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Abstract. We improve Gilbert-Varshamov bound by graph spectral method. Gilbert
graph Gq,n,d is a graph with all vectors in Fn

q as vertices where two vertices are adjacent
if their Hamming distance is less than d. In this paper, we calculate the eigenvalues
and eigenvectors of Gq,n,d using the properties of Cayley graph. The improved bound
is associated with the minimum eigenvalue of the graph. Finally we give an algorithm
to calculate the bound and linear codes which satisfy the bound.
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1 Introduction

Let q be a prime number and Fq be the finite field given by the integers mod q. Fn
q is the

n-dimension vector space over Fq. A subset C of Fn
q is called a q-ary code with length

n. C is said to be linear if C is a subspace. The vectors in C are called codewords. The
dimension of C is given by k= logq |C|, and the rate is given by k/n.

Let c=(c1,. . .,cn) be a vector in Fn
q . The Hamming weight of c is w(c)= |{i | ci 6= 0}|.

The Hamming distance between two vectors c,c′∈Fn
q is d(c,c′)= |{i | ci 6= c′i}|. C is called

a code with minimum distance d if the distance of any two distinct codewords in C are
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greater or equal to d. The relative distance of C is then given by d/n. A code in Fn
q with

dimension k and minimum distance d is called an [n,k,d]q code.
Let Aq(n,d) be the maximum number of codewords in a q-ary code with length n and

minimum Hamming distance d. Finding the value of Aq(n,d) is a very fundamental and
difficult problem in coding theory [13]. The first and most important lower bound of
Aq(n,d) is Gilbert-Varshamov bound.

Proposition 1.1 (Gilbert-Varshamov Bound [6]). Let

Vq(n,d)=
d

∑
i=0

(

n

i

)

(q−1)i

be the number of vectors with Hamming weight less than d, then

Aq(n,d)≥
qn

Vq(n,d−1)
. (1.1)

Proposition 1.1 has been improved variously in [2, 4, 5, 8, 9, 11, 14, 16]. Among them,
the best improvement on the order of magnitude is from Jiang and Vardy [9] by studying
the independence number of the graph Gq,n,d defined as follows:

Definition 1.1 ([9]). Gilbert graph Gq,n,d is a graph whose V(Gq,n,d)=Fn
q and ∀u,v∈V(Gq,n,d),

(u,v)∈E(Gq,n,d) if and only if 1≤d(u,v)≤d−1.

People are also interested to the asymptotic form of Gilbert-Varshamov bound as n
goes to infinity. The maximum rate of code families with relative distance δ is defined as

βq(δ)= lim
n→∞

1

n
Aq(n,nδ).

Notice that
1

n
logq Vq(n,d)=hq

(

d

n

)

+o(1)

as n→∞ where

hq(x)= xlogq(q−1)−xlogq x−(1−x)logq(1−x).

This implies the asymptotic form of Proposition 1.1.

Proposition 1.2 (Asymptotic Gilbert-Varshamov Bound [6]). For every 0≤δ<1−1/q,

βq(δ)≥1−hq(δ). (1.2)

Tsfasman et al. [15] have proved that βq(δ)>1−hq(δ) for some q≥49. However, when
q = 2, some people conjecture that there does not exist any binary code with relative
distance δ and rate R>1−h2(δ) as n→∞ [9].
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In this paper, we improve Gilbert-Varshamov bound by analysing the spectrum of
Gq,n,d and bounding its independence number. In Section 2, we use properties of Cayley
graph to calculate the closed form of the eigenvalues and eigenvectors of Gq,n,d, and get
an upper bound and a lower bound using the minimum eigenvalue. The improvement
of Gilbert-Varshamov bound is given in Section 3. Section 4 concludes the results and
gives some open problems.

2 The spectrum of the Gilbert graph

A graph G is a set of N vertices V(G)={v1,. . .,vN} and a set of edges E(G)⊆V(G)×V(G).
For vi,vj ∈V(G), we say vi and vj are adjacent if (vi,vj)∈ E(G). The neighbourhood of
v∈V(G) is the set of all vertices adjacent to v and denoted by N(v). The number of edges
that are incident to v is the degree of v. A graph is called a D-regular graph if each vertex
has degree D. The adjacent matrix for G is a N×N matrix A where Aij is 1 if vi and vj are
adjacent, and 0 otherwise.

A subset of V is called an independent set if none of vertices in the set are adjacent.
The independence number of G is the size of the largest independent set in G and denoted
by α(G).

The spectrum of a graph is the eigenvalues of its adjacent matrix, which has a strong
relationship with the structure of the graph [3], including independence number we
study in this paper.

It is clear that Gq,n,d is a (Vq(n,d−1)−1)-regular graph. More exactly, Gq,n,d is vertex-
transitive [7, 12]. Then Gilbert-Varshamov bound is the direct consequence of following
facts:

Proposition 2.1.
α(Gq,n,d)=Aq(n,d).

Lemma 2.1.

α(G)≥
|V(G)|

∆(G)+1
,

where ∆(G) is the maximal degree of G.

Here, Proposition 2.1 is from that a q-ary code of length n has minimum distance d if
and only if it is an independent set in Gq,n,d. Lemma 2.1 holds since if some vertex v is in
an independent set I of graph G, it forbids at most ∆(G)+1 vertices (including v itself) to
be added into I.

Definition 2.1 ([7]). A group (H,·) is a set H together with a binary operation · on H×H→H
such that the following properties hold:

1. For all a,b,c∈G, (a·b)·c= a·(b·c).

2. There exists an identity element e∈H such that for every a∈H, a·e= e·a= a.
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3. For each a∈H, there exists a unique inverse element a−1∈H of a such that a·a−1=a−1·a=e.

Moreover, if a group (H,·) also satisfies a·b=b·a for all a,b∈H, it is called an Abelian group.

Definition 2.2 ([1,3,7]). Denote that content (H,·) is a finite group and S⊆H satisfies {s−1 | s∈
S}=S and identity element e /∈S. The (finite and undirected) Cayley graph on H with difference
set S is denoted as Γ with vertex set H and edge set E={(x,y) |yx−1 ∈S}.

In this paper, we always assume H is an Abelian group.

Example 2.1. (Fn
q ,+) is an Abelian group with

(u1,u2,. . .,un)+(v1,v2,. . .,vn)=(u1+v1,u2+v2,. . .,un+vn),

where ‘+’ is the addition operation of integers mod q. The identity element is (0,0,.. . ,0)
and the inverse element of u=(u1,u2,. . .,un) is −u=(−u1,−u2,. . .,−un).

Since w(u)=w(−u), Gq,n,d can be regarded as a Cayley graph on H=Fn
q with S={u∈

Fn
q |1≤w(u)≤d−1}.

To compute the spectrum of a Cayley graph Γ, let us define a character of H to be
a map χ : H→C∗ satisfying χ(xy)=χ(x)χ(y), where C is the set of complex numbers and
C∗=C−{0}. Then

∑
y∈N(x)

χ(y)=

(

∑
s∈S

χ(s)

)

χ(x),

so the vector (χ(x))x∈H is an eigenvector of the adjacency matrix of Γ with eigenvalue

∑s∈S χ(s).
To calculate the closed form of the spectrum for Gq,n,d, we need to use Krawtchouk

polynomials.

Definition 2.3 ([10]). For positive integers q,k,n, Krawtchouk polynomials are defined as

Kk(x;n,q)=
k

∑
j=0

(−1)j

(

x

j

)(

n−x

k− j

)

(q−1)k−j, (2.1)

where
(

x

j

)

=
x(x−1) . . .(x− j+1)

j!
.

Specially, (x
0)=1.

Lemma 2.2 ([10]). When x=1,.. .,n,

d−1

∑
k=0

Kk(x;n,q)=Kd−1(x−1;n−1,q). (2.2)
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It is well-known that Delsarte [4] has used Krawtchouk polynomials to prove an up-
per bound of Aq(n,d) by linear programming. We now want to use them to prove a lower
bound by spectral graph theory.

Write u=(u1,. . .,un),v=(v1,. . .,vn)∈Fn
q and define 〈u,v〉=∑

n
i=1uivi∈Fq. Now we have

the following theorem on the spectrum of Gq,n,d.

Theorem 2.1. Denote z=exp{2πi/q}∈C. The qn orthogonal eigenvectors of Gq,n,d are

av =
(

z〈u,v〉
)

u∈V(Gq,n,d)
(2.3)

for all v∈Fn
q . The corresponding eigenvalue λv of av is Kd−1(w(v)−1,n−1,q)−1 if w(v) 6= 0

and Vq(n,d−1)−1 if w(v)=0.

Proof. Recall that Gq,n,d is a Cayley graph on H =Fn
q with difference set S= {u∈Fn

q | 1≤
w(u)≤ d−1}. Let χ be a character of (Fn

q ,+) and ei be the vector in Fn
q with 1 on i-th

position and 0 otherwise. For any u=(u1,. . .,un)∈Fn
q ,

χ(u)=χ

( n

∑
i=1

uiei

)

=
n

∏
i=1

χ(ei)
ui ,

so χ(u) can be determined by χ(e1),. . .,χ(en). Since χ(qei)=χ(ei)
q=1, χ(ei) must be a q-th

root of unity. For all v=(v1,. . .,vn)∈Fn
q , define χv to be a character satisfying χv(ei)= zvi .

The qn eigenvectors of Gq,n,d are

av =
(

χv(u)
)

u∈V(Gq,n,d)
=

( n

∏
i=1

χv(ei)
ui

)

u∈V(Gq,n,d)

=
(

z〈u,v〉
)

u∈V(Gq,n,d)
.

For any v,v′∈Fn
q and v 6=v′ ,

∑
u∈Fn

q

χv(u)χv′(u)= ∑
u∈Fn

q

z〈u,v−v′〉=
n

∏
i=1

q−1

∑
j=0

zj(vi−v′i)=0,

where χv′(u) is the complex conjugate of χv′(u). Therefore, these qn eigenvectors are
orthogonal with each other, and hence linearly independent.

The eigenvalues of av are λv =∑u∈S χv(u). Let supp(v)= {i | vi 6= 0}. If w(v) 6= 0, for
any integers k, j∈Z, denote

Ak,j =
{

A⊆{1,.. . ,n}
∣

∣ |A|= k and |A∩supp(v)|= j
}

,

then |Ak,j|=(n−w(v)
k−j )(w(v)

j ) and S=
⋃d−1

k=1

⋃k
j=0Ak,j. For any A∈Ak,j,

∑
supp(u)=A

χv(u)= ∑
supp(u)=A

z〈u,v〉

=∏
i∈A

(

zvi +z2vi + . . .+z(q−1)vi
)

=(q−1)k−j(−1)j.
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Therefore,

∑
u∈S

χv(u)=
d−1

∑
k=1

k

∑
j=0

∑
A∈Ak,j

∑
supp(u)=A

χv(u)

=
d−1

∑
k=1

k

∑
j=0

(

n−w(v)

k− j

)(

w(v)

j

)

(q−1)k−j(−1)j

=
d−1

∑
k=1

Kk

(

w(v);n,q
)

=Kd−1

(

w(v)−1;n−1,q
)

−1.

Here the last equation is from Lemma 2.2.
If w(v)=0, χv(u)=1 for all u∈Fn

q , so

λv = ∑
u∈S

χv(u)=Vq(n,d−1)−1,

which is the degree of Gq,n,d.

From the proof, we see the maximum eigenvalue of Gq,n,d is Vq(n,d−1)−1 and the
corresponding eigenvector is all-one vector 1. Let λmin(G) be the minimum eigenvalue
of G, then

λmin(Gq,n,d)= min
1≤x≤n

Kd−1(x−1;n−1,q)−1.

It seems not easy to find the closed form of x which minimize Kd−1(x−1;n−1,q), but we
can compute the accurate value of λmin(Gq,n,d) in polynomial time for given n,q and d by
Theorem 2.1.

Now we can apply two bounds on independence number to bound α(Gq,n,d).

Proposition 2.2 (Hoffman’s Bound).

α(Gq,n,d)≤
−qnλmin(Gq,n,d)

Vq(n,d−1)−1+λmin(Gq,n,d)
. (2.4)

Proposition 2.3 ([17]). Let G be a D-regular graph of N vertices, then

α(G)≥
N

D+1+M(λmin(G)+1)/N
,

where
M=max

{

M2
+,M2

−

}

,

and

M+= min
b(G)i>0

1

b(G)i
, M−= min

b(G)i<0
−

1

b(G)i
,

and b(G) is one of normalized real eigenvectors of the minimum eigenvalue, b(G)i is the i-th
component of b(G).
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To apply Proposition 2.3, we need real eigenvectors of Gq,n,d, but when q ≥ 3, the
eigenvectors given from Theorem 2.1 are complex. By our knowledge now, we can only
get part of real eigenvectors from the following idea.

Given a nonempty set A⊆{1,.. . ,n} , for j=1,.. . ,n−1, define v(j)∈Cn by

(v(j))i=

{

zj, if i∈A,

0, otherwise.

Define bA =∑
n−1
j=1 v(j). Notice that the value of λv is determined by w(v) and w(v(j))= |A|

for all j, then bA is an eigenvector of Gq,n,d with eigenvalue Kd−1(|A|−1;n−1,q)−1. Since

the entries of bA are only −1 and q−1 and bT
A1=0, we know that ‖bA‖2=

√

qn(q−1).
There exists some A⊆{1,.. . ,n} such that b(Gq,n,d) = bA/‖bA‖2 and M = qn(q−1) in

Proposition 2.3. Therefore,

Corollary 2.1.

α(Gq,n,d)≥
qn

Vq(n,d−1)+(q−1)λmin(Gq,n,d)+q
. (2.5)

We notice that Corollary 2.1 is an improvement of Gilbert-Varshamov bound since
λmin(Gq,n,d)<−1. Proposition 2.2 and Corollary 2.1 can be calculated in polynomial time
for given n,q and d by Theorem 2.1.

3 Improved lower bound

In this section, we will improve the lower bound further. Let G0 = Gq,n,d. λ
(0)
min is the

minimum eigenvalue of G0 and av(0) is one of corresponding eigenvectors. By induction,

assume we already have a series of orthogonal vectors v(0),. . .,v(t−1). Define Gt to be
the induced graph of G0 with vertex set Vt =

⋃t−1
i=0{u∈Fn

q |〈u,v(i)〉=0} and edge set Et =
E(G0)∩(Vt×Vt). Notice that Vt is a subspace of Fn

q .

Lemma 3.1. For 0≤ t<n, Gt is Cayley graph with qn−t vertices and difference set St=Vt∩{u∈
Fn

q |1≤w(u)≤d−1}. Then the qn−t orthogonal eigenvectors of Gt are

a
(t)
v =(χv(u))u∈Vt =

(

z〈u,v〉
)

u∈Vt
, (3.1)

where v is orthogonal to v(0),. . .,v(t−1) and χv is defined in Theorem 2.1.

Proof. Notice that a
(t)
v =(z〈u,v〉)u∈Vt and a

(t)
v′ =(z〈u,v′〉)u∈Vt are the same vector if and only

if v−v′ is a linear combination of v(0),. . .,v(t−1), so we only need to consider qn−t eigen-

vectors {a
(t)
v | v is orthogonal to v(0),. . .,v(t−1)}. Now we need to prove that these qn−t
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eigenvectors are orthogonal with each other. Suppose v−v′ is not a linear combination of
v(0),. . .,v(t−1), then there must be some w∈Vt which is not orthogonal to v−v′. Therefore,

∑
u∈Vt

z〈u,v−v′〉=
n−1

∏
i=t

q−1

∑
j=0

zj〈w,v−v′〉=0.

The proof is complete.

Let λ
(t)
min denote the minimum eigenvalue of Gt and D(t) denote the degree of vertices

in Gt. Note that the dimension of the eigenspace of λ
(t)
min may be larger than one. For

convenience, we can sort the vectors in Fn
q by lexicographic order on components and

choose v(t) as the smallest one such that a
(t)

v(t)
is the eigenvector of λ

(t)
min. Now let

Vt+1 :=Vt∪
{

u∈F
n
q | (av(t))u =1

}

=
t
⋃

i=0

{

u∈F
n
q | 〈u,v(i)〉=0

}

and Gt+1 is the induced graph from Vt+1.

Lemma 3.2. The degree of every vertex in Gt+1 is

D(t+1)=
1

q

(

D(t)+(q−1)λ
(t)
min

)

.

Proof. Recall z = exp{2πi/q} ∈C. To see the degree of Gt+1, we notice that for any j =
1,.. .,q−1, u∈St if and only if iu∈St. Also,

q−1

∑
j=1

z〈ju,v(t)〉=

{

q−1, if 〈u,v(t)〉=0,

−1, otherwise.

Therefore,

λ
(t)
min = ∑

u∈St

z〈u,v(t)〉= |St+1|−
1

q−1

(

|St|−|St+1|
)

=D(t+1)−
1

q−1

(

D(t)−D(t+1)
)

,

where the second equality follows from

St+1=St∩Vt+1=St∩
{

u∈Vt | 〈u,v(t)〉=0
}

.

The proof is complete.
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Remark 3.1. From Lemmas 3.1 and 3.2, we can say that Gt+1 is sparser than Gt. In explicit
language, the ratio of vertex number to degree of Gt+1 is larger than that of Gt, since

|Vt+1|

D(t+1)+1
=

|Vt|

D(t)+(q−1)λ
(t)
min+q

≥
|Vt|

D(t)+1
,

if λ
(t)
min≤−1, which holds for any graph with at least one edge. This means that the lower

bound in Lemma 2.1 for Gt+1 is better than that for Gt. In fact, among all subgraphs of Gt

whose vertex set is a subgroup with |Vt|/q elements, Gt+1 is the sparsest one.

Due to Remark 3.1, we can improve the Gilbert-Varshamov bound.

Theorem 3.1. If Gt+1 has at least one edge, then

Aq(n,d)=α(Gq,n,d)≥
qn

Vq(n,d−1)+∑
t
i=0(q−1)qiλ

(i)
min+qt+1

. (3.2)

Proof. From Lemma 3.2,

D(t+1)=
D(t)+(q−1)λ

(t)
min

q
=

Vq(n,d−1)+∑
t
i=0(q−1)qiλ

(i)
min

qt+1
,

then

α(Gq,n,d)≥α(Gt+1)≥
|V(Gt+1)|

D(t+1)
=

qn

Vq(n,d−1)+∑
t
i=0(q−1)qiλ

(i)
min+qt+1

.

The proof is complete.

Theorem 3.1 is exactly Corollary 2.1 when t = 0, and improves Corollary 2.1 when
t≥1.

We can repeat the above procedures to get new subgraphs and improve the bound

until for some integer s the graph Gs has no edges, so λ
(s)
min=0. Now Vs is an independent

set of Gq,n,d and a subspace of Fn
q , so Vs is a [n,n−s,d]q linear code. Therefore,

Theorem 3.2. If λ
(s)
min=0, then there is a [n,n−s,d]q linear code.

This implies that Theorem 3.1 also holds for linear codes. In other words, λ
(s)
min =0 is

equal to D(s)=0, which implies

Vq(n,d−1)+
s−1

∑
t=0

(q−1)qtλ
(t)
min=0,

then
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Theorem 3.3. For any sequence {bt} with bt ≥ λ
(t)
min and 0≤ t ≤ s−1, there exists a [n,k,d]q

linear code if

Vq(n,d−1)+
n−k−1

∑
t=0

(q−1)qtbt≥0.

Since Vs=
⋃s−1

i=0{u∈Fn
q |〈u,v(i−1)〉=0}, the code with parity check matrix (v(0),. . .,v(s−1))

satisfies Theorem 3.2.

Now the last problem is how to calculate λ
(t)
min. For any v∈Fn

q , the eigenvector of Gt

is a
(t)
v =(z〈u,v〉)u∈Vt , and the eigenvalue is λ

(t)
v =∑u∈St

z〈u,v〉. Now define

vr =v+rv(t−1).

Then
q−1

∑
r=0

χvr(u)= z〈u,v〉
q−1

∑
r=0

zr〈u,v(t)〉=qχv(u)1〈u,v(t−1)〉=0.

Thus,

λ
(t)
v = ∑

u∈St

χv(u)= ∑
u∈St−1

χv(u)1〈u,v(t−1)〉=0=
1

q

q−1

∑
r=0

∑
u∈St−1

χvr(u)=
1

q

q−1

∑
r=0

λ
(t−1)
vr .

Since λ
(0)
v is known by Theorem 2.1, all eigenvalues of Gt (including the minimum

eigenvalue λ
(t)
min) can be obtained. Now we can complete the whole procedures. Algo-

rithm 1 describes the whole process briefly.

Algorithm 1 Framework of Generating Subgraph and Linear Code.

G=Gq,n,d, t=0;
repeat

Calculate the minimum eigenvalue λ
(t)
min of G and choose one of the corresponding

eigenvector a
(t)

v(t)
;

G⇐ the induced graph with vertex set {u∈V(G) | 〈u,v(t)〉=0};
t⇐ t+1;

until λ
(t)
min=0

return the code with check matrix (v(0),. . .,v(t−1)).

Remark 3.2. Our results hold when q is a prime number. In fact, when q is a prime power,
the results still hold with little difference. The only difficult part is that the closed form
for eigenvalues of Gq,n,d will be much more complicated.
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4 Conclusions and open problems

In this paper we use graph spectral method to improve Gilbert-Varshamov bound. The
improvement is non-asymptotic. A natural question is to ask

Problem 4.1. What is the asymptotic form of Theorem 3.1 or 3.2?

We also design Algorithm 1 to give codes satisfying our improved bound. The time
complexity of the algorithm is O(nqn).

Problem 4.2. Could it be possible to find algorithms with lower complexity?

In the algorithm, we use the minimum eigenvalue and the corresponding eigenvector
of Gt to construct Gt+1. It is possible to use other eigenvalues and eigenvectors instead of

λ
(t)
min and a

(t)

v(t)
in Algorithm 1.

Conjecture 4.1. For all vectors v such that a
(t)
v is the eigenvector with eigenvalue λ

(t)
min in

Gt, the graphs induced by {u∈Vt | 〈u,v〉=0} are isomorphic.

The conjecture is from the symmetry of the graphs. However, we also want to know

Problem 4.3. Is there a rule to choose v(t) such that (v(0),. . .,v(s−1)) has a good structure
which is helpful for encoding and decoding?

However, if people choose other eigenvalues rather than the minimum one to con-
struct Gt, we believe the result can be improved.

Problem 4.4. Which eigenvalue is much better than the minimum one?
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