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Abstract

In this paper, a fully discrete finite element scheme with second-order temporal accu-

racy is proposed for a fluid-fluid interaction model, which consists of two Navier-Stokes

equations coupled by a linear interface condition. The proposed fully discrete scheme is a

combination of a mixed finite element approximation for spatial discretization, the second-

order backward differentiation formula for temporal discretization, the second-order Gear’s

extrapolation approach for the interface terms and extrapolated treatments in linearization

for the nonlinear terms. Moreover, the unconditional stability is established by rigorous

analysis and error estimate for the fully discrete scheme is also derived. Finally, some

numerical experiments are carried out to verify the theoretical results and illustrate the

accuracy and efficiency of the proposed scheme.
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1. Introduction

Numerical simulation of multi-domain and multi-physics coupling of one fluid with another

fluid is an important aspect in many industrial applications. In fact, the fluid-fluid interaction

model can be seen as one of them arises in many important scientific, engineering and industrial

applications, such as heterogeneous of blood flow [8] and atmosphere-ocean interaction [20–22].

Due to the practical importance of the fluid-fluid interaction problem, there has been a lot of

attention recently paid to the development of accurate and efficient numerical methods; see,

e.g., [5,16–19,23] among many others. Besides, Bresch and Koko [4] have presented a numerical

simulation of the considered model by using an operator-splitting method and optimization-

based nonoverlapping domain decomposition methods. Based on implicit-explicit scheme for

the nonlinear interface conditions, Connors et al. [7] have presented a decoupled time stepping

method, which is conditionally stable proved by Zhang et al. [25]. Recently, Aggul et al. [2]

have developed a predictor-corrector-type method that is an unconditionally stable scheme with

second order time accuracy.
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In this paper, we study the following governing equations of a fluid-fluid interaction model

[9, 26]. Let a bounded domain Ω ⊂ R
2 consist of two sub-domains Ω1 and Ω2 coupled across

their shared interface I, for times t ∈ [0, T ]. For i = 1, 2, given the kinematic viscosities

νi > 0, the friction coefficients κ > 0, the body forces fi : [0, T ] → H1(Ωi)
2, and initial values

ui,0 ∈ H1(Ωi)
2, find the fluid velocities ui : [0, T ]×Ωi → R

2 and pressures pi : [0, T ]×Ωi → R

satisfying (for t ∈ (0, T ])

ui,t − νi∆ui + ui · ∇ui +∇pi = fi in Ωi,

− νini · ∇ui · τ = κ(ui − uj) · τ on I, for i, j = 1, 2, and i 6= j,

ui · ni = 0 on I,

∇ · ui = 0 in Ωi,

ui(0, x) = ui,0(x) in Ωi,

ui = 0 on Γi := ∂Ωi\I.

(1.1)

The vectors ni are the unit normals on ∂Ωi, and τ is any vector on I such that τ · ni = 0.

Note that the linear interface conditions are considered on the interface I, which have been

studied in past score years. Lions et al. [22] and Friedlander and Serre [9] have proved the

existence, uniqueness and regularity of the solution of the problem (1.1). Recently, Zhang et

al. [26] have proved that the error estimates of a decoupled scheme for the velocities in H1

norm and pressures in L2 norm are ∆t
7
8 +h and ∆t

3
4 +h, respectively. However, the decoupled

scheme is conditionally convergent with ∆t ≤ ch
1
2 . Besides, for the same interface condition

as problem (1.1), Connors et al. [6] have proposed a partitioned time stepping method for a

parabolic two-domain problem and analyzed the error estimates.

In this paper, the purpose of the current efforts is to propose and investigate a fully discrete

finite element scheme with second order temporal accuracy for the fluid-fluid interaction model

(1.1). We discretize the system in time via a combination of second order backward differenti-

ation formula (BDF) for the temporal terms, second order Gear’s extrapolation approach for

the interface terms and extrapolated treatments in linearization for the nonlinear terms. The

coupling terms in the interface conditions are treated explicitly in our scheme so that only two

decoupled Navier-Stokes equations are solved at each time step.

The rest of the paper is arranged as follows: In the next section, we introduce some mathe-

matical preliminaries and provide the corresponding variational form for the problem (1.1). In

Section 3, we propose a fully discrete finite element scheme for the fluid-fluid interaction model.

Besides, the unconditional stability of the presented scheme is proven. Then in Section 4, we

derive and prove the error estimates for the considered scheme. In Section 5, some numerical

experiments are implemented to verify the theoretical results and efficiency of the proposed

scheme. Consequently, we end our paper by drawing a conclusion in the last section.

2. Notation and Preliminaries

In this section, we describe some necessary definitions and inequalities, which will be fre-

quently applied to the following sections. We introduce the usual L2(Ωi) norm and its inner

product by ‖ · ‖0 and (·, ·)Ωi
, respectively. The Lp(Ωi) norms and the Sobolev Wm

p (Ωi) norms

are denoted by ‖ · ‖Lp(Ωi) and ‖ · ‖Wm
p (Ωi) for m ∈ N

+, 1 ≤ p ≤ ∞. In particular, Hm(Ωi)

is used to represent the Sobolev space Wm
2 (Ωi) and ‖ · ‖m denotes the norm in Hm(Ωi). For
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Xi being a normed function space in Ωi, L
p(0, T ;Xi) is the space of all functions defined on

[0, T ]× Ωi for which the norm

‖u‖Lp(0,T ;Xi) =

(

∫ T

0

‖u‖pXi
dt

)
1
p

, p ∈ [1,∞)

is finite. For p = ∞, the usual modification is used in the definition of this space.

For the mathematical setting of the fluid-fluid interaction model (1.1), we introduce the

following function spaces:

Xi = {vi ∈ H1(Ωi)
2; vi|Γi

= 0; vi · ni = 0 on I}, Mi = {qi ∈ L2(Ωi); (qi, 1) = 0 }.

For fi an element in the dual space of Xi, its norm is defined by

‖fi‖−1 = sup
vi∈Xi

|(fi, vi)|

‖∇vi‖0
.

In particular, all of the above notations are adaptable to the sub-domain Ωj .

Based on the above definitions of the function spaces, the corresponding variational formu-

lation of the problem (1.1) is given as follows: Find (ui, pi) ∈ L2(0, T ;Xi)×L2(0, T ;Mi) for all

(vi, qi) ∈ Xi ×Mi, i, j = 1, 2, i 6= j such that

(ui,t, vi) + a(ui, vi)− d(vi, pi) + d(ui, qi) + b(ui, ui, vi) +

∫

I

κ(ui − uj)vids = (fi, vi), (2.1)

where (ui,t, vi) =
∫

Ωi

∂ui

∂t
vidΩi, the bilinear forms a(·, ·) and d(·, ·) are defined on Xi ×Xi and

Xi ×Mi, respectively, by

a(ui, vi) = νi(∇ui,∇vi), ui, vi ∈ Xi,

d(vi, qi) = −(vi,∇qi) = (∇ · vi, qi), vi ∈ Xi, qi ∈Mi,

and the trilinear term b(·, ·, ·) are defined on Xi ×Xi ×Xi by

b(ui, vi, wi)= ((ui · ∇)vi, wi) +
1
2 ((∇ · ui)vi, wi)

= 1
2 ((ui · ∇)vi, wi)−

1
2 ((ui · ∇)wi, vi), ∀ui, vi, wi ∈ Xi.

Some properties of this skew-symmetric trilinear term will be used in the next analysis and

given in the following lemma.

Lemma 2.1 ([12, 15, 24]). For ui, vi, wi ∈ Xi, i = 1, 2, we have

b(ui, vi, wi) = −b(ui, wi, vi),

|b(ui, vi, wi)| ≤ c0‖∇ui‖0‖∇vi‖0‖∇wi‖0.

Besides, if vi ∈ H2(Ωi)
2, then we have

|b(ui, vi, wi)| ≤ c1‖ui‖0‖vi‖2‖∇wi‖0,

where c0, c1 are two positive constants depending on Ωi.

As is known, the discrete Gronwall’s inequality will play an important rule in convergence’s

analysis, so we introduce it in the following lemma.
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Lemma 2.2 ([14]). Let C, k and an, bn, dn, for integers n1 ≤ n ≤ m, be nonnegative numbers

such that

am + k

m
∑

n=n1

bn ≤ k

s
∑

n=n1

andn + C, ∀m ≥ n1.

If s = m− 1, then

am + k

m
∑

n=n1

bn ≤ exp

(

k

m−1
∑

n=n1

dn

)

C, ∀m ≥ n1.

Finally, we recall the Poincaré inequality and the trace inequality, which are useful in the

following analysis. There exist some positive constants Cp and Ctr, which depend on Ωi, such

that [1, 10]

‖vi‖0 ≤ Cp‖∇vi‖0, ‖vi‖L2(I) ≤ Ctr‖vi‖
1
2

0 ‖∇vi‖
1
2

0 . (2.2)

3. A Fully Discrete Scheme with Second Order Temporal Accuracy

From now on, given N > 0, let {tn}
N
n=0 be a uniform partition of [0, T ] with time step

∆t = T/N , and tn = n∆t. Next, for i = 1, 2, let πh
i be a triangulation of Ωi and π

h = πh
1 ∪π

h
2 .

The mesh size h is the largest diameter of the element in πh. Accordingly, we consider the finite

element spaces on πh
i by Xh

i ⊂ Xi for velocity and Mh
i ⊂ Mi for pressure. The finite element

discrete subspaces are given as follows:

Xh
i = {vi,h ∈ C0(Ωi)

2 ∩Xi : vi,h|Ki
∈ P2(Ki)

2, ∀Ki ∈ πh
i },

Mh
i = {qi,h ∈ C0(Ωi) ∩Mi : qi,h|Ki

∈ P1(Ki), ∀Ki ∈ πh
i },

where Pl(Ki) (l = 1, 2) denote the space of the polynomials on Ki of degree at most l for

every Ki ∈ πh
i . It is well known that the finite element spaces Mh

i and Xh
i satisfy the discrete

Ladyzenskaja-Babus̆ka-Brezzi (LBB) condition

sup
06=vi,h∈Xh

i

|d(vi,h, qi,h)|

‖∇vi,h‖0
≥ β‖qi,h‖0, ∀qi,h ∈Mh

i ,

where β > 0 is only dependent on Ωi. Furthermore, (uni,h, p
n
i,h) will denote the fully discrete

approximation to the solution (ui, pi) of the problem (1.1) at t = tn. Besides, we set f
n
i = fi(tn).

Now, we construct a fully discrete finite element scheme involving a second order BDF

scheme and mixed finite element method as temporal-spatial discretization, where the interface

terms on I are treated via a second order explicit Gear’s extrapolation approach and the

nonlinear terms are dealt with by the extrapolated linearization. Hence, we propose the fully

discrete scheme as follows:

Given un−1
1,h , un1,h ∈ Xh

1 and un−1
2,h , un2,h ∈ Xh

2 , for 1 ≤ n ≤ N−1, find (un+1
1,h , pn+1

1,h ) ∈ Xh
1 ×M

h
1

satisfying
(

3un+1
1,h − 4un1,h + un−1

1,h

2∆t
, v1,h

)

+ a(un+1
1,h , v1,h) + b(2un1,h − un−1

1,h , un+1
1,h , v1,h)

− d(v1,h, p
n+1
1,h ) + d(un+1

1,h , q1,h) + 2

∫

I

κ(un1,h − un2,h)v1,hds

−

∫

I

κ(un−1
1,h − un−1

2,h )v1,hds = (fn+1
1 , v1,h), (3.1)
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for all (v1,h, q1,h) ∈ Xh
1 ×Mh

1 . Besides, given u
n−1
2,h , un2,h ∈ Xh

2 and un−1
1,h , un1,h ∈ Xh

1 , for 1 ≤ n ≤

N − 1, find (un+1
2,h , pn+1

2,h ) ∈ Xh
2 ×Mh

2 satisfying
(

3un+1
2,h − 4un2,h + un−1

2,h

2∆t
, v2,h

)

+ a(un+1
2,h , v2,h) + b(2un2,h − un−1

2,h , un+1
2,h , v2,h)

− d(v2,h, p
n+1
2,h ) + d(un+1

2,h , q2,h) + 2

∫

I

κ(un2,h − un1,h)v2,hds

−

∫

I

κ(un−1
2,h − un−1

1,h )v2,hds = (fn+1
2 , v2,h), (3.2)

for all (v2,h, q2,h) ∈ Xh
2 ×Mh

2 .

Remark 3.1. Note that the schemes (3.1) and (3.2) require some initial values u1i,h and u0i,h
(i = 1, 2). For the sake of simplification, we set u1i,h = Riui(t1) (see Section 4 for the definition

of the projection Ri). In fact, it can obtained by the calculation of the first order scheme in [26].

Besides, we choose u0i,h = Riui(t0).

In the following part of this section, we will analyze the stability of the schemes (3.1) and

(3.2). We will prove that the schemes (3.1) and (3.2) are unconditionally stable in Theorem

3.1. Besides, the long-time stability of the schemes (3.1) and (3.2) will be stated in Theorem

3.2.

Theorem 3.1. Let fi ∈ L∞
(

0, T ;H−1(Ωi)
2
)

, i = 1, 2. Then the schemes (3.1) and (3.2) are

unconditionally stable.

Proof. Setting (v1,h, q1,h) = 4∆t(un+1
1,h , pn+1

1,h ) in (3.1) and (v2,h, q2,h) = 4∆t(un+1
2,h , pn+1

2,h ) in

(3.2), using the equality (2a, 3a− 4b+ c) = |a|2 + |2a− b|2 − |b|2 − |2b− c|2 + |a− 2b+ c|2 and

Lemma 2.1, and summing the ensuing equations yield

‖un+1
1,h ‖20 + ‖2un+1

1,h − un1,h‖
2
0 − ‖un1,h‖

2
0 − ‖2un1,h − un−1

1,h ‖20 + ‖un+1
1,h − 2un1,h + un−1

1,h ‖20

+ ‖un+1
2,h ‖20 + ‖2un+1

2,h − un2,h‖
2
0 − ‖un2,h‖

2
0 − ‖2un2,h − un−1

2,h ‖20 + ‖un+1
2,h − 2un2,h + un−1

2,h ‖20

+ 4∆tν1‖∇u
n+1
1,h ‖20 + 4∆tν2‖∇u

n+1
2,h ‖20 + 8∆t

∫

I

κ(un1,h − un2,h)u
n+1
1,h ds

− 4∆t

∫

I

κ(un−1
1,h − un−1

2,h )un+1
1,h ds + 8∆t

∫

I

κ(un2,h − un1,h)u
n+1
2,h ds

− 4∆t

∫

I

κ(un−1
2,h − un−1

1,h )un+1
2,h ds = 4∆t(fn+1

1 , un+1
1,h ) + 4∆t(fn+1

2 , un+1
2,h ). (3.3)

Next, concerning the interface terms of (3.3), applying (2.2), the Hölder inequality and the

Young’s inequality, there holds

2

∫

I

κ(un1,h − un2,h)u
n+1
1,h ds−

∫

I

κ(un−1
1,h − un−1

2,h )un+1
1,h ds

≤ κ
(

‖2un1,h − un−1
1,h ‖L2(I) + ‖2un2,h − un−1

2,h ‖L2(I)

)

‖un+1
1,h ‖L2(I)

≤ C2
trC

1
2
p κ‖2u

n
1,h − un−1

1,h ‖
1
2

0 ‖∇(2un1,h − un−1
1,h )‖

1
2

0 ‖∇u
n+1
1,h ‖0

+ C2
trC

1
2
p κ‖2u

n
2,h − un−1

2,h ‖
1
2

0 ‖∇(2un2,h − un−1
2,h )‖

1
2

0 ‖∇u
n+1
1,h ‖0

≤
3

2
C4

trCpκ
2ν−1

1 ‖2un1,h − un−1
1,h ‖0‖∇(2un1,h − un−1

1,h )‖0 +
ν1
3
‖∇un+1

1,h ‖20

+
3

2
C4

trCpκ
2ν−1

1 ‖2un2,h − un−1
2,h ‖0‖∇(2un2,h − un−1

2,h )‖0
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≤ 54C8
trC

2
pκ

4ν−3
1 ‖2un1,h − un−1

1,h ‖20 + 54C8
trC

2
pκ

4ν−2
1 ν−1

2 ‖2un2,h − un−1
2,h ‖20

+
ν1
96

‖∇(2un1,h − un−1
1,h )‖20 +

ν2
96

‖∇(2un2,h − un−1
2,h )‖20 +

ν1
3
‖∇un+1

1,h ‖20

≤ 54C8
trC

2
pκ

4ν−3
1 ‖2un1,h − un−1

1,h ‖20 + 54C8
trC

2
pκ

4ν−2
1 ν−1

2 ‖2un2,h − un−1
2,h ‖20 +

ν1
12

‖∇un1,h‖
2
0

+
ν1
48

‖∇un−1
1,h ‖20 +

ν2
12

‖∇un2,h‖
2
0 +

ν2
48

‖∇un−1
2,h ‖20 +

ν1
3
‖∇un+1

1,h ‖20. (3.4)

Arguing in exactly the same way as (3.4), we get

2

∫

I

κ(un2,h − un1,h)u
n+1
2,h ds−

∫

I

κ(un−1
2,h − un−1

1,h )un+1
2,h ds

≤ 54C8
trC

2
pκ

4ν−3
2 ‖2un2,h − un−1

2,h ‖20 + 54C8
trC

2
pκ

4ν−2
2 ν−1

1 ‖2un1,h − un−1
1,h ‖20

+
ν2
12

‖∇un2,h‖
2
0 +

ν2
48

‖∇un−1
2,h ‖20 +

ν1
12

‖∇un1,h‖
2
0 +

ν1
48

‖∇un−1
1,h ‖20 +

ν2
3
‖∇un+1

2,h ‖20. (3.5)

Besides, the right-hand sides (RHSs) of (3.3) are bounded

4∆t(fn+1
1 , un+1

1,h ) + 4∆t(fn+1
2 , un+1

2,h )

≤∆tν1‖∇u
n+1
1,h ‖20 +∆tν2‖∇u

n+1
2,h ‖20 + 4∆tν−1

1 ‖fn+1
1 ‖2−1 + 4∆tν−1

2 ‖fn+1
2 ‖2−1. (3.6)

Moreover, set C∗ = C8
trC

2
pκ

4 and ν∗ = max{ν−3
1 , ν−3

2 , ν−2
1 ν−1

2 , ν−1
1 ν−2

2 }. Combining (3.4)-

(3.6) with (3.3) yields

‖un+1
1,h ‖20 + ‖2un+1

1,h − un1,h‖
2
0 + ‖un+1

2,h ‖20 + ‖2un+1
2,h − un2,h‖

2
0 + ‖un+1

1,h − 2un1,h + un−1
1,h ‖20

+ ‖un+1
2,h − 2un2,h + un−1

2,h ‖20 +∆tν1‖∇u
n+1
1,h ‖20 +∆tν2‖∇u

n+1
2,h ‖20

≤ 4∆tν−1
1 ‖fn+1

1 ‖2−1 + 4∆tν−1
2 ‖fn+1

2 ‖2−1 + (1 + 432C∗ν∗∆t)(‖un1,h‖
2
0 + ‖2un1,h − un−1

1,h ‖20)

+ (1 + 432C∗ν∗∆t)(‖un2,h‖
2
0 + ‖2un2,h − un−1

2,h ‖20) +
2ν1
3

∆t‖∇un1,h‖
2
0 +

ν1
6
∆t‖∇un−1

1,h ‖20

+
2ν2
3

∆t‖∇un2,h‖
2
0 +

ν2
6
∆t‖∇un−1

2,h ‖20. (3.7)

Next, add ± ν1
3 ∆t‖∇un1,h‖

2
0 and ± ν2

3 ∆t‖∇u
n
2,h‖

2
0 to (3.7), which implies that

En+1
1 + En+1

2 +
432C∗ν∗ν1∆t

2

1 + 432C∗ν∗∆t
‖∇un+1

1,h ‖20 +
432C∗ν∗ν1∆t

2

3(1 + 432C∗ν∗∆t)
‖∇un1,h‖

2
0

+
432C∗ν∗ν2∆t

2

1 + 432C∗ν∗∆t
‖∇un+1

2,h ‖20 +
432C∗ν∗ν2∆t

2

3(1 + 432C∗ν∗∆t)
‖∇un2,h‖

2
0

+ ‖un+1
1,h − 2un1,h + un−1

1,h ‖20 + ‖un+1
2,h − 2un2,h + un−1

2,h ‖20

≤ 4∆t(ν−1
1 ‖fn+1

1 ‖2−1 + ν−1
2 ‖fn+1

2 ‖2−1) + (1 + 432C∗ν∗∆t)(En
1 + En

2 ), (3.8)

where

En+1
i = ‖un+1

i,h ‖20 + ‖2un+1
i,h − uni,h‖

2
0 +

νi∆t

1 + 432C∗ν∗∆t
‖∇un+1

i,h ‖20 +
νi∆t

3(1 + 432C∗ν∗∆t)
‖∇uni,h‖

2
0,

for i=1,2. Discarding all terms on the left-hand side of (3.8), all of which are positive, except

for En+1
1 and En+1

2 , we arrive at

En+1
1 + En+1

2 ≤ 4∆t(ν−1
1 ‖fn+1

1 ‖2−1 + ν−1
2 ‖fn+1

2 ‖2−1) + (1 + 432C∗ν∗∆t)(En
1 + En

2 ).
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Then, by recursion

En
1 + En

2 ≤ exp(432C∗ν∗T )(E1
1 + E1

2) +
exp(432C∗ν∗T )

108C∗ν∗

2
∑

i=1

(

ν−1
i max

n
‖fn+1

i ‖2−1

)

. (3.9)

Hence, the unconditional stability of the considered schemes is proved. �

In fact, according to (3.9), the proof of the unconditionally stable bound of the considered

schemes for the velocity fields results in the dependence of the bounds on the final time T of

the form O(exp(T )). Although being time step independent, such bound is not very practical

for longer final time problem.

Now, we consider the long time stability over 0 ≤ t < ∞ and show that the considered

schemes are uniformly bounded for all time, without any time step restriction.

Theorem 3.2. Assume that fi ∈ L2
(

0, T ;H−1(Ωi)
2
)

, i = 1, 2, and the viscosity coefficients

hold for the condition 160C∗ ≤ ν2∗ , where C∗ = C4
trC

2
pκ

2 and ν∗ = min{ν1, ν2}, then the

considered schemes (3.1) and (3.2) for problem (1.1) are uniformly bounded on (0, T ].

Proof. Note that the interface terms of (3.3) can be bounded by

∫

I

κ
(

2(un1,h − un2,h)− (un−1
1,h − un−1

2,h )
)

un+1
1,h ds (3.10)

≤ κ
(

2‖un1,h − un2,h‖L2(I) + ‖un−1
1,h − un−1

2,h ‖L2(I)

)

‖un+1
1,h ‖L2(I)

≤ κC2
trCp

(

2‖∇(un1,h − un2,h)‖0 + ‖∇(un−1
1,h − un−1

2,h )‖0

)

‖∇un+1
1,h ‖0

≤ κ2C4
trC

2
pν

−1
1

(

8‖∇(un1,h − un2,h)‖
2
0 + 2‖∇(un−1

1,h − un−1
2,h )‖20

)

+
ν1
4
‖∇un+1

1,h ‖20

≤ κ2C4
trC

2
pν

−1
1

(

16‖∇un1,h‖
2
0 + 16‖∇un2,h‖

2
0 + 4‖∇un−1

1,h ‖20 + 4‖∇un−1
2,h ‖20

)

+
ν1
4
‖∇un+1

1,h ‖20,

as well as

∫

I

κ
(

2(un2,h − un1,h)− (un−1
2,h − un−1

1,h )
)

un+1
2,h ds (3.11)

≤ κ2C4
trC

2
pν

−1
2

(

16‖∇un2,h‖
2
0 + 16‖∇un1,h‖

2
0 + 4‖∇un−1

2,h ‖20 + 4‖∇un−1
1,h ‖20

)

+
ν2
4
‖∇un+1

2,h ‖20.

Next, multiplying (3.10) and (3.11) by 4∆t and combining (3.6) and (3.3) with the ensuing

inequalities, we get

‖un+1
1,h ‖20 + ‖2un+1

1,h − un1,h‖
2
0 − ‖un1,h‖

2
0 − ‖2un1,h − un−1

1,h ‖20 + 2∆tν1‖∇u
n+1
1,h ‖20

+ ‖un+1
2,h ‖20 + ‖2un+1

2,h − un2,h‖
2
0 − ‖un2,h‖

2
0 − ‖2un2,h − un−1

2,h ‖20 + 2∆tν2‖∇u
n+1
2,h ‖20

+ ‖un+1
1,h − 2un1,h + un−1

1,h ‖20 + ‖un+1
2,h − 2un2,h + un−1

2,h ‖20

≤ 4∆tν−1
1 ‖fn+1

1 ‖2−1 + 4∆tν−1
2 ‖fn+1

2 ‖2−1 + 64∆tκ2C4
trC

2
pν

−1
1

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

+ 16∆tκ2C4
trC

2
pν

−1
1

(

‖∇un−1
1,h ‖20 + ‖∇un−1

2,h ‖20

)

+ 64∆tκ2C4
trC

2
pν

−1
2

(

‖∇un2,h‖
2
0 + ‖∇un1,h‖

2
0

)

+ 16∆tκ2C4
trC

2
pν

−1
2

(

‖∇un−1
2,h ‖20 + ‖∇un−1

1,h ‖20

)

. (3.12)



Second Order Scheme for a Fluid-Fluid Interaction Model 79

Note that ν∗ = min{ν1, ν2} and C∗ = C4
trC

2
pκ

2. Thus, it is easy to get

64∆tκ2C4
trC

2
pν

−1
1

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

+ 64∆tκ2C4
trC

2
pν

−1
2

(

‖∇un2,h‖
2
0 + ‖∇un1,h‖

2
0

)

≤ 128∆tC∗ν
−1
∗

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

,

16∆tκ2C4
trC

2
pν

−1
1

(

‖∇un−1
1,h ‖20 + ‖∇un−1

2,h ‖20

)

+ 16∆tκ2C4
trC

2
pν

−1
2

(

‖∇un−1
2,h ‖20 + ‖∇un−1

1,h ‖20

)

≤ 32∆tC∗ν
−1
∗

(

‖∇un−1
1,h ‖20 + ‖∇un−1

2,h ‖20

)

,

which together with (3.12) lead to

‖un+1
1,h ‖20 + ‖2un+1

1,h − un1,h‖
2
0 − ‖un1,h‖

2
0 − ‖2un1,h − un−1

1,h ‖20 + 2∆tν1‖∇u
n+1
1,h ‖20

+ ‖un+1
2,h ‖20 + ‖2un+1

2,h − un2,h‖
2
0 − ‖un2,h‖

2
0 − ‖2un2,h − un−1

2,h ‖20 + 2∆tν2‖∇u
n+1
2,h ‖20

+ ‖un+1
1,h − 2un1,h + un−1

1,h ‖20 + ‖un+1
2,h − 2un2,h + un−1

2,h ‖20

− 128∆tC∗ν
−1
∗

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

− 32∆tC∗ν
−1
∗

(

‖∇un−1
1,h ‖20 + ‖∇un−1

2,h ‖20

)

≤ 4∆tν−1
1 ‖fn+1

1 ‖2−1 + 4∆tν−1
2 ‖fn+1

2 ‖2−1. (3.13)

Moreover, assume that the viscosity coefficients hold under the condition 160C∗ ≤ ν2∗ , which

implies

∆tν1‖∇u
n+1
1,h ‖20 +∆tν2‖∇u

n+1
2,h ‖20 − 160∆tC∗ν

−1
∗

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

≥ ∆tν∗(‖∇u
n+1
1,h ‖20 + ‖∇un+1

2,h ‖20)− 160∆tC∗ν
−1
∗

(

‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0

)

≥ 160∆tC∗ν
−1
∗

(

‖∇un+1
1,h ‖20 + ‖∇un+1

2,h ‖20 − (‖∇un1,h‖
2
0 + ‖∇un2,h‖

2
0)
)

. (3.14)

Finally, combining (3.13) with (3.14) and summing the ensuing inequality with respect to n

from 1 to N − 1, we arrive at

‖uN1,h‖
2
0 + ‖2uN1,h − uN−1

1,h ‖20 + ‖uN2,h‖
2
0 + ‖2uN2,h − uN−1

2,h ‖20 +∆t
N−1
∑

n=1

(

ν1‖∇u
n+1
1,h ‖20

+ ν2‖∇u
n+1
2,h ‖20

)

+

N−1
∑

n=1

(

‖un+1
1,h − 2un1,h + un−1

1,h ‖20 + ‖un+1
2,h − 2un2,h + un−1

2,h ‖20

)

+ 160∆tC∗ν
−1
∗

(

‖∇uN1,h‖
2
0 + ‖∇uN2,h‖

2
0

)

+ 32∆tC∗ν
−1
∗

(

‖∇uN−1
1,h ‖20 + ‖∇uN−1

2,h ‖20

)

≤ 4T
2
∑

i=1

(

ν−1
i max

n
‖fn+1

i ‖2−1

)

+ ‖u11,h‖
2
0 + ‖2u11,h − u01,h‖

2
0 + ‖u12,h‖

2
0

+ ‖2u12,h − u02,h‖
2
0 + 160∆tC∗ν

−1
∗

(

‖∇u11,h‖
2
0 + ‖∇u12,h‖

2
0

)

+ 32∆tC∗ν
−1
∗

(

‖∇u01,h‖
2
0 + ‖∇u02,h‖

2
0

)

.

This completes the proof of the theorem. �

4. Error Analysis

In this section, we mainly explore the errors arising from the schemes (3.1) and (3.2) for the

model (1.1). In order to establish error equations, set (vi, qi) = (vi,h, qi,h) in (2.1) with t = tn+1
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to get
(

3ui(tn+1)− 4ui(tn) + ui(tn−1)

2∆t
, vi,h

)

+ a(ui(tn+1), vi,h)− d(vi,h, pi(tn+1))

+ d(ui(tn+1), qi,h) + b(ui(tn+1), ui(tn+1), vi,h) +

∫

I

κ (ui(tn+1)− uj(tn+1)) vi,hds

= (fn+1
i , vi,h) + (En+1

i , vi,h), (4.1)

where En+1
i = 3ui(tn+1)−4ui(tn)+ui(tn−1)

2∆t
− ui,t(tn+1) is the truncation error. From (4.1) and the

fully discrete schemes (3.1) and (3.2), we get the error equations

(

3en+1
i − 4eni + en−1

i

2∆t
, vi,h

)

+ a(en+1
i , vi,h)− d(vi,h, e

n+1
p,i ) + b(ui(tn+1), ui(tn+1), vi,h)

− b(2uni,h − un−1
i,h , un+1

i,h , vi,h) + d(en+1
i , qi,h) +

∫

I

κ(ui(tn+1)− uj(tn+1))vi,hds

− 2

∫

I

κ(uni,h − unj,h)vi,hds +

∫

I

κ(un−1
i,h − un−1

j,h )vi,hds = (En+1
i , vi,h), (4.2)

where eni = ui(tn)− uni,h and enp,i = pi(tn)− pni,h.

Moreover, we recall the Stokes-Stokes projection [11, 12, 24]: Find (Riui, Tipi) ∈ (Xh
i ,M

h
i ),

i = 1, 2 such that

a(ui −Riui, vi,h)− d(vi,h, pi − Tipi) = 0 ∀vi,h ∈ Xh
i ,

d(Riui, qi,h) = 0 ∀qi,h ∈Mh
i .

(4.3)

Besides, this projection has the following properties [12, 13, 24]. If ui ∈ H3(Ωi)
2 and pi ∈

H2(Ωi), then we have

‖ui −Riui‖0 + h(‖∇(ui −Riui)‖0 + ‖pi − Tipi‖0) ≤ Ch3(‖ui‖3 + ‖pi‖2), (4.4)

where C > 0 is a constant independent of ∆t and h.

Furthermore, let us split several errors as eni = ηni +φni , e
n
p,i = ϕn

p,i+ψn
p,i, for i, j = 1, 2, and

1 ≤ n ≤ N, where ηni = ui(tn) − Riui(tn), φ
n
i = Riui(tn) − uni,h, ϕ

n
p,i = pi(tn) − Tipi(tn) and

ψn
p,i = Tipi(tn)− pni,h. From Remark 3.1, we notice that φ1i,h = φ0i,h = 0.

Hereafter, we always assume that the solution of the initial/boundary value problem (1.1)

satisfies ui ∈ L∞(0, T ;H3(Ωi)
2), ui,t ∈ L2(0, T ;H2(Ωi)

2), ui,tt ∈ L2(0, T ;H1(Ωi)
2), ui,ttt ∈

L2(0, T ;H−1(Ωi)
2) and pi ∈ L∞(0, T ;H2(Ωi)).

We now state error estimates for velocities.

Theorem 4.1. Let ui(tn+1) and un+1
i,h be the exact solutions of the system (1.1) at tn+1 and

the full-discrete approximated solutions of the schemes (3.1) and (3.2) i = 1, 2, 0 ≤ n ≤ N − 1,

respectively. Then, based on the regularity assumptions of the exact solutions, we have

N−1
∑

n=1

∆t
(

ν1‖∇(u1(tn+1)− un+1
1,h )‖20 + ν2‖∇(u2(tn+1)− un+1

2,h )‖20

)

≤ C(∆t4 + h4),

where C > 0 is a constant independent of ∆t and h.

Proof. See Appendix A.1. �

Next, we state and prove error estimates for pressures.
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Theorem 4.2. Let pi(tn+1) and pn+1
i,h be the exact solutions of the system (1.1) at tn+1 and

the full-discrete approximated solutions of the schemes (3.1) and (3.2) i = 1, 2, 0 ≤ n ≤ N − 1,

respectively. Then, based on the regularity assumptions of the exact solutions, we have

N−1
∑

n=1

∆t
(

‖p1(tn+1)− pn+1
1,h ‖20 + ‖p2(tn+1)− pn+1

2,h ‖20

)

≤ C(∆t4 + h4),

where C > 0 is a constant independent of ∆t and h.

Proof. Choosing (vi,h, qi,h) = (en+1
i , en+1

p,i ) in (4.2), it follows that

(

3en+1
i − 4eni + en−1

i

2∆t
, en+1

i

)

+ νi‖e
n+1
i ‖20 + b(ui(tn+1), ui(tn+1), e

n+1
i )

− b(2uni,h − un−1
i,h , un+1

i,h , en+1
i ) +

∫

I

κ(ui(tn+1)− uj(tn+1))e
n+1
i ds

− 2

∫

I

κ(uni,h − unj,h)e
n+1
i ds +

∫

I

κ(un−1
i,h − un−1

j,h )en+1
i ds

=(En+1
i , en+1

i ),

which combines Lemma 2.1 and (2.2) to get

1

2∆t
‖3en+1

i − 4eni + en−1
i ‖−1

≤νi‖e
n+1
i ‖0 + c0‖∇(2eni − en−1

i )‖0‖∇ui(tn+1)‖0

+ c0‖∇ (ui(tn+1)− 2ui(tn) + ui(tn−1)) ‖0‖∇ui(tn+1)‖0

+ CtrC
1
2
p κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖L2(I)

+ CtrC
1
2
p κ‖uj(tn+1)− 2uj(tn) + uj(tn−1)‖L2(I)

+ C2
trCpκ

(

‖∇(2eni − en−1
i )‖0 + ‖∇(2enj − en−1

j )‖0
)

+ ‖En+1
i ‖−1. (4.5)

Furthermore, setting qi,h = 0 in (4.2) and applying the discrete inf-sup condition yield

β‖en+1
p,i ‖0

≤
1

2∆t
‖3en+1

i − 4eni + en−1
i ‖−1 + νi‖∇e

n+1
i ‖0 + c0‖∇(2eni − en−1

i )‖0‖∇ui(tn+1)‖0

+ c0‖∇ (ui(tn+1)− 2ui(tn) + ui(tn−1)) ‖0‖∇ui(tn+1)‖0 + ‖En+1
i ‖−1

+ CtrC
1
2
p κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖L2(I) + C2

trCpκ‖∇(2eni − en−1
i )‖0

+ CtrC
1
2
p κ‖uj(tn+1)− 2uj(tn) + uj(tn−1)‖L2(I) + C2

trCpκ‖∇(2enj − en−1
j )‖0

≤2νi‖∇e
n+1
i ‖0 + 2c0‖∇(2eni − en−1

i )‖0‖∇ui(tn+1)‖0 + 2‖En+1
i ‖−1

+ 2c0‖∇ (ui(tn+1)− 2ui(tn) + ui(tn−1)) ‖0‖∇ui(tn+1)‖0

+ 2CtrC
1
2
p κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖L2(I) + 2C2

trCpκ‖∇(2eni − en−1
i )‖0

+ 2CtrC
1
2
p κ‖uj(tn+1)− 2uj(tn) + uj(tn−1)‖L2(I) + 2C2

trCpκ‖∇(2enj − en−1
j )‖0,

where we have used (4.5). Multiplying above equation by ∆t and then summing respect to n
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from 1 to N − 1 and i = 1, 2 lead to

2
∑

i=1

N−1
∑

n=1

∆t‖en+1
p,i ‖20 ≤ C

2
∑

i=1

N−1
∑

n=1

∆t
(

νi‖∇e
n+1
i ‖20 + c0‖∇(2eni − en−1

i )‖20‖∇ui(tn+1)‖
2
0

+ c0‖∇ (ui(tn+1)− 2ui(tn) + ui(tn−1)) ‖
2
0‖∇ui(tn+1)‖

2
0

+ CtrC
1
2
p κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖

2
L2(I) + ‖En+1

i ‖2−1

+ CtrC
1
2
p κ‖uj(tn+1)− 2uj(tn) + uj(tn−1)‖

2
L2(I)

+ C2
trCpκ‖∇(2eni − en−1

i )‖20 + C2
trCpκ‖∇(2enj − en−1

j )‖20

)

≤ C(∆t4 + h4),

where we have used Theorem 4.1. �

5. Numerical Experiments

In this section, some numerical experiments are presented to test the stability and conver-

gence of the schemes (3.1) and (3.2). Besides, we compare the effectiveness of the presented

schemes with the first order schemes [26]. Furthermore, by a practical problem (submarine

mountain problem), which has been proposed in [23], the performance of the schemes (3.1) and

(3.2) is illustrated. Finally, the coast mountain or cliff problem [3] is applied to illustrate the

performance of the presented schemes.

For the numerical tests in Subsection 5.1-5.3, we consider the problem (1.1) on the domain

Ω = Ω1 ∪Ω2, where Ω1 = [0, 1]× [0, 1] and Ω2 = [0, 1]× [−1, 0]. Obviously, the I = (0, 1)× {0}

in the experiment. Then, n1 = [0,−1]T and n2 = [0, 1]T on I.

5.1. Stability

We take f1,1 = f1,2 = cos(x) sin(y), f2,1 = f2,2 = cos(y) sin(x) and initial values for velocity

u1,1 = u1,2 = u2,1 = u2,2 = 0. Moreover, we choose κ = 1, ν1 = 1, ν2 = 1 and denote the

energy by ‖u1,1‖
2
0 + ‖u1,2‖

2
0 + ‖u2,1‖

2
0 + ‖u2,2‖

2
0.

First, we set ∆t = h and take mesh step h = 1
20 ,

1
30 ,

1
40 ,

1
50 and 1

60 subsequently. In Fig. 5.1,

it is easy to see that the energy keeps uniformly bounded by a constant with different mesh

scale h. Second, we choose T = 3, h = 1
30 and set N = 350, 700, 1400, 2800. Fig. 5.2 can also

t
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Fig. 5.1. Stability of the presented schemes for the decreasing h.
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t
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Fig. 5.2. Stability of the presented schemes for the increasing N .
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Fig. 5.3. Stability of the presented schemes for the increasing T .

demonstrate that the corresponding energy can be controlled by a constant with the increasing

N . Finally, we fix h = 1
30 , ∆t = h, and choose T = 3, 4, 5, 6. From Fig. 5.3, we can find that

the energy is stable with these final time.

5.2. Convergence

Give the analytic solutions of the problem (1.1) as follows:

u1,1(t, x, y) = −x2 exp(−t)(x− 1)2(y − 1),

u1,2(t, x, y) = xy exp(−t)(6x+ y − 3xy + 2x2y − 4x2 − 2),

u2,1(t, x, y) = (1/κ− y + 1)x2(x− 1)2 exp(−t),

u2,2(t, x, y) =
(

(y − 1− 1/κ)2 − (1 + 1/κ)2
)

(x2 − x)(2x− 1) exp(−t),

p1(t, x, y) = p2(t, x, y) = exp(−t) cos(πx) sin(πy).

The chosen RHSs f1 = (f1,1(t, x, y), f1,2(t, x, y)) and f2 = (f2,1(t, x, y), f2,2(t, x, y)) are obliged

to satisfy that (u1, p1) and (u2, p2) are the solutions of the original problem (1.1), respectively.

Let Err(ui) and Err(pi), i = 1, 2, denote the errors by

Err(ui) =

(

∆t
N
∑

n=1

‖ui(tn)− uni,h‖
2
0

)
1
2

, Err(pi) =

(

∆t
N
∑

n=1

‖pi(tn)− pni,h‖
2
0

)
1
2

.

We now implement the numerical tests to verify the convergent rate with respect to h

by the schemes (3.1) and (3.2). Set ∆t = 0.01, 0.001 with the final time T = 0.1 and take
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Table 5.1: Convergence orders with respect to h with ∆t = 0.001.

1/h Err(∇u1) Rate Err(∇u2) Rate Err(p1) Rate Err(p2) Rate

10 1.54E−3 — 6.09E−3 — 1.26E−3 — 1.64E−3 —

20 3.81E−4 2.02 1.52E−3 2.00 3.11E−4 2.03 3.41E−4 2.28

30 1.69E−4 2.01 6.77E−4 2.00 1.37E−4 2.01 1.43E−4 2.12

40 9.50E−5 2.00 3.81E−4 2.00 7.70E−5 2.00 7.89E−5 2.06

50 6.07E−5 2.00 2.44E−4 2.00 4.96E−5 2.00 5.00E−5 2.04

Table 5.2: Convergence orders with respect to h with ∆t = 0.01.

1/h Err(∇u1) Rate Err(∇u2) Rate Err(p1) Rate Err(p2) Rate

10 1.61E−3 — 6.35E−3 — 1.19E−3 — 1.54E-03 —

20 4.01E−4 2.01 1.59E−3 2.00 2.91E−4 2.03 3.21E−4 2.27

30 1.76E−4 2.01 7.06E−4 2.00 1.30E−4 2.01 1.35E−4 2.12

40 9.91E−5 2.00 3.97E−4 2.00 7.28E−5 2.00 7.45E−5 2.06

50 6.34E−5 2.00 2.54E−4 2.00 4.66E−5 2.00 4.73E−5 2.04

Table 5.3: Convergence orders with respect to h with ∆t = 0.01 and ∆t = 0.001.

∆t = 0.001 ∆t = 0.01

1/h Err(u1) Rate Err(u2) Rate Err(u1) Rate Err(u2) Rate

10 5.93E−5 — 2.88E−4 — 5.93E−5 — 2.88E-04 —

20 7.23E−6 3.04 2.85E−5 3.00 7.23E−6 3.04 3.85E−5 3.00

30 2.13E−6 3.01 8.43E−6 3.00 2.14E−6 3.01 8.43E−6 3.00

40 8.97E−7 3.01 3.56E−6 3.00 9.08E−7 2.98 3.56E−6 3.00

50 4.59E−7 3.00 1.82E−6 3.00 4.77E−7 2.88 1.82E−6 3.00

Table 5.4: Convergence order with respect to ∆t.

1/∆t Err(u1) Rate(u1) Err(u2) Rate(u2) Err(p1) Rate(p1) Err(p2) Rate(p2)

10 3.55E−3 — 1.41E−2 — 2.34E−3 — 3.02E−3 —

20 8.51E−4 2.05 3.42E−3 2.04 6.31E−4 1.90 6.81E−4 2.14

30 3.80E−4 2.03 1.50E−3 2.03 2.90E−4 1.94 3.01E−4 2.05

40 2.12E−4 2.02 8.41E−4 2.02 1.61E−4 1.96 1.72E−4 2.01

50 1.32E−4 2.02 5.40E−4 2.01 1.01E−4 1.97 1.10E−4 2.00

60 9.27E−5 2.01 3.72E−4 2.01 7.32E−5 1.97 7.42E−5 2.00

h = 1
10 ,

1
20 ,

1
30 ,

1
40 ,

1
50 successively. We display the convergence rates of the schemes (3.1) and

(3.2) in Tables 5.1, 5.2 and 5.3 with ∆t = 0.001 and ∆t = 0.01, respectively. From these tables,

it is easy to see that the convergence rates are O(h2) of the H1-semi norm for the velocities

and the L2-norm for the pressures, and O(h3) of the L2-norm for the velocities.

When it comes to the convergence rates with respect to ∆t, we set T = 1 and ∆t = h. In this

test, we take ∆t = 1
10 ,

1
20 ,

1
30 ,

1
40 ,

1
50 , and

1
60 successively. Table 5.4 lists the numerical results

obtained by the presented schemes. From Table 5.4, the convergence orders of the velocity and

pressure with respect to ∆t are approximated to 2.

5.3. Comparison with the first order scheme

To illustrate the effectiveness of the presented scheme, we compare the presented schemes

with the first order schemes [26] by the numerical example in Subsection 5.2.
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We set ∆t = h2 in the first order schemes, then the convergence order of the velocity is

scale of O(∆t + h2) = O(h2). When is comes to the presented schemes (3.1) and (3.2), we

only choose ∆t = h, which implies the same performance in convergence order aspect. Fig.

5.4 plots that the errors of both schemes with the decreasing h, and Table 5.5 collects the

corresponding CPU time. As expected, the presented schemes spend less CPU time than the

first order schemes [26] to get the almost the same approximated error, which is not surprising

since the presented schemes have second-order temporal accuracy. Hence, its iterative step in

time is far less than that of the first order Euler backward one.

5.4. Submarine mountain problem

In this example, we check the presented schemes (3.1) and (3.2) on a practical problem with

a submarine mountain problem [23]. We take ν1 = 0.005 and ν2 = 0.01 in this example.
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Fig. 5.4. (a): The Err(·) of Ω1; (b): The Err(·) of Ω2. Scheme I means the presented schemes and

Scheme II means the first order schemes [26].

Table 5.5: CPU time of the schemes.

1/h 10 15 20 25 30 35 40 45 50

Scheme I 1.31 4.37 10.62 20.77 35.70 56.73 85.07 124.05 168.10

Scheme II 12.56 62.40 199.77 495.13 1038.29 1911.04 3311.86 5417.02 8247.96



86 W. LI, P.Z. HUANG AND Y.N. HE

Set Ω1 = [0, 1]× [0, 0.1] and Ω2 = {(x, y) : 7
40

(

sin(72 )− (2x− 1) sin(7x− 7
2 )
)

≤ y ≤ 0, 0 ≤

x ≤ 1}. The RHSs f1, f2 are chosen to ensure that

p1(t, x, y) = p2(t, x, y) = cos(πx) sin(πy),

u1,1(t, x, y) = x2(1− x)2(0.1− y),

u1,2(t, x, y) = xy(−0.2 + y + 0.6x− 3xy − 0.4x2 + 2x2y),

u2,1(t, x, y) = x2(1− x)2(0.1 + y),

u2,2(t, x, y) = xy(−0.2− y + 0.6x+ 3xy − 0.4x2 − 2x2y).

The boundary terms and initial values are chosen by the above exact solutions. We take

∆t = h = 1
64 , and apply the presented schemes and the first order schemes [26] to get numerical

solutions at the final time T = 1.

Figs. 5.5 and 5.6 present profiles of the velocity streamlines and pressure contours with both

schemes at the final time T = 1 with the coefficient of friction κ = 1. From these figures, we

can see that the both schemes are stable and the oscillations of the velocity streamlines do not

appear. What’s more, the numerical results of the two schemes are almost consistent. Hence,

the proposed method gives good results and can simulate this model very well.
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Fig. 5.5. Velocity streamlines: (a) the presented schemes; (b) the first order schemes [26].
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Fig. 5.6. Pressure contours: (a) the presented schemes; (b) the first order schemes [26].
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5.5. Coast mountain or cliff problem

To illustrate the long-time stability of the presented schemes, a coast mountain or cliff

problem, which has been considered in [3], is tested. This problem describes a parabolic inflow

in the atmosphere passing a coast mountain or cliff before it meets the ocean. The computed

domain is consistent with it in [3]. On this domain, homogeneous Dirichlet boundary conditions

are imposed at the coast mountain or cliff and on the bottom of the ocean. Meanwhile, the flow

in the atmosphere is driven by a parabolic inflow profile with maximum inlet 1 and “do-nothing”

conditions are imposed for the other boundaries.

In Fig. 5.7, we present profiles for the numerical velocity at different final time with

ν1=0.005, ν2=0.05, κ=0.001, h = 1
10 and τ = 1

5 . From this figure, we can see that the presented

schemes are stable and the unphysical oscillations do not appear. Besides, the numerical results

of the presented method agreement with those obtained in [3].
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Fig. 5.7. Velocity streamlines with (a) T = 20; (b) T = 40; (c) T = 60; (d) T = 80.

6. Conclusions

In this work, we have designed and studied a second order unconditionally stable and con-

vergent linearized scheme for a fluid-fluid interaction model. The scheme is a combination of the

second order backward differentiation formula for temporal term, a extrapolated interpolation

for nonlinear term and second order explicit Gear extrapolation method for interface terms.

Theoretically, we have proved that the scheme is unconditionally stable and convergent, and

long-time stable under the restriction of viscosity. Numerically, we validate the unconditional

stability and convergence rates of this scheme. By compared with the first-order scheme, the

proposed scheme is much more efficient.
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A. Appendix

A.1. Proof of Theorem 4.1

Proof. Setting (vi,h, qi,h) = 4∆t(φn+1
i , ψn+1

p,i ) in (4.2) and using the Stokes-Stokes projection

(4.3) result in

‖φn+1
i ‖20 + ‖2φn+1

i − φni ‖
2
0 − ‖φni ‖

2
0 − ‖2φni − φn−1

i ‖20 + ‖φn+1
i − 2φni + φn−1

i ‖20

+ 4∆tνi‖∇φ
n+1
i ‖20 + 4∆tb(ui(tn+1), ui(tn+1), φ

n+1
i )− 4∆tb(2uni,h − un−1

i.h , un+1
i,h , φn+1

i )

+ 4∆t

∫

I

κ(ui(tn+1)− uj(tn+1))φ
n+1
i ds− 8∆t

∫

I

κ(uni,h − unj,h)φ
n+1
i ds

+ 4∆t

∫

I

κ(un−1
i,h − un−1

j,h )φn+1
i ds

=2(3ηn+1
i,h − 4ηni,h + ηn−1

i,h , φn+1
i ) + 4∆t(En+1

i , φn+1
i ). (A.1)

Concerning the nonlinear terms in (A.1), noticing the definition of the trilinear terms, we

have

|b(ui(tn+1), ui(tn+1), φ
n+1
i )− b(2uni,h − un−1

i,h , un+1
i,h , φn+1

i )|

≤ |b(ui(tn+1)− 2ui(tn) + ui(tn−1), ui(tn+1), φ
n+1
i )|+ |b(2ηni − ηn−1

i , ui(tn+1), φ
n+1
i )|

+ |b(2φni − φn−1
i , ui(tn+1), φ

n+1
i )|+ |b(2uni,h − un−1

i,h , ηn+1
i , φn+1

i )|

=:

4
∑

m=1

Im. (A.2)

Next, using Lemma 2.1, each terms of RHS of (A.2) are bounded by

I1 ≤ c1‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖0‖ui(tn+1)‖2‖∇φ
n+1
i ‖0

≤ 9c21ν
−1
i ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖

2
0‖ui(tn+1)‖

2
2 +

νi
36

‖∇φn+1
i ‖20

≤ 12c21ν
−1
i ∆t3‖ui,tt‖

2
L2(tn−1,tn+1;L2(Ωi)2)

‖ui(tn+1)‖
2
2 +

νi
36

‖∇φn+1
i ‖20, (A.3a)

I2 ≤ c1‖2η
n
i − ηn−1

i ‖0‖ui(tn+1)‖2‖∇φ
n+1
i ‖0

≤ 9c21ν
−1
i ‖2ηni − ηn−1

i ‖20‖ui(tn+1)‖
2
2 +

νi
36

‖∇φn+1
i ‖20

≤ 72c21ν
−1
i ‖ηni ‖

2
0‖ui(tn+1)‖

2
2 + 18c21ν

−1
i ‖ηn−1

i ‖20‖ui(tn+1)‖
2
2 +

νi
36

‖∇φn+1
i ‖20, (A.3b)

I3 ≤ c1‖2φ
n
i − φn−1

i ‖0‖ui(tn+1)‖2‖∇φ
n+1
i ‖0

≤ 9c21ν
−1
i ‖2φni − φn−1

i ‖20‖ui(tn+1)‖
2
2 +

νi
36

‖∇φn+1
i ‖20, (A.3c)
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as well as

I4 ≤ c0‖∇(2uni,h − un−1
i,h )‖0‖∇η

n+1
i ‖0‖∇φ

n+1
i ‖0

≤ 9c20ν
−1
i ‖∇(2uni,h − un−1

i,h )‖20‖∇η
n+1
i ‖20 +

νi
36

‖∇φn+1
i ‖20. (A.4)

Moreover, we consider the interface terms in (A.1) and rewrite them as

∫

I

κ
(

ui(tn+1)− uj(tn+1)− 2(uni,h − unj,h) + un−1
i,h − un−1

j,h

)

φn+1
i ds (A.5)

=

∫

I

κ (ui(tn+1)− 2ui(tn) + ui(tn−1))φ
n+1
i ds−

∫

I

κ (uj(tn+1)− 2uj(tn) + uj(tn−1))φ
n+1
i ds

+

∫

I

κ
(

2ηni − ηn−1
i + 2φni − φn−1

i

)

φn+1
i ds−

∫

I

κ
(

2ηnj − ηn−1
j + 2φnj − φn−1

j

)

φn+1
i ds.

We now estimate each terms of the RHS of (A.5) separately. Employing (2.2), we get

∫

I

κ (ui(tn+1)− 2ui(tn) + ui(tn−1))φ
n+1
i ds

≤ κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖L2(I)‖φ
n+1
i ‖L2(I)

≤ CtrC
1
2
p κ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖L2(I)‖∇φ

n+1
i ‖0

≤ 9C2
trCpκ

2ν−1
i ‖ui(tn+1)− 2ui(tn) + ui(tn−1)‖

2
L2(I) +

νi
36

‖∇φn+1
i ‖20

≤ 12C2
trCpκ

2∆t3ν−1
i ‖ui,tt‖

2
L2(tn−1,tn+1;L2(I)) +

νi
36

‖∇φn+1
i ‖20, (A.6)

and

∫

I

κ (uj(tn+1)− 2uj(tn) + uj(tn−1))φ
n+1
i ds

≤ 12C2
trCpκ

2∆t3ν−1
i ‖uj,tt‖

2
L2(tn−1,tn+1;L2(I)) +

νi
36

‖∇φn+1
i ‖20, (A.7)

as well as

∫

I

κ
(

2ηni − ηn−1
i

)

φn+1
i ds−

∫

I

κ
(

2ηnj − ηn−1
j

)

φn+1
i ds

≤ κ
(

‖2ηni − ηn−1
i ‖L2(I) + ‖2ηnj − ηn−1

j ‖L2(I)

)

‖φn+1
i ‖L2(I)

≤ C2
trCpκ

(

‖∇(2ηni − ηn−1
i )‖0 + ‖∇(2ηnj − ηn−1

j )‖0
)

‖∇φn+1
i ‖0

≤ 9C4
trC

2
pκ

2ν−1
i

(

‖∇(2ηni − ηn−1
i )‖20 + ‖∇(2ηnj − ηn−1

j )‖20
)

+
νi
18

‖∇φn+1
i ‖20

≤ 18C4
trC

2
pκ

2ν−1
i

2
∑

i=1

(

4‖∇ηni ‖
2
0 + ‖∇ηn−1

i ‖20
)

+
νi
18

‖∇φn+1
i ‖20. (A.8)
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Next, arguing in exactly the same way as (3.4), we obtain
∫

I

κ(2φni − φn−1
i )φn+1

i ds−

∫

I

κ(2φnj − φn−1
j )φn+1

i ds

≤ 54C8
trC

2
pκ

4ν−3
i ‖2φni − φn−1

i ‖20 + 54C8
trC

2
pκ

4ν−2
i ν−1

j ‖2φnj − φn−1
j ‖20

+
νi
12

‖∇φni ‖
2
0 +

νi
48

‖∇φn−1
i ‖20 +

νj
12

‖∇φnj ‖
2
0 +

νj
48

‖∇φn−1
j ‖20 +

νi
3
‖∇φn+1

i ‖20. (A.9)

Furthermore, we consider the first term of RHS of (A.1).

2(3ηn+1
i − 4ηni + ηn−1

i , φn+1
i )

≤ 2‖3ηn+1
i − 4ηni + ηn−1

i ‖0‖φ
n+1
i ‖0

≤ 96C2
pν

−1
i ‖ηi,t‖

2
L2(tn−1,tn+1;L2(Ωi)2)

+
νi
6
∆t‖∇φn+1

i ‖20. (A.10)

Besides, the truncation error in (A.1) can be bounded by

(En+1
i , φn+1

i )

≤
1

∆t

∥

∥

∥

∥

∥

(

∫ tn+1

tn

(t− tn)
2ui,tttdt−

1

4

∫ tn+1

tn−1

(t− tn−1)
2ui,tttdt

)∥

∥

∥

∥

∥

−1

‖∇φn+1
i ‖0

≤ 9ν−1
i

(

6

5

)2

∆t3‖ui,ttt‖
2
L2(tn−1,tn+1;H−1(Ωi)2)

+
νi
36

‖∇φn+1
i ‖20. (A.11)

Furthermore, combining (A.3), (A.4), (A.6)-(A.11) with (A.1), we deduce that

‖φn+1
i ‖20 + ‖2φn+1

i − φni ‖
2
0 − ‖φni ‖

2
0 − ‖2φni − φn−1

i ‖20

+ ‖φn+1
i − 2φni + φn−1

i ‖20 +
3νi
2

∆t‖∇φn+1
i ‖20

≤ 48c21ν
−1
i ∆t4‖ui,tt‖

2
L2(tn−1,tn+1;L2(Ωi)2)

‖ui(tn+1)‖
2
2 + 288c21ν

−1
i ∆t‖ui(tn+1)‖

2
2‖η

n
i ‖

2
0

+ 72c21ν
−1
i ∆t‖ui(tn+1)‖

2
2‖η

n−1
i ‖20 + 36c21ν

−1
i ∆t‖2φni − φn−1

i ‖20‖ui(tn+1)‖
2
2

+ 36c20ν
−1
i ∆t‖∇(2uni,h − un−1

i,h )‖20‖∇η
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+ 48C2
trCpκ

2ν−1
i ∆t4

(

‖ui,tt‖
2
L2(tn−1,tn+1;L2(I)) + ‖uj,tt‖
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+ 72C4
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i ∆t
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∑
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(

4‖∇ηni ‖
2
0 + ‖∇ηn−1

i ‖20
)

+ 216C8
trC

2
pκ

4ν−3
i ∆t‖2φni − φn−1

i ‖20 + 216C8
trC

2
pν

−2
i ν−1

j ∆t‖2φnj − φn−1
j ‖20

+
νi
3
∆t‖∇φni ‖

2
0 +

νi
12

∆t‖∇φn−1
i ‖20 +

νj
3
∆t‖∇φnj ‖

2
0

+
νj
12

∆t‖∇φn−1
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pν
−1
i ‖ηi,t‖

2
L2(tn−1,tn+1;L2(Ωi)2)

+ 36ν−1
i

(

6

5

)2

∆t4‖ui,ttt‖
2
L2(tn−1,tn+1;H−1(Ωi)2)

. (A.12)
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Adding up (A.12) from i = 1, 2 (j 6= i, j = 1, 2) and n = 1, 2, · · · , N − 1 and noticing that

2
∑

i=1,j 6=i

(νi
3
‖∇φni ‖

2
0 +

νi
12

‖∇φn−1
i ‖20 +

νj
3
‖∇φnj ‖

2
0 +

νj
12

‖∇φn−1
j ‖20
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=

2
∑

i=1

(

2νi
3

‖∇φni ‖
2
0 +

νi
6
‖∇φn−1

i ‖20
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, j = 1, 2,

2
∑

i=1,j 6=i
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216C8
trC

2
pκ

4ν−3
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i ‖20 + 216C8
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2
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4ν−2
i ν−1
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j ‖20
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≤ 432C∗ν∗
2
∑
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we arrive at
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2
∑

i=1

νi∆t‖∇φ
1
i ‖

2
0 +

1

6

2
∑

i=1

νi∆t‖∇φ
0
i ‖

2
0

+ 48

2
∑

i=1

c21ν
−1
i ∆t4‖ui,tt‖

2
L2(0,T ;L2(Ωi)2)

‖ui(tn+1)‖
2
2

+ 72

2
∑

i=1

N−1
∑

n=1

c21ν
−1
i ∆t‖ui(tn+1)‖

2
2

(

4‖ηni ‖
2
0 + ‖ηn−1

i ‖20
)

+ 36

2
∑

i=1

N−1
∑

n=1

c21ν
−1
i ∆t‖2φni − φn−1

i ‖20‖ui(tn+1)‖
2
2

+ 36

2
∑

i=1

N−1
∑

n=1

c20ν
−1
i ∆t‖∇(2uni,h − un−1

i,h )‖20‖∇η
n+1
i ‖20

+ 96

2
∑

i=1

C2
trCpκ

2ν−1
i ∆t4‖ui,tt‖

2
L2(0,T ;L2(I)) + 864C∗ν∗

2
∑

i=1

N−1
∑

n=1

∆t‖2φni − φn−1
i ‖20

+ 72

2
∑

i=1

N−1
∑

n=1

C4
trC

2
pκ

2ν−1
i ∆t

2
∑

k=1

(

4‖∇ηnk ‖
2
0 + ‖∇ηn−1

k ‖20
)

+ 96
2
∑

i=1

C2
pν

−1
i ‖ηi,t‖

2
L2(0,T ;L2(Ωi)2)

+ 36
2
∑

i=1

ν−1
i

(

6

5

)2

∆t4‖ui,ttt‖
2
L2(0,T ;H−1(Ωi)2)

.

Finally, from Theorem 3.1, Remark 3.1, the regularity assumptions of the exact solutions
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and the properties (4.4) of the projection, we get

2
∑

i=1

‖φNi ‖20 +
2
∑

i=1

‖2φNi − φN−1
i ‖20 +

2
∑

i=1

N−1
∑

n=1

‖φn+1
i − 2φni + φn−1

i ‖20

+
2

3

2
∑

i=1

N−1
∑

n=1

∆tνi‖∇φ
n+1
i ‖20 +

5

6

2
∑

i=1

νi∆t‖∇φ
N
i ‖20 +

1

6

2
∑

i=1

νi∆t‖∇φ
N−1
i ‖20

≤ C
(

∆t4 + h6 + h4
)

+ C

2
∑

i=1

N−1
∑

n=1

∆t‖2φni − φn−1
i ‖20,

which combines with Lemma 2.2 to finish the proof. �
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