h2 + τ2, ‖θ̂n‖∞+ ‖δ+x θ̂n‖∞ . h2 + τ2, 0 ≤ n ≤ T/τ − 1. (3.19)

Then we can obtain (3.17). Similarly, we can also obtain (3.18). Thus, the conclusions

for the local truncation errors are derived.

Next, we study the growth of the errors. Subtracting (3.3)-(3.5) from (3.14)-(3.16),

respectively. Then we denote µ̂nj := u(tn, xj)− ûnj , the error equations can be obtained

as for j = 0, 1, . . . ,M

δ+t µ̂
n
j − 1

2
δ2x
(
η̂n+1
j + η̂nj

)
+

1

2

(
η̂n+1
j + η̂nj

)
= ζ̂nj + λ̂nj , 0 ≤ n ≤ T/τ − 1, (3.20)
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δ+t η̂
n
j − 1

2

(
µ̂n+1
j + µ̂nj

)
= ξ̂nj , 0 ≤ n ≤ T/τ − 1, (3.21)

iδ+t ê
n
j +

i

2
σ1δx

(
ên+1
j + ênj

)
− ω

2
σ3

(
ên+1
j + ênj

)
= θ̂nj + χ̂n

j , 0 ≤ n ≤ T/τ − 1, (3.22)

η̂n0 = η̂nM , η̂n−1 = η̂nM−1, η̂0j = 0, 0 ≤ n ≤ T/τ − 1, (3.23)

ên0 = ênM , ên−1 = ênM−1, ê0j = 0, 0 ≤ n ≤ T/τ − 1, (3.24)

µ̂n0 = µ̂nM , µ̂n−1 = µ̂nM−1, µ̂0j = 0, 0 ≤ n ≤ T/τ − 1, (3.25)

where λ̂n = (λ̂n0 , λ̂
n
1 , · · · , λ̂nM )T ∈ X̃M and χ̂n = (χ̂n

0 , χ̂
n
1 , · · · , χ̂n

M )T ∈ XM are the errors

of the nonlinear terms as

λ̂nj :=
g

2

[(
Ψ∗(tn+1, xj)σ3Ψ(tn+1, xj) + Ψ∗(tn, xj)σ3Ψ(tn, xj)

)

−
(
(Ψ̂n+1

j )∗σ3fN1(Ψ̂
n+1
j ) + (Ψ̂n

j )
∗σ3fN1(Ψ

n
j )
)]
, (3.26)

χ̂n
j :=

g

4

[(
φ(tn+1, xj) + φ(tn, xj)

)
σ3

(
Ψ(tn+1, xj) + Ψ(tn, xj)

)

−
(
fN2(φ̂

n+1
j ) + fN2(φ̂

n
j )
)
σ3

(
fN1(Ψ̂

n+1
j ) + fN1(Ψ̂

n
j )
)]
. (3.27)

In order to prove Theorems 3.1 and 3.2, we propose the following lemmas with

regard to the nonlinear terms λ̂nj and χ̂n
j .

Lemma 3.2. Under Assumption (A) or Assumption (B), the nonlinear terms λ̂n and χ̂n

(0 ≤ n ≤ T/τ − 1) satisfy

(i) Under Assumption (A), we have

‖λ̂n‖ . ‖ên+ 1
2 ‖, ‖χ̂n‖ . ‖ên+ 1

2‖+ ‖η̂n+ 1
2 ‖,

‖δ+x χ̂n‖ . ‖ên+ 1
2‖+ ‖δ+x ên+

1
2 ‖+ ‖η̂n+ 1

2‖+ ‖δ+x η̂n+
1
2 ‖. (3.28)

(ii) Under Assumption (B), we have

‖λ̂n‖ . ‖ên+ 1
2 ‖, ‖χ̂n‖ . ‖ên+ 1

2 ‖+ ‖η̂n+ 1
2‖. (3.29)

Proof. Under Assumption (A), rewriting the nonlinear term λ̂n, we get

λ̂nj =
g

2

[
Ψ∗(tn+1, xj)σ3Ψ(tn+1, xj)−Ψ∗(tn+1, xj)σ3fN1(Ψ̂

n+1
j )

+ Ψ∗(tn+1, xj)σ3fN1(Ψ̂
n+1
j )− (Ψ̂n+1

j )∗σ3fN1(Ψ̂
n+1
j )

+ Ψ∗(tn, xj)σ3Ψ(tn, xj)−Ψ∗(tn, xj)σ3fN1(Ψ̂
n
j )

+ Ψ∗(tn, xj)σ3fN1(Ψ̂
n
j )− (Ψ̂n

j )
∗σ3fN1(Ψ̂

n
j )
]
,
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and in view of the properties of fN1 and fN2, we get

∣∣λ̂nj
∣∣ ≤ g

2
C
[
|ên+1|

(
NΨ + |fN1(Ψ̂

n+1
j )|

)
+ |ên|

(
NΨ + |fN1(Ψ̂

n
j )|

)]
.

Similarly, rewrite the nonlinear term χ̂n as follows:

χ̂n
j =

g

4

[(
φ(tn+1, xj) + φ(tn, xj)

)
σ3

(
Ψ(tn+1, xj) + Ψ(tn, xj)

)

−
(
φ(tn+1, xj) + φ(tn, xj)

)
σ3

(
fN1(Ψ̂

n+1
j ) + fN1(Ψ̂

n
j )
)

+
(
φ(tn+1, xj) + φ(tn, xj)

)
σ3

(
fN1(Ψ̂

n+1
j ) + fN1(Ψ̂

n
j )
)

−
(
fN2(φ̂

n+1
j ) + fN2(φ̂

n
j )
)
σ3

(
fN1(Ψ̂

n+1
j ) + fN1(Ψ̂

n
j )
)]
,

which combined with (3.2) to get

∣∣χ̂n
j

∣∣ ≤ g

4
C
[
Nφ

∣∣ên+1
j + ênj

∣∣+
∣∣fn+

1
2

N1,j

∣∣∣∣η̂n+1
j + η̂nj

∣∣
]
,

which also implies that

∣∣δ+x χ̂n
j

∣∣ ≤ g

4
C
[
‖∂xΨ‖∞

∣∣ên+1
j + ênj

∣∣+Nφδ
+
x

∣∣ên+1
j + ênj

∣∣

+ δ+x
∣∣fn+

1
2

N1,j

∣∣∣∣η̂n+1
j + η̂nj

∣∣+
∣∣fn+

1
2

N1,j

∣∣δ+x
∣∣η̂n+1

j + η̂nj
∣∣
]
,

where the constant C is independent of h and τ . Under Assumption (A), applying the

properties of fN1 and fN2, then combining the above inequalities, we obtain (3.28),

similarly for Assumption (B), we can obtain (3.29). Then, we complete the proof.

Based on Lemmas 3.1 and 3.2, we are ready to prove the error estimates of scheme

(3.3)-(3.5) under Assumptions (A) and (B).

Proof of Theorem 3.1. When n = 0, the estimates are obvious and for 1 ≤ n ≤ T/τ ,

the proof is divided into two parts.

Part 1. (Estimates of ‖η̂n‖ + ‖δ+x η̂n‖ + ‖ên‖ + ‖δ+x ên‖ for 1 ≤ n ≤ T/τ). Computing

the inner product of (3.20) and (3.21) with (η̂n+1 − η̂n) and (µ̂n+1 − µ̂n), respectively,

then subtracting the two obtained equations, we get

1

2

(
‖µ̂n+1‖2 − ‖µ̂n‖2

)
+

1

2

(
‖δ+x η̂n+1‖2 − ‖δ+x η̂n‖2

)
+

1

2

(
‖η̂n+1‖2 − ‖η̂n‖2

)

= τh

M−1∑

j=0

δ+t η̂
n
j

(
ζ̂nj + λ̂nj

)
− τh

M−1∑

j=0

δ+t µ̂
n
j ξ̂

n
j . (3.30)

In (3.30), replacing n by l, then summing it up for l = 0, 1, . . . , n− 1 ≤ T/τ , we get

1

2

(
‖µ̂n‖2 − ‖µ̂0‖2

)
+

1

2

(
‖δ+x η̂n‖2 − ‖δ+x η̂0‖2

)
+

1

2

(
‖η̂n‖2 − ‖η̂0‖2

)
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= τh
n−1∑

l=0

M−1∑

j=0

δ+t η̂
l
j

(
ζ̂ lj + λ̂lj

)
+ τh

n−2∑

l=0

M−1∑

j=0

µ̂l+1
j δ+t ξ̂

l
j −

(
µ̂n, ξ̂n−1

)

= τh

n−1∑

l=0

M−1∑

j=0

(
µ̂
l+ 1

2
j + ξ̂lj

)(
ζ̂ lj + λ̂lj

)
+ τh

n−2∑

l=0

M−1∑

j=0

µ̂l+1
j δ+t ξ̂

l
j −

(
µ̂n, ξ̂n−1

)
, (3.31)

and in (3.31), making use of Cauchy inequality, triangle inequality and Lemmas 3.1

and 3.2, we obtain

(
1

4
‖µ̂n‖2 − 1

2
‖µ̂0‖2

)
+

1

2

(
‖δ+x η̂n‖2 − ‖δ+x η̂0‖2

)
+

1

2

(
‖η̂n‖2 − ‖η̂0‖2

)

. τ

n−1∑

l=0

(
‖µ̂l+1‖2 + ‖µ̂l‖2 + ‖ζ̂ l‖2 + ‖λ̂l‖2 + ‖δ+t ξ̂l‖2

)
+ ‖ξ̂n+1‖2

. τ

n−1∑

l=0

(
‖µ̂l+1‖2 + ‖µ̂l‖2 + ‖êl+1‖2 + ‖êl‖2 + (h2 + τ2)2

)
. (3.32)

Next, computing the inner product of τ(ên+1 + ên) and τδ2x(ê
n+1 + ên) with (3.22),

respectively, then subtracting the two obtained equations and taking the imaginary

parts, we get

‖ên+1‖2 − ‖ên‖2 + ‖δ+x ên+1‖2 − ‖δ+x ên‖2

= Im

{
2τh

M−1∑

j=0

(
ên+1
j + ênj

)∗(
θ̂nj + χ̂n

j

)
+ δ+x

(
ên+1
j + ênj

)∗
δ+x

(
θ̂nj + χ̂n

j

)
}
. (3.33)

In (3.33), replacing n by l, then summing it up for l = 0, 1, . . . , n − 1 ≤ T/τ and

applying Cauchy inequality, triangle inequality and Lemmas 3.1 and 3.2, we obtain

‖ên‖2 − ‖ê0‖2 + ‖δ+x ên‖2 − ‖δ+x ê0‖2

= Im

{
2τh

n−1∑

l=0

M−1∑

j=0

(
êl+1
j + êlj

)∗(
θ̂lj + χ̂l

j

)
+ δ+x

(
êl+1
j + êlj

)∗
δ+x

(
θ̂lj + χ̂l

j

)
}

. τ

n−1∑

l=0

(
‖êl+1‖2 + ‖êl‖2 + ‖δ+x êl+1‖2 + ‖δ+x êl‖2 + ‖θ̂l‖2 + ‖χ̂l‖2 + ‖δ+x θ̂l‖2 + ‖δ+x χ̂l‖2

)

. τ

n−1∑

l=0

(
‖êl+1‖2 + ‖êl‖2 + ‖δ+x êl+1‖2 + ‖δ+x êl‖2 + ‖η̂l+1‖2 + ‖η̂l‖2

+ ‖δ+x η̂l+1‖2 + ‖δ+x η̂l‖2 + (h2 + τ2)2
)
. (3.34)

Denote

Sn :=
1

4
‖µ̂n‖2 + 1

2
‖δ+x η̂n‖2 +

1

2
‖η̂n‖2 + ‖ên‖2 + ‖δ+x ên‖2, (3.35)
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then the inequalities (3.32) and (3.34) imply

Sn . τ

n−1∑

l=0

Sl + (h2 + τ2)2, 1 ≤ n ≤ T/τ, (3.36)

therefore, the inequality implies that there exists a constant τ1 sufficiently small, such

that when 0 < τ ≤ τ1, by making using of the discrete Gronwall’s inequality, the

following holds

Sn . (h2 + τ2)2, 1 ≤ n ≤ T/τ, (3.37)

this together with (3.35) gives

‖η̂n‖+ ‖δ+x η̂n‖+ ‖ên‖+ ‖δ+x ên‖ . h2 + τ2, 1 ≤ n ≤ T/τ. (3.38)

Part 2. (Estimates of ‖φ̂n‖∞ and ‖ψ̂n‖∞ for 1 ≤ n ≤ T/τ). Applying the discrete

Sobolev inequality, we get from (3.38) that

‖η̂n‖∞ ≤ C
(
‖η̂n‖+ ‖δ+x η̂n‖

)
≤ C(h2 + τ2), ‖ên‖∞ ≤ C(h2 + τ2), (3.39)

thus, there exist h1 > 0 and τ2 > 0 sufficiently small, such that, when 0 < h ≤ h1 and

0 < τ ≤ τ2, there are

‖φ̂n‖∞ ≤ ‖φ(tn, xj)‖∞ + ‖η̂n‖∞ ≤ Nφ + 1,

‖ψ̂n‖∞ ≤ ‖Ψ(tn, xj)‖∞ + ‖ên‖∞ ≤ NΨ + 1.
(3.40)

Choosing τ0 = min{τ1, τ2} and h0 = h1, the proof of the Theorem 3.1 is completed.

Based on the proof of Theorem 3.1, and recalling the definition of ρ, Theorem 3.1

implies that (3.3)-(3.5) collapse to (2.4)-(2.6). Thus Theorem 2.2 is a direct conse-

quence of Theorem 3.1.

Proof of Theorem 3.2. Under Assumption (B), we give a brief proof process for

the error estimates of scheme (3.8)-(3.10). Similarly, when n = 0, the estimates are

obvious and for 1 ≤ n ≤ T/τ , the proof is divided into two parts.

Part 1. (Estimates of ‖η̂n‖ + ‖δ+x η̂n‖ + ‖ên‖ for 1 ≤ n ≤ T/τ). Recalling the proof of

Theorem 3.1, we can get the following results directly. Denote

Sn :=
1

4
‖µ̂n‖2 + 1

2
‖δ+x η̂n‖2 +

1

2
‖η̂n‖2 + ‖ên‖2, (3.41)

we can get

Sn . τ
n−1∑

l=0

Sl + T (h2 + τ2)2, 1 ≤ n ≤ T/τ, (3.42)

therefore, the inequality implies that there exists a constant τ3 sufficiently small, such

that, when 0 < τ ≤ τ3 by using the discrete Gronwall’s inequality, the following holds

Sn . (h2 + τ2)2, 1 ≤ n ≤ T/τ, (3.43)
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due to (3.41), we get

‖η̂n‖+ ‖δ+x η̂n‖+ ‖ên‖ . h2 + τ2, 1 ≤ n ≤ T/τ. (3.44)

Part 2. (Estimates of ‖φ̂n‖∞ and ‖ψ̂n‖∞ for 1 ≤ n ≤ T/τ). Applying the discrete

Sobolev inequality, we get

‖η̂n‖∞ ≤ C
(
‖η̂n‖+ ‖δ+x η̂n‖

)
≤ C(h2 + τ2). (3.45)

By inverse inequality we can get for 1 ≤ n ≤ T/τ ,

‖ên‖∞ ≤ 1√
h
‖ên‖ ≤ h2 + τ2√

h
. (3.46)

On the other hand, due to the triangle inequality, the error equation (3.22) implies

‖δx(ên+1 + ên)‖ ≤ C
(
‖δ+t ên‖+ ‖ên‖+ ‖ên+1‖+ ‖η̂n‖+ ‖η̂n+1‖+ ‖θ̂n|

)

≤ C

(‖ên‖+ ‖ên+1‖
τ

+ (h2 + τ2)

)

≤ C
h2 + τ2

τ
, 0 ≤ n ≤ T/τ − 1 (3.47)

for sufficiently small τ and the constant C is independent of h and τ . The Sobolev

inequality shows that

‖ên+1‖∞ − ‖ên‖∞ ≤ ‖ên+1 + ên‖∞
≤ C‖ên+1 + ên‖ 1

2
(
‖ên+1 + ên‖+ ‖δ+x (ên+1 + ên)‖

) 1
2

≤ C
h2 + τ2

τ
1
2

, 0 ≤ n ≤ T/τ − 1. (3.48)

Summing the (3.48) together for time step 0, 1, . . . , n− 1, we have

‖ên‖∞ ≤ Cn
h2 + τ2

τ
3
2

≤ CT
h2 + τ2

τ
3
2

, 1 ≤ n ≤ T/τ. (3.49)

Therefore, for 1 ≤ n ≤ T/τ , in view of (3.46) and (3.49), we have

‖ên‖∞ ≤ Cmin

{
h2 + τ2√

h
,
h2 + τ2

τ
3
2

}
≤ C

(
2τ

1
4h

3
4 + τ

1
2 + h

3
2
)
, (3.50)

thus, there exist h2 > 0 and τ4 > 0 sufficiently small, such that, when 0 < h ≤ h2 and

0 < τ ≤ τ4, we obtain

‖φ̂n‖∞ ≤ ‖φ(tn, xj)‖∞ + ‖η̂n‖∞ ≤ Nφ + 1,

‖ψ̂n‖∞ ≤ ‖Ψ(tn, xj)‖∞ + ‖ên‖∞ ≤ NΨ + 1.
(3.51)

Choosing τ
′

0 = min{τ3, τ4} and h
′

0 = h2, the proof of Theorem 3.2 is complete.
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Based on the proof of Theorem 3.2, and recalling the definition of ρ, Theorem 3.2

implies that (3.3)-(3.5) collapse to (2.4)-(2.7). Thus Theorem 2.3 is a direct conse-

quence of Theorem 3.2.

Remark 3.1. The above theorems can be directly generalized to the two-dimensional

case. That is to say, they are still valid under the technical conditions 0 < τ .

1/
√
Cd(h) and 0 < h . 1/

√
Cd(h). The key observation is that ‖ηn‖∞ and ‖en‖∞

can be controlled by the discrete Sobolev inequality [3] in 2D as

‖U‖∞ . Cd(h)
[
‖U‖+ ‖δ+x U‖

]
, Cd(h) =

{
1, d = 1,
| ln h|, d = 2,

(3.52)

where U is a periodic 2D mesh function.

4. Numerical examples

In this section, we report numerical results to verify our theoretical error analysis

on the difference solutions. The computational interval Ω is chosen as Ω = [−128, 128],
i.e. a = −128 and b = 128. In the computation, the problem is solved numerically with

the coefficients g = 1 and ω = 1. Let φ(t, x) and Ψ(t, x) be the ‘exact’ solution which

is obtained numerically by using the scheme (2.4)-(2.7) with very fine mesh size and

small time step, i.e. he = 1/2048 and τe = 5e−6. In order to quantify the convergence,

we define the error functions (l2-error, discrete H1-error and l∞-error) as

eφ
H1(tn) =

√
‖φ(tn, ·) − φn‖2

l2
+ ‖δ+x (φ(tn, ·)− φn)‖2

l2
,

eΨH1(tn) =
√

‖Ψ(tn, ·)−Ψn‖2
l2
+ ‖δ+x (Ψ(tn, ·) −Ψn)‖2

l2
,

eφ
l2
(tn) = ‖φ(tn, ·)− φn‖l2 , eΨl2(tn) = ‖Ψ(tn, ·)−Ψn‖l2 ,

eφ∞(tn) = ‖φ(tn, ·) − φn‖∞, eΨ∞(tn) = ‖Ψ(tn, ·)−Ψn‖∞.

For the initial conditions, here we take

φ0(x) = e−
x
2

2 , φ1(x) =
3

2
e−

x
2

2 , Ψ0(x) =
(
e−

x
2

2 , e−
(x−1)2

2
)T
. (4.1)

We test and study the temporal and spatial error separately. Firstly, we measure

the spatial discretization errors. In order to do this, we fix the time step size τ = 5e−4

sufficiently small, such that the errors from time discretization are negligible, and solve

KGD with CNFD method under different mesh sizes h. Tables 1 and 2 list the numerical

errors eφ, Ψ at t = 1 with different mesh sizes h for scheme (2.4)-(2.7).

Next we test the temporal errors at t = 1, listed in Tables 3 and 4 under different

τ with a very small mesh size h = he such that the discretization errors in space are

negligible.

Finally, Figs. 1 and 2 display the values of total mass and energy in the discrete level

at different times with h = 1/128 and τ = 0.001 which confirms the mass and energy

conservation of the proposed CNFD scheme.
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Table 1: Spatial errors of CNFD for φ at t = 1.

Spatial error h0 = 1/8 h0/2 h0/2
2 h0/2

3 h0/2
4

eφ
l2

7.71E-4 1.93E-4 4.82E-5 1.21E-6 3.04E-6

Order — 2.00 2.00 2.00 1.99

eφ
∞

5.81E-4 1.45E-4 3.63E-5 9.11E-6 2.30E-6

Order — 2.00 2.00 2.00 1.99

eφ
H1 1.80E-3 4.52E-4 1.13E-4 2.83E-5 7.12E-6

Order — 2.00 2.00 2.00 1.99

Table 2: Spatial errors of CNFD for Ψ at t = 1.

Spatial error h0 = 1/8 h0/2 h0/2
2 h0/2

3 h0/2
4

eΨ
l2

8.20E-3 2.10E-3 5.18E-4 1.30E-4 3.26E-5

Order — 1.99 2.00 2.00 1.99

eΨ
∞

4.10E-3 1.00E-3 2.58E-4 6.46E-5 1.61E-5

Order — 1.98 2.00 2.00 2.00

eΨ
H1 2.00E-2 5.00E-3 1.30E-3 3.16E-4 7.94E-5

Order — 1.98 2.00 2.00 1.99

Table 3: Temporal errors of CNFD for φ at t = 1.

Temporal error τ0 = 1/20 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4

eφ
l2

1.00E-3 2.58E-4 6.46E-5 1.62E-5 4.04E-6

Order — 2.00 2.00 2.00 2.00

eφ
∞

8.27E-4 2.07E-4 5.16E-5 1.29E-5 3.23E-6

Order — 2.00 2.00 2.00 2.00

eφ
H1 1.50E-3 3.83E-4 9.56E-5 2.39E-5 5.98E-6

Order — 2.00 2.00 2.00 2.00

Table 4: Temporal errors of CNFD for Ψ at t = 1.

Temporal error τ0 = 1/20 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4

eΨl2 6.70E-3 1.70E-3 4.19E-4 1.05E-4 2.62E-5

Order — 2.00 2.00 2.00 2.00

eΨ
∞

4.10E-3 1.00E-3 2.56E-4 6.41E-5 1.60E-5

Order — 2.00 2.00 2.00 2.00

eΨH1 9.10E-3 2.30E-3 5.68E-4 1.42E-4 3.55E-5

Order — 2.00 2.00 2.00 2.00
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Figure 1: The discrete mass Mn with τ = 0.001 and h = 1/128.
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Figure 2: The discrete energy En with τ = 0.001 and h = 1/128.

5. Conclusion and further question

In conclusion, a new conservative CNFD method was proposed and analyzed for

solving the KGD system. After converting the auxiliary function, we prove that the new

scheme perfectly conserved the total mass and energy in the discrete level. By utiliz-
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ing ‘cut-off’ function technique and energy method, two type of error estimates were

rigorously established under two different hypotheses, which showed that the CNFD

method was second-order accurate in both space and time. Numerical experiments

were conducted to confirm our estimates of the proposed scheme. In future, our fur-

ther exploration is to give an unconditional error estimates of the proposed scheme for

solving the two-dimensional KGD equations, and we will discuss it in detail in our next

research work.
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