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1 Introduction

Finding bounds for the eigenvalue of the Laplacian operator on a given manifold is a

key aspects in Riemannian geometry. In the recent years, because of the theory of self-

adjoint operators, the spectral properties of linear Laplacian studied extensively. Most of

the mathematicians are generally interested in the spectrum of the Laplacian on compact

manifolds with or without boundary or noncompact complete manifolds. Because in

these cases, the linear Laplacian can be uniquely extended to self-adjoint operators (see

[1,2]). For these purposes, mathematicians study the various extensions of such operators

which are found in different theories in Riemannian and differential geometry.

As a first extension, consider M as a complete manifold. Let f : M−→R be a smooth

function on M or f ∈W1,p (M) where W1,p(M) is the Sobolev space. The p-Laplacian of f

for 1< p<∞ is defined as

∆p f =div
(

|∇ f |p−2∇ f
)

= |∇ f |p−2∆ f +(p−2) |∇ f |p−4(Hess f )(∇ f ,∇ f ) ,
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where

(Hess f )(X,Y)=∇(∇ f )(X,Y)=X(Y f )−(∇XY) f , X,Y∈χ(M).

The first eigenvalues of p-Laplace operator in both Dirichlet and Neumann cases have

been studied in many papers (see [3–5]). If µ1,p denotes the first Neumann eigenvalue of

p-Laplace operator then as an example it was proved before in [3] that

Proposition 1.1 (Matei). Let M be an n-dimensional complete Riemannian manifold and let K

be a real constant such that RicM ≥ (n−1)K. Then for any x0∈M, r0∈ (0,dM) and p≥2,

µ1,p(B(x0,r0))≤µ1,p(Vn(K,r0)),

where B(x0,r0) is geodesic ball in M centered at x0 and radius r0, Vn(K,r0) is geodesic ball

with radius r0 in model space, i.e. the n-dimensional simply connected space form with constant

sectional curvature K. Also RicM and dM denote the Ricci curvature tensor in M and the diameter

of M respectively.

The other well known extension of Laplace operator is the weighted Laplace opera-

tor which is defined as ∆ f =∆−∇ f ·∇ and it acts as the Laplace operator in weighted

manifolds, i.e. manifolds with density e− f dv (see [6, 7]).

Another extension of Laplace operator is the elliptic divergence type operator

LT f =div(T∇ f ) ,

where T is a positive definite symmetric (1,1)-tensor field on a complete Riemannian

manifold M. This operator is studied in [8] by second author before. Also the general

case of this operator is defined as

LT,η f =div(T∇ f )−〈∇η,T(∇ f )〉,
where η ∈ C2(M) and the eigenvalue problem for this operator is studied in [9]. As it

was mentioned before, the first eigenvalue of these operators on a compact manifold

M has been studied extensively in recent mathematical publications. Many connections

between these invariants and other geometrical invariants have lead to some results of

i-th eigenvalue of these operators. As an example in [9].

Proposition 1.2 (Gomez and Miranda). Let Ω be a domain in an n-dimensional complete

Riemannian manifold M isometrically immersed in Rm, λi be the i-th eigenvalue of LT,η and ft

its corresponding normalized real-valued eigenfunction. Then

tr(T)
k

∑
i=1

(λk+1−λi)
2

≤
k

∑
i=1

(λk+1−λi)
(

(m−n)2 A2
0T2

∗+(T0+T∗η0)+4(T0+T∗η0)||T(∇ fi)||L2 +4λi

)

,

where A0 =max{supΩ |Aek
|,k= n+1,...,m}, Aek

is the Weingarten operator of the immersion

with respect to ek, η0=supΩ̄ |∇η|, T∗=supΩ̄ |T| and T0=supΩ̄ |tr(∇T) |.
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For all these operators, the major question is how we can extend the results of Laplace

and p-Laplace operators and Ricci tensors to these operators. In this paper, our main aim

is to improve these results for the special case operator

�S f =div(S∇ f ) ,

in n-dimensional manifold M, where Sij=Rij− R
2(n−1)

gij. As a quick review, we are going

to prove following theorems

Theorem 1.1. Consider (Mn,g) as a compact Riemannian manifold. If Λ denotes the eigenvalue

of �2
S, then

Γλ≤2
√

Λµ− 2

trS
Λ,

where �S f =div(S(∇ f )), Sij=Rij− R
2(n−1)

gij, and

Γ= L2
0−
(

R

2(n−1)
+K0

)

L0+
1

2
K0R,

and K0 and L0 are the lower bounds of the sectional curvature and Ricci curvature of M, respec-

tively. Also λ and µ denote the eigenvalues of ∆ and ∆2 respectively.

Theorem 1.2. Let x : Mn→ M̄n+1(κ) be an isometric immersion of a compact Riemannian man-

ifold into a space form of constant sectional curvature κ. Also let the shape operator satisfies

0<αI≤A≤ aαI,

where α>0 and a>1 are constants. It is supposed that L1 f =∑
n
i,j=1

(

Hgij−Πij

)

fij, H is mean

curvature and Π is second fundamental form. If δ denotes the eigenvalue of
{

L2
1 f =δ f in M,

f =0 on ∂M,

then

Γ′
κλ≤2

√

µδ− 2

n(n−1)aα
δ,

where λ and µ are eigenvalues of ∆ and ∆2 respectively, Γ′
κ is

2α3 (n−1)
(

n−a2
)

+2κα(n−1)2−σ,

when κ>0 and

2α3 (n−1)
(

n−a2
)

+2κaα(n−1)2−σ,

when κ<0 and also

σ= max
(p,v)∈TM

(tr(HessH)|v⊥ (p)), v⊥={u∈Tp M|〈u,v〉=0}.



The Eigenvalues of a Class of Elliptic Differential Operators 61

2 Preliminaries

Consider (M,g) as an n-dimensional Riemannian manifold. In this paper we are going

to study the elliptic differential operator which is defined as

�S f =div(S(∇ f ))= 〈∇2 f ,S〉, (2.1)

where in coordinates we have

Sij =Rij−
R

2(n−1)
gij.

Where Rij and R are Ricci curvature tensor and scalar curvature tensor respectively.

Generally, let {e1,e2,...,en} be a local coframe field defined on a Riemannian manifold

(M,g). For a symmetric tensor φ=∑
n
i,j=1φijei⊗ej on M, it is defined in [10] that

� f =
n

∑
i,j=1

φij fij.

The Bochner-type formula for this operator was proved before in [12].

Lemma 2.1 (Bochner-type formula). Let Mn be a Riemannian manifold and φ=∑
n
i,j=1φijei⊗ej

be a symmetric tensor defined on M. Then for any smooth function f : M−→R and for any C∈R

1

2
�
(

|∇ f |2
)

=〈∇ f ,∇(� f )〉+〈φ(∇ f ),∇(∆ f )〉+2
n

∑
i,j,k=1

φij f jk fki+2
n

∑
i,j,k,m=1

fi f jφimRmkjk

+C
n

∑
i,j=1

(trφ)ij fi f j−
n

∑
i,j=1

fi f j∆φij+
n

∑
i,j=1

fi f j

(

n

∑
k=1

φikk−C
n

∑
k=1

φkki

)

j

+
n

∑
k=1

(

n

∑
i,j=1

fi f j

(

φjik−φjki

)

)

k

−
n

∑
k=1

(

n

∑
i,j=1

f jφij fik

)

k

. (2.2)

It seems clear that if φ is equal to the metric g, then ∑
n
k=1

(

∑
n
i,j=1 f jφij fik

)

k
= 1

2 ∆|∇ f |2.

In this case the above lemma returns to well-known Bochner formula for Laplacian. Also

from [10], there are following basic properties. First of all,

� f =div(φ(∇ f ))−
n

∑
i=1

(

n

∑
j=1

φijj

)

fi.

And also, we say that φ is divergence free if divφ≡0 or equivalently, ∑
n
j=1φijj ≡0, for all

1≤ j≤ n. Cheng and Yau in [10], discussed the operator � extensively. If M is compact
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then � is self-adjoint if and only if φ is divergence free. If φ is symmetric and positive def-

inite, then � is strictly elliptic. Therefore, if φ is divergence free, symmetric and positive

definite, then � is strictly elliptic and self-adjoint (see also [11]).

We are going to study the system
{

L f =Λ f in M,

f =0 on ∂M,
(2.3)

where L=�
2
S. As an important example under Codazzi Schouten operator i.e. Sijk=Sikj,

it was proved before in [12] that

Proposition 2.1 (Alencar et al.). Let Mn, n≥ 4 be a compact Riemannian manifold in which

divW≡0. If M has constant scalar curvature R and the Einstein tensor is positive definite, then

the first nonzero eigenvalue µ1(�S,M) of the operator �S, satisfies

µ1(�S,M)≥ n−2

2(n−1)

(

R

R−2L0

)

[

L2
0−
(

R

2(n−1)
+K0

)

L0
1

2
K0R

]

,

where K0 and L0 are the lower bounds of the sectional curvature and Ricci curvature of M, re-

spectively and W is harmonic Weyl tensor. Furthermore, the equality holds if and only if M is the

round sphere Sn(K0).

Consider Mn, as an n-dimensional Riemannian manifold and x : Mn → M̄n+1 as an

isometric immersion of M to the model space of M̄. Also A and H are shape operator and

mean curvature of immersions respectively. In other words, if λ1,λ2,...,λn are eigenvalues

of A, i.e. the principal curvatures of the immersions, then

H=
n

∑
i=1

λi.

In this case, the first Newton transformation P1 : TM→TM associated with second fun-

damental form, is defined as

P1=HI−A.

By this transformation, the new operator was first introduced in [13], as

L1 f =
n

∑
i=1

(P1)ij fij =
n

∑
i,j=1

(

Hgij−Πij

)

fij,

where Πij are the components of second fundamental form.

It has been shown before in [14], that if M̄ is a space form of constant sectional curva-

ture, then divP1≡0. Also under these assumptions L1 is self adjoint. The new operator L1

naturally appears in the study of variation theory for curvature functional A=
∫

M Hdµ,

which is called 1-area of M. Also it plays an important role in the study of stability for

hypersurfaces with constant mean curvature (see as examples [15–17]). It was proved

before in [12] that
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Proposition 2.2. [15,16] Let x:Mn→M̄n+1(κ) be an isometric immersion of a compact Rieman-

nian manifold into a space form of constant sectional curvature κ. Suppose that shape operator A

satisfies

0<αI≤A≤ aαI,

where α>0 and a>1 are constants. Then if µ(L1,M) denotes the eigenvalue of L1 f =−µ f , we

see

µ(L1,M)≥ 1

2

(

na

na−1

)

Γ′
κ ,

where Γ′
κ are the same as in Theorem 1.2.

3 Proof of main results

Consider the system

�
2
S f =Λ f . (3.1)

In this case Λ is called the eigenvalue of mentioned operator. By multiplying both sides

of Eq. (3.1) we get
∫

M
f ·�S f dµ=Λ

∫

M
f 2dµ,

since
∫

M〈 f ,�2
S f 〉dµ=

∫

M〈�S f ,�S f 〉dµ, by integrating by parts we have

∫

M
(�S f )2dµ=Λ

∫

M
f 2dµ,

which concludes that

Λ=

∫

M
(�S f )2dµ
∫

M
f 2dµ

.

Also the operator

L2
1 f =δ f ,

which was introduced before, in the similar context, because L1 is self-adjoint we see

δ=

∫

M
(L1 f )2dµ
∫

M
f 2dµ

.
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Proof of Theorem 1.1. Since Sjik=Sjki and S is divergence free, i.e. div(S)=0, our Bochn-

er formula (2.2) changes as

1

2
�S

(

|∇ f |2
)

=〈∇ f ,∇(�S f )〉+2
n

∑
i,j,k=1

Sij f jk fki+〈S(∇ f ) ,∇(∆ f )〉

+2Ric(∇ f ,S(∇ f ))−
n

∑
i,j=1

fi f j∆Sij−
n

∑
k=1

(

n

∑
i,j=1

f jSij fik

)

k

.

Now, we are going to integrate and estimate each term, then our proof will be completed.

It was known before that for two n×n symmetric matrices A and B, where B is positive

definite, then

tr
(

A2B
)

≥ [tr(AB)]2

trB
. (3.2)

There is a suitable proof for the Eq. (3.2) in [12] which is known as a Newton inequality.

Now consider A=[ fij]n×n and B=[Sij]n×n, since S is positive definite, it implies that

n

∑
i,j,k=1

Sij f jk fki ≥
(�S f )2

trS
,

which finally gives us

2
∫

M

n

∑
i,j,k=1

Sij f jk fkidµ≥ 2

trS

∫

M
(�S f )2dµ.

Also it was proved in [12] that

∫

M

[

2Ric(∇ f ,S(∇ f ))−
n

∑
i,j=1

fi f j∆Sij

]

dµ≥Γ

∫

M
|∇ f |2dµ,

where Γ is as same as what mentioned before. Now since
∫

M
〈∇ f ,∇(�S f )〉dµ+

∫

M
〈S(∇ f ) ,∇(∆ f )〉dµ

=−
∫

M
〈∆ f ,�S f 〉dµ−

∫

M
〈∇(S(∇ f )),∆ f 〉dµ

=−2
∫

M
∆ f ·�S f dµ,

and also by divergence theorem

∫

M

n

∑
k=1

(

n

∑
i,j=1

f jSij fik

)

k

dµ=0.
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Finally we get

−2
∫

M
∆ f�S f dµ+Γ

∫

M
|∇ f |2dµ+

2

tr S

∫

M
(�S f )2dµ≤0.

By simple calculation we have

Γ

∫

M
|∇ f |2dµ≤2

∫

M
∆ f�S f dµ− 2

trS

∫

M
(�S f )2dµ

≤2

(

∫

M
(∆ f )2dµ

)
1
2
(

∫

M
(�S f )2dµ

)
1
2

− 2

trS
Λ

∫

M
f 2dµ

=2

(

∫

M
(∆ f )2

)
1
2 √

Λ

(

∫

M
f 2dµ

)
1
2

− 2

trS
Λ

∫

M
f 2dµ,

where in second inequality we used Hölder’s inequality and Γ is as same as what men-

tioned in Theorem 1.1. By dividing both sides on
∫

M f 2dµ we finally see

Γλ≤2
√

Λµ− 2

trS
Λ.

Proof of Theorem 1.2. If A>0 then P1 is positive definite, therefore L1 is elliptic operator.

Since Codazzi equation i.e. Πjik =Πjki holds for L1, the Bochner formula becomes as

1

2
L1|∇ f |2 =〈∇ f ,∇(L1 f )〉+〈P1(∇ f ) ,∇(∆ f )〉+2

n

∑
i,j,k=1

(

Hgij−Πij

)

f jk fki

+2Ric(∇ f ,P1(∇ f ))−〈(∆P1)(∇ f ) ,∇ f 〉

−
n

∑
k=1

(

n

∑
i,j=1

fi

(

Hgij−Πij

)

fik

)

k

+
n

∑
k=1

(

|∇ f |2Hk−〈∇H,∇ f 〉 fk

)

k
.

By integrating from both sides and using divergence theorem, we get

0=
∫

M
〈∇ f ,∇(L1 f )〉dµ+

∫

M
〈P1(∇ f ) ,∇(∆ f )〉dµ

+2
∫

M

(

n

∑
i,j,k=1

(

Hgij−Πij

)

f jk fki

)

dµ

+
∫

M

[

2Ric(∇ f ,P1(∇ f ))−〈(∆P1)(∇ f ) ,∇ f 〉
]

dµ. (3.3)

Now we are going estimate each quantity of Eq. (3.3) separately. Since

0=
∫

M
div(∆ f P1(∇ f ))dµ=

∫

M
〈P1(∇ f ) ,∇(∆ f )〉dµ+

∫

M
∆ f ·div(P1(∇ f )),



66 M. Habibi and S. Azami/ J. Partial Diff. Eq., 36 (2023), pp. 58-67

thus
∫

M
〈∇ f ,∇(L1 f )〉dµ+

∫

M
〈P1(∇ f ) ,∇(∆ f )〉dµ=−2

∫

M
∆ f ·L1 f dµ.

Under the assumption

0<αI≤A≤ aαI,

it was proved before in [12] that

∫

M

[

2Ric(∇ f ,P1(∇ f ))−〈(∆P1)(∇ f ) ,∇ f 〉
]

dµ≥Γ′
κ

∫

M
|∇ f |2dµ,

where if κ>0 then

Γ′
κ =2α3(n−1)

(

n−a2
)

+2κα(n−1)2−σ,

and also if κ<0 then

Γ′
κ =2α3(n−1)

(

n−a2
)

+2κaα(n−1)2−σ,

and

σ= max
(p,v)∈TM

(tr(HessH) |v⊥ (p)), v⊥={u∈Tp M|〈u,v〉=0}.

Also under A>0 , P is positive definite, thus

2
∫

M

(

n

∑
i,j,k=1

(

Hgij−Πij

)

f jk fki

)

dµ≥2
∫

M

(L1 f )2

(n−1)H
dµ≥ 2

n(n−1)aα
δ
∫

M
f 2dµ,

where L2
1 f =δ f 2. Now by substituting into the Eq. (3.3), we see

0≥−2
∫

M
∆ f ·L1 f dµ+2

∫

M

(L1 f )2

(n−1)H
dµ+Γ′

κ

∫

M
|∇ f |2dµ

≥−2

(

∫

M
(∆ f )2dµ

)
1
2
(

∫

M
(L1 f )2dµ

)
1
2

+
2

n(n−1)aα
δ
∫

M
f 2dµ+Γ′

κ

∫

M
|∇ f |2dµ

=−2

(

∫

M
(∆ f )2dµ

)
1
2 √

δ

(

∫

M
f 2

)
1
2

+
2

n(n−1)aα
δ
∫

M
f 2dµ+Γ′

κ

∫

M
|∇ f |2dµ,

where in the second inequality we used Hölder’s inequality. By dividing both sides on
∫

M f 2dµ we finally get

Γ′
κλ≤2

√

µδ− 2

n(n−1)aα
δ.
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