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Abstract. In this paper, we prove the symmetry of the solution to overdetermined
problem for the equation σk(D2u−uI)=Ck
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1 Introduction

In the seminal paper [1] Serrin established the symmetry of the solution to

∆u=n (1.1)

in a bounded C2 domain Ω⊂Rn with

u=0 and uγ=1 on ∂Ω, (1.2)

where γ is the unit outer normal to ∂Ω. If u∈C2(Ω) is a solution to (1.1) and (1.2), then

u= |x|2−1
2 upto a translation and Ω is the unitary ball. The proof is based on the method

of moving planes and it can be applied to more general uniformly elliptic equations. In [2]

Weinberger provided an alternative proof by using maximum principle for P function

and a Rellich-Pohozaev type identity.
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There have been many generalizations of Serrin and Weinberger’s work to quasilin-

ear elliptic equations (see, e.g., [3–5] and reference therein ) and fully nonlinear equations

such as Hessian equation and Weingarten curvature equation (see, e.g., [6–8]). In Eu-

clidean space, the overdetermined boundary problem for σk(D2u)=Ck
n was studied in [6]

by using a Rellich-Pohozaev type identity and some geometric inequalities and was also

dealt in [8] by using method of moving planes. Using the P function P= |Du|2−2u as

mentioned in [2, 9] we can give an alternative proof which is parallel to Weinberger’s.

Theorem 1.1 ([6]). Suppose Ω⊂Rn is a C2 bounded domain and u∈C3(Ω)∩C2(Ω) is a solution

to the following problem 



σk(D2u)=Ck
n in Ω,

u=0 on ∂Ω,

uγ = c0 on ∂Ω,

(1.3)

with k∈{1,··· ,n} and c0 a positive constant. Then upto a translation, u= |x|2−1
2 and Ω is a ball

of radius c0.

In space forms, a few work has been done to generalize the Serrin’s symmetry to

equation ∆u+nKu = c using the method of moving planes or P functions and Rellich-

Pohozaev type identities (see [10–14] and reference therein).

The hyperbolic space Hn can be described as the warped product space [0,∞)×Sn−1

equipped with the rotationally symmetric metric

g=dr2+h2gSn−1 , (1.4)

where h=sinhr, gSn−1 is the round metric on the n−1 dimensional sphere.

In the present paper, we consider the overdetermined problem below in hyperbolic

space, 



σk(D2u−uI)=Ck
n in Ω,

u=0 on ∂Ω,

uγ= c0 on ∂Ω,

(1.5)

where Ω is a bounded C2 domain of Hn. Our result is the following:

Theorem 1.2. Let Ω⊂Hn be a C2 bounded domain and u∈ C3(Ω)∩C2(Ω) be a solution to

(1.5) with k∈{1,··· ,n} and c0 a positive constant. Then Ω is a geodesic ball BR, and u is radially

symmetric.

By maximum principle, u<0 in Ω, and the solution to Dirichlet problem of σk(D2u−
uI) = Ck

n is unique. In Theorem 1.2, if we assume the center of BR is the origin, then

u(r) = coshr
coshR −1 is the unique solution to (1.5), where r is the distance from 0, R and c0

satisfy the relationship sinhR
coshR = c0.
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In the next section, we recall some notations concerning the Hessian equation in Eu-

clidean space and hyperbolic space. Some known facts about curvature of level sets and

Minkowskian integral formulas are also introduced there. In the third section, we use a

P function and a Rellich-Pohozaev type identity for problem (1.3) to give an alternative

proof of Theorem 1.1. In the last section, we derive the Rellich-Pohozaev type identity

for problem (1.5), and combine with a P function to present the proof of Theorem 1.2.

2 Preliminary

2.1 Elementary symmetric functions

Let Sn be the space of real symmetric n×n matrices. We denote by A= (aij) a matrix

in Sn, and by λ1,··· ,λn the eigenvalues of A. For 1≤ k≤ n, recall the definition of k-th

elementary symmetric functions of A,

σk(A)=σk(λ1,··· ,λn)= ∑
1≤i1<···<ik≤n

λi1 ···λik
. (2.1)

Denote by

σ
ij
k (A) :=

∂σk(A)

∂aij
, (2.2)

then it is easy to see from the definition above that

σk(A)=
1

k

n

∑
i,j=1

σ
ij
k (A)aij and (n−k+1)σk−1(A)=

n

∑
i=1

σii
k (A). (2.3)

For 1≤ k≤n−1, Newton’s inequalities say that

(n−k+1)(k+1)σk−1(A)σk+1(A)≤ k(n−k)σ2
k (A). (2.4)

For 1≤ k≤n, recall that the Garding cone is defined as

Γk ={A∈Sn : σ1(A)>0,··· ,σk(A)>0}. (2.5)

Assume that A∈Γk, the following inequalities, known as MacLaurin inequalities hold,

(σk(A)

Ck
n

) 1
k
≤
(σl(A)

Cl
n

) 1
l
, ∀ k≥ l≥1. (2.6)

The equalities hold if and only if the eigenvalues λ1,··· ,λn of A are equal to each other.

Assume that A∈Γk, the following inequalities also holds,

σk(A)/Ck
n

σk−1(A)/Ck−1
n

≤
σl(A)/Cl

n

σl−1(A)/Cl−1
n

, ∀ k≥ l≥1. (2.7)

All the formulas are well known. For example, see [15] for a proof of (2.4), (2.6) and (2.7).

The following proposition can be found in [16], see also [17] for non-symmetric matrices.
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Proposition 2.1. For any n×n matrix A, we have

σ
ij
k (A)=σk−1(A)δij−

n

∑
l=1

σil
k−1(A)ajl . (2.8)

In the following we write D,D2 and ∆ for the gradient, Hessian and Laplacian on

hyperbolic space Hn. For simplicity, we will use ui, uij, ··· and uγ to denote covariant

derivatives and normal derivative of function u with respect to the metric on Hn. We

write X ·Y instead of g(X,Y) for vector fields X,Y. We also follow Einstein’s summation

convention.

2.2 Hessian operators

2.2.1 Hessian operators in Euclidean space

Let Ω be an open subset of Rn and let u∈C2(Ω). The k-Hessian operator Sk[u] is defined

as the k-th elementary symmetric function σk(D2u) of D2u. Notice that

S1[u]=∆u and Sn[u]=detD2u. (2.9)

A function u is called k-convex in Ω, if D2u(x)∈Γk for any x∈Ω. A direct computation

yields that (σ
1j
k (D2u),··· ,σ

nj
k (D2u)) is divergence free, that is

∂

∂xi
σ

ij
k (D2u)=0. (2.10)

By using (2.8), it is easy to see that

σ
ij
k (D2u)uil =σil

k (D2u)uij. (2.11)

2.2.2 Hessian operators in hyperbolic space

Let Ω be an open subset of Hn and let u∈C2(Ω). The k-Hessian operator Sk[u] is defined

as the k-th elementary symmetric function σk(D2u−uI) of D2u−uI. Notice that

S1[u]=∆u−nu and Sn[u]=det(D2u−uI). (2.12)

A function u is called k-admissible in Ω if D2u(x)−u(x)I∈Γk for any x∈Ω. A function

u∈C2(Ω) is called an admissible solution of Sk[u]= f in Ω, if u solves the equation and u is

an k-admissible function.

We list the following propositions with proofs, which will be used in the following

sections.

Proposition 2.2. Suppose u∈C3(Ω), then

Di(σ
ij
k (D2u−uI))=0. (2.13)
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Proof. We prove it by induction. For k = 1, (2.13) holds obviously. Suppose that (2.13)

holds for k−1, since uilj=uijl−ulδij+ujδil, we have

Dj(σ
ij
k (D2u−uI))=Dj(σk−1(D2u−uI)δij−σ

js
k−1(D2u−uI)(usi−uδsi))

=Diσk−1(D2u−uI)−σ
js
k−1(D2u−uI)(usi−uδsi)j

=σ
js
k−1(D2u−uI)((ujs−uδjs)i−(usi−uδsi)j)

=0. (2.14)

This completes the proof.

Proposition 2.3. Let u∈C2(Ω), then

σ
ij
k (D2u−uI)uil =σil

k (D2u−uI)uij. (2.15)

Proof. By Proposition 2.1, we obtain

σ
ij
k (D2u−uI)(uil−uδil)=

(
σk−1(D2u−uI)δij−σis

k−1(D2u−uI)(ujs−uδjs)
)
(uil−uδil)

=
(
σk−1(D2u−uI)δsl−σis

k−1(D2u−uI)(uil−uδil)
)
(ujs−uδjs)

=σsl
k (D2u−uI)(ujs−uδjs). (2.16)

Thus,

σ
ij
k (D2u−uI)uil =σ

ij
k (D2u−uI)(uil−uδil)+σ

lj
k (D2u−uI)u

=σil
k (D2u−uI)(uij−uδij)+σ

lj
k (D2u−uI)u

=σil
k (D2u−uI)uij. (2.17)

This completes the proof.

2.3 Minkowskian integral formulas

Let Ω be a C2 bounded domain, and ∂Ω be the boundary of Ω. Denote the principal

curvatures of ∂Ω by κ=(κ1,··· ,κn−1). The k-th curvature of ∂Ω is defined as

Hk :=σk(κ), k=1,··· ,n−1. (2.18)

Ω is called k-convex with k∈{1,··· ,n−1}, if Hi>0 for i=1,··· ,k. In particular, n−1-convex

is strictly convex, 1-convex is also called mean convex.

In the theory of convex bodies and differential geometry, Minkowskian integral for-

mula (see [18–20]) is widely known. Suppose Ω is a domain of Rn, then the Minkowskian

integral formula says ∫

∂Ω

Hk

Ck
n−1

x·γdσ=
∫

∂Ω

Hk−1

Ck−1
n−1

dσ. (2.19)
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Suppose Ω is a domain of Hn. Let p∈Ω, r be the distance from p. Let V(x)=cosh(r(x)),
then D2V=VI and ∆V=nV. Then the Minkowskian integral formula (see [19]) says

∫

∂Ω

Hk

Ck
n−1

Vγdσ=
∫

∂Ω

Hk−1

Ck−1
n−1

Vdσ. (2.20)

2.4 Curvatures of level sets

Let u be a smooth function in space form Rn,Sn, or Hn, for any regular c∈R of u (that

is, Du(x) 6= 0 for any x ∈ Hn such that u(x) = c), the level set Σc := u−1(c) is a smooth

hypersurface by the implicit function theorem. The k-th order curvature Hk of the level

set Σc is given by

Hk−1=
σ

ij
k (D2u)uiuj

|Du|k+1
, (2.21)

which can be found in [16, 21].

3 Overdetermined problem in R
n

In this section, we present a Rellich-Pohozaev type identity for σk(D2u) =Ck
n with zero

Dirichlet boundary condition, and use a P function to give a proof of theorem 1.1.

The following lemma is proven in [6], which implies the solution to (1.3) is k-convex.

This ensures MacLaurin inequalities (2.6) can be applied.

Lemma 3.1 ([6]). Let Ω⊂Rn be a bounded C2 domain and u∈C2(Ω) is a solution to (1.3), then

u is k-convex in Ω.

P functions have been extensively investigated and inspired several effective work-

s in the context of elliptic partial differential equations. For fully nonlinear equations,

the P function for 2-dimensional Monge-Ampère equation was given by Ma [9], and the

P functions for k-Hessian equations and k-curvature equations were given by Philippin

and Safoui [22]. Based on Lemma 3.1, we are able to derive the lemma below, which was

prove in [22]. So we can apply the maximum principle on the P function. For complete-

ness, we present the proof.

Lemma 3.2 ([22]). Let u∈C3(Ω) be an admissible solution of σk(D2u)=Ck
n in Ω⊂Rn. Then

the following P function

P := |Du|2−2u (3.1)

satisfies

σ
ij
k (D2u)Pij≥0. (3.2)
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Proof. By direct computation, we have

σ
ij
k (D2u)Pij =2σ

ij
k (D2u)

(
uliulj+ululij−uij)=2σ

ij
k (D2u)uliulj−2kσk(D2u)

=2
(
σ1(D2u)σk(D2u)−(k+1)σk+1(D2u)−kσk(D2u)

)
. (3.3)

If σk+1(D2u)>0, then D2u∈Γk+1. By (2.7), we have

(k+1)σk+1(D2u)≤
n−k

n
σ1(D2u)σk(D2u). (3.4)

If σk+1≤0, (3.4) holds naturally. So by using (2.6), we get

σ
ij
k (D2u)Pij≥2kσk

(
σ1(D2u)

n
−

σk(D2u)

Ck
n

)
≥0. (3.5)

This completes the proof.

The Rellich-Pohozaev type identity for Hessian equation has already been found [6,

23]. Brandolini, Nitsch, Salani and Trombetti [6] gave the Rellich-Pohozaev type identity

for σk(D2u)= f (u) in Ω, with u=0 on ∂Ω,

n−2k

k(k+1)

∫

Ω
σ

ij
k (D2u)uiujdx+

1

k+1

∫

∂Ω
x·γ|Du|k+1Hk−1dσ=n

∫

Ω
F(u)dx, (3.6)

where F(u) =
∫ 0

u f (s)ds. In their proof, they need to deal with the fourth order term
∂2

∂xi∂xl
σ

ij
k (D2u), which may be difficult in space forms. To overcome it, we come up with a

different Rellich-Pohozaev type identity.

Lemma 3.3. Let Ω⊂Rn be a bounded C2 domain. If u∈ C2(Ω)∩C1(Ω) is a solution to the

problem {
σk(D2u)=Ck

n in Ω,

u=0 on ∂Ω.
(3.7)

Then

1

2

∫

∂Ω
σ

ij
k (D2u)xjγi|Du|2dσ=−kCk

n

∫

Ω
udx+

n−k+1

2

∫

Ω
σk−1(D2u)|Du|2dx. (3.8)

Proof. Multiplying the equation (3.7) by u, we obtain

kCk
nu=σ

ij
k (D2u)uiju=

1

2
σ

ij
k (D2u)uilu(|x|

2)lj. (3.9)

By (2.10), we have

σ
ij
k (D2u)uilu(|x|

2)lj=(σ
ij
k (D2u)uilu(|x|

2)l)j−σ
ij
k (D2u)uilju(|x|

2)l

−σ
ij
k (D2u)uiluj(|x|

2)l. (3.10)



Serrin-Type Overdetermined Problem in Hn 109

It follows from (3.7) that

σ
ij
k (D2u)uijl =0. (3.11)

By (2.11), we have

σ
ij
k (D2u)uiluj(|x|

2)l =2σil
k (D2u)uijujxl =σ

ij
k (D2u)(|Du|2)ixj. (3.12)

Putting (3.9)–(3.12) together, and integrating it on Ω, we find

kCk
n

∫

Ω
udx=

1

2

∫

Ω
(σ

ij
k (D2u)uilu(|x|

2)l)jdx−
1

2

∫

Ω
σ

ij
k (D2u)(|Du|2)ixjdx. (3.13)

It follows from divergence theorem and u=0 on ∂Ω that

kCk
n

∫

Ω
udx=−

1

2

∫

Ω
σ

ij
k (D2u)(|Du|2)ixjdx. (3.14)

Using (2.10) again, we get

σ
ij
k (D2u)(|Du|2)ixj =(σ

ij
k (D2u)|Du|2xj)i−(n−k+1)σk−1(D2u)|Du|2. (3.15)

Substituting (3.15) into (3.14) and using divergence theorem again yield (3.8).

The following lemma help us to deal with the term of boundary integral in (3.8).

Lemma 3.4. Let Ω⊂Rn be a C2 bounded domain, u∈C2(Ω) be a solution to Eq. (1.3), then

σ
ij
k (D2u)xjγi|Du|2=σ

ij
k (D2u)uiujx·γ on ∂Ω. (3.16)

Proof. By the boundary conditions of problem (1.3), we have on ∂Ω that

Du=uγγ, (3.17)

and

(uγ)j =(uiγi)j =uijγi+uiDjγi=uijγi+uγγiDjγi=uijγi. (3.18)

Then

(uγ)γ =uijγiγj :=uγγ. (3.19)

Since uγ= c0 on ∂Ω, for any tangential direction τ, we have (uγ)τ =0, then

Duγ=(uγ)γγ=uijγiγjγ. (3.20)

Therefore,

uijγi=(uγ)j =uklγkγlγj =(uγ)γγj=uγγγj. (3.21)

It follows that

uijui=uγγuj. (3.22)
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Now we derive (3.16) by induction. When k=1, (3.16) holds obviously since σ
ij
1 (D2u)=δij.

Suppose (3.16) holds for k−1, then

σ
ij
k (D2u)xiγj|Du|2=(σk−1(D2u)δij−σ

js
k−1(D2u)usi)xjγi|Du|2

=σk−1(D2u)|Du|2x·γ−σ
js
k−1(D2u)uγγγsxj|Du|2

=σk−1(D2u)|Du|2x·γ−σ
ij
k−1(D2u)uiujx·γuγγ

=(σk−1(D2u)|Du|2−σ
ij
k−1(D2u)uiluluj)x·γ

=σ
ij
k (D2u)uiujx·γ, (3.23)

where we use (2.8) in the first and last equality, (3.21) in the second equality, and (3.22) in

the fourth equality.

Moreover, by the following lemma, the boundary integral can be turned into an inte-

gral on Ω.

Lemma 3.5. Let u∈C3(Ω)∩C2(Ω) be a solution to the problem (1.3), then

∫

∂Ω
σ

ij
k (D2u)uiujx·γdσ=(n−k+1)c2

0

∫

Ω
σk−1(D2u)dx. (3.24)

Proof. From (2.21),

σ
ij
k (D2u)uiujx·γ=Hk−1|Du|k+1x·γ on ∂Ω. (3.25)

Integrating it on ∂Ω, and using Minkowskian integral formula (2.19), we obtain,

∫

∂Ω
σ

ij
k (D2u)uiujx·γdσ=

∫

∂Ω
Hk−1|Du|k+1x·γdσ=

n−k+1

k−1

∫

∂Ω
Hk−2|Du|k+1dσ. (3.26)

By (2.21) and (3.17), we have

Hk−2|Du|k+1=σ
ij
k−1(D2u)uiuj|Du|= c2

0σ
ij
k−1(D2u)uiγj on ∂Ω. (3.27)

Applying the divergence theorem, we get

∫

∂Ω
Hk−2|Du|k+1dσ=c2

0

∫

Ω
(σ

ij
k−1(D2u)ui)jdx. (3.28)

Since σ
ij
k (D2u) is divergence free, it follows that

(σ
ij
k−1(D2u)ui)j=σ

ij
k−1(D2u)uij =(k−1)σk−1(D2u). (3.29)

Putting (3.26), (3.28) and (3.29) together, we deduce (3.24).



Serrin-Type Overdetermined Problem in Hn 111

Proof of Theorem 1.1. By Lemmas 3.3–3.5, we obtain

n−k+1

2

∫

Ω
σk−1(D2u)(|Du|2−c2

0)dx= kCk
n

∫

Ω
udx. (3.30)

By maximum principle and Lemma 3.2, we have

P= |Du|2−2u≤ c2
0 in Ω. (3.31)

Substituting it into (3.30), we get

kCk
n

∫

Ω
udx≤ (n−k+1)

∫

Ω
σk−1(D2u)udx. (3.32)

On the other hand, by MacLaurin inequalities (2.6),

σk−1(D2u)≥Ck−1
n (

σk(D2u)

Ck
n

)
k−1

k =Ck−1
n in Ω.

Since u<0 in Ω, we have

(n−k+1)σk−1(D2u)u≤ kCk
nu. (3.33)

It follows from (3.32) and (3.33) that

σk−1(D2u)=Ck−1
n in Ω. (3.34)

By MacLaurin inequalities (2.6), eigenvalues of D2u are all equal to 1. Then u=
|x−x0|

2−c2
0

2

and Ω=Bc0(x0) for some x0. Hence we complete the proof of Theorem 1.1.

4 Overdetermined problem in Hn

In this section, we present a Rellich-Pohozaev type identity for σk(D2u−uI)=Ck
n with ze-

ro Dirichlet boundary condition, and establish a differential inequality for the P function

P= |Du|2−u2−2u. After a similar argument as in the third section, we give a proof of

Theorem 1.2.

Paralleled with Lemma 3.1, we prove the following lemma.

Lemma 4.1. Let Ω⊂Hn be a bounded C2 domain and u∈C2(Ω) is a solution to the problem

(1.5), then u is k-admissibe in Ω.

Proof. The proof is almost the same as the proof in [6], where they prove that u is a k-

convex function if it is a solution to the problem (1.3). From the boundedness and the

smoothness of Ω, there exists a point x0∈∂Ω, the principal curvatures κ1,··· ,κn−1 of ∂Ω at

x0 are nonnegative. By choosing a suitable coordinate system centered at x0, the first n−1
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axes lay in the principal directions of curvature and the last one points in the direction of

outer normal γx0 of ∂Ω at x0. Then D2u has the following form:

D2u=




c0κ1 ··· 0 u1n
...

. . .
...

...

0 ··· c0κn−1 un−1n

un1 ··· unn−1 unn


. (4.1)

Using the boundary condition in Eq. (1.5), a straightforward calculation shows that

D2u(x0) is in fact in diagonal form. Hence,

0<Sk[u](x0)=unn(x0)c
k−1
0 Hk−1(x0)+ck

0Hk(x0). (4.2)

Then from Newton inequalities (2.4), we deduce that

Sk−1[u](x0)=unn(x0)c
k−2
0 Hk−2(x0)+ck−1

0 Hk−1(x0)

>−ck−1
0

Hk−2(x0)Hk(x0)

Hk−1(x0)
+ck−1

0 Hk−1(x0)≥0. (4.3)

Repeat the process untill we get Sj[u](x0)>0 for all 1≤ j≤k. Hence D2u(x0)−u(x0)I∈Γk.

Since u∈C2(Ω), by the argument of lemma in [24], u is k-admissible in Ω.

Distinct from the Euclidean case, the extra term −uI in Eq. (1.5) prompts us to con-

sider the P function P= |Du|2−u2−2u, as in [10, 13].

Lemma 4.2. Let u∈C3(Ω) be an admissible solution of σk(D2u−uI)=Ck
n in Ω⊂Hn. Then

the following P function

P̃ := |Du|2−u2−2u (4.4)

satisfies

σ
ij
k (D2u−uI)P̃ij≥0. (4.5)

Proof. We may choose a suitable coordinate such that gij = δij and gij,k = 0 at p∈Ω. The

following computation is done at p. Since

1

2
(|Du|2)ij=uliulj+ululij =uliulj+uluijl−ulup(δplδij−δpjδil)

=(uli−uδli)(ulj−uδlj)+2u(uij−uδij)+u2δij+ul(uij−uδij)l+uiuj, (4.6)

and
1

2
(u2)ij=uuij+uiuj=u(uij−uδij)+u2δij+uiuj. (4.7)
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We have

1

2
σ

ij
k (D2u−uI)P̃ij=σ

ij
k (D2u−uI)((uli−uδli)(ulj−uδlj)+u(uij−uδij)

+ul(uij−uδij)l−(uij−uδij)−uδij)

=(S1[u]Sk[u]−(k+1)Sk+1[u]−kSk [u])

−u(−kSk[u]+(n−k+1)Sk−1[u])

≥0, (4.8)

where the first term in the third line is dealt as in Lemma 3.2 and the second term can be

handled with by MacLaurin inequalities (2.6), since u is negative in Ω.

Now we establish the following Rellich-Pohozaev type identity.

Lemma 4.3. Let Ω⊂Hn be a bounded C2 domain. Let u∈C3(Ω)∩C2(Ω) be a solution to the

problem 



σk(D2u−uI)=Ck
n in Ω,

u=0 on ∂Ω.
(4.9)

Then

1

2

∫

∂Ω
σ

ij
k (D2u−uI)Viγj|Du|2dσ

=−
n−k+1

2

∫

Ω
σk−1(D2u−uI)u2Vdx−kCk

n

∫

Ω
uVdx

+
n−k+1

2

∫

Ω
σk−1(D2u−uI)|Du|2Vdx. (4.10)

Proof. Multiplying the Eq. (4.9) by uV, we obtain

kCk
nuV=σ

ij
k (D2u−uI)(uij−uδij)uV

=σ
ij
k (D2u−uI)uijuV−(n−k+1)σk−1(D2u−uI)u2V

=:I+ I I. (4.11)

Since D2V=VI, by (2.13), we have

I :=σ
ij
k (D2u−uI)uijuV=σ

ij
k (D2u−uI)uiluVlj

=(σ
ij
k (D2u−uI)uiluVl)j−σ

ij
k (D2u−uI)uiljuVl−σ

ij
k (D2u−uI)uilujVl. (4.12)
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Using uilj=uijl−ulδij+ujδij, it follows that

I=(σ
ij
k (D2u−uI)uiluVl)j−σ

ij
k (D2u−uI)(uij−uδij)luVl

−σ
ij
k (D2u−uI)ujuVi−σ

ij
k (D2u−uI)uilujVl. (4.13)

Differentiating the equation σk(D2u−uI)=Ck
n, we get

σ
ij
k (D2u−uI)(uij−uδij)l =0. (4.14)

By (2.13), we compute that

σ
ij
k (D2u−uI)ujuVi=

1

2
σ

ij
k (D2u−uI)(u2)jVi

=
1

2
(σ

ij
k (D2u−uI)u2Vi)j−

1

2
σ

ij
k (D2u−uI)u2Vij

=
1

2
(σ

ij
k (D2u−uI)u2Vi)j−

n−k+1

2
σk−1(D2u−uI)u2V. (4.15)

By (2.13) and (2.15), we also have that

σ
ij
k (D2u−uI)uilujVl =σil

k (D2u−uI)uijujVl =
1

2
σ

ij
k (D2u−uI)(|Du|2)iVj

=
1

2
(σ

ij
k (D2u−uI)|Du|2Vj)i−

n−k+1

2
σk−1(D2u−uI)|Du|2V. (4.16)

Subtituting (4.13)–(4.16) into (4.11), we obtain

kCk
nuV=(σ

ij
k (D2u−uI)uiluVl)j−(n−k+1)σk−1(D2u−uI)u2V

−
1

2
(σ

ij
k (D2u−uI)u2Vi)j+

n−k+1

2
σk−1(D2u−uI)u2V

−
1

2
(σ

ij
k (D2u−uI)|Du|2Vj)i+

n−k+1

2
σk−1(D2u−uI)|Du|2V. (4.17)

Applying divergence theorem and noting that u=0 on ∂Ω, we deduce

kCk
n

∫

Ω
uVdx=

n−k+1

2

∫

Ω
σk−1(D2u−uI)|Du|2Vdx−

n−k+1

2

∫

Ω
σk−1(D2u−uI)u2Vdx

−
1

2

∫

∂Ω
σ

ij
k (D2u−uI)|Du|2Vjγidσ. (4.18)

This completes the proof.

To handle with the boundary integral term, we need the following lemma. We omit

the proof which is the same as Lemma 3.4.
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Lemma 4.4. Let Ω⊂Hn be a C2 bounded domain, u∈C3(Ω) be a solution to problem (1.5), then

σ
ij
k (D2u−uI)Vjγi|Du|2=σ

ij
k (D2u−uI)uiujVγ on ∂Ω. (4.19)

Furthermore, we turn the boundary integral into an integral on Ω.

Lemma 4.5. Let u∈C3(Ω)∩C2(Ω) be a solution to problem (1.5), then

∫

∂Ω
σ

ij
k (D2u−uI)uiujVγdσ=(n−k+1)c2

0

∫

Ω
σk−1(D2u−uI)Vdx. (4.20)

Proof. Using Minkowskian integral formula (2.19) and (2.21), we obtain

∫

∂Ω
σ

ij
k (D2u)uiujVγdσ=

∫

∂Ω
Hk−1|Du|k+1Vγdσ=

n−k+1

k−1

∫

∂Ω
Hk−2|Du|k+1Vdσ

=
n−k+1

k−1

∫

∂Ω
σ

ij
k−1(D2u)uiuj|Du|Vdσ. (4.21)

Since u=0 and |Du|=uγ = c0 on ∂Ω, we have

∫

∂Ω
σ

ij
k−1(D2u)uiuj|Du|Vdσ=c2

0

∫

∂Ω
σ

ij
k−1(D2u−uI)uiVγjdx

=c2
0

∫

Ω
(σ

ij
k−1(D2u−uI)uiV)jdx. (4.22)

Applying Proposition 2.2, we get

(σ
ij
k−1(D2u−uI)uiV)j=σ

ij
k−1(D2u−uI)uijV+σ

ij
k−1(D2u−uI)uiVj. (4.23)

By computation,

σ
ij
k−1(D2u−uI)uiVj =(σ

ij
k−1(D2u−uI)uVj)i−σ

ij
k−1(D2u−uI)uVδij. (4.24)

Substituting (4.23) and (4.24) into (4.22), and noting that u=0 on ∂Ω, it follows that

∫

∂Ω
σ

ij
k−1(D2u)uiuj|Du|Vdσ=c2

0

∫

Ω
σ

ij
k−1((D2u−uI)(uij−uδij)Vdx

=(k−1)c2
0

∫

Ω
σk−1(D2u−uI)Vdx. (4.25)

Putting (4.21) and (4.25) together, we obtain (4.20).

Proof of Theorem 1.2. Combining Lemmas 4.3, 4.4 with Lemma 4.5, we obtian

kCk
n

∫

Ω
uVdx=

n−k+1

2

∫

Ω
σk−1(D2u−uI)V(|Du|2−u2−c2

0)dx. (4.26)
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By Lemma 4.2, maximum principle can be applied to P̃, thus

P̃= |Du|2−u2−2u≤ c2
0 in Ω. (4.27)

Putting it into (4.26), we deduce

kCk
n

∫

Ω
Vudx≤ (n−k+1)

∫

Ω
σk−1(D2u−uI)Vudx. (4.28)

On the other hand, using MacLaurin inequalities (2.6), we have

σk−1(D2u−uI)≥Ck−1
n (

σk(D2u−uI)

Ck
n

)
k−1

k =Ck−1
n . (4.29)

Since u<0 in Ω, we get

(n−k+1)σk−1(D2u−uI)u≤ kCk
nu in Ω. (4.30)

It follows from (4.28) and (4.30) that

σk−1(D2u−uI)=Ck−1
n in Ω. (4.31)

By MacLaurin inequalities (2.6), eigenvalues of D2u−uI are all equal to 1. Follows from

an Obata type result ([25], See also [10, 26, 27]), Ω must be a ball BR and u depends only

on the distance from the center of BR, where R= tanh−1c0. It is easy to see that u is of the

form

u=
coshr

coshR
−1. (4.32)

Hence we complete the proof of Theorem 1.2.
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