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Abstract. In this work, a non-classical analytical approach for buckling analysis of
partially cracked generally orthotropic plate is proposed under the thermal domain.
The derivation for the governing equation is based on the non-classical approach us-
ing Kirchhoff’s thin plate theory and the modified couple stress theory. The effect of
fibre orientation on critical buckling temperature is incorporated by considering the
coefficients of mutual influence. Line spring model is applied with some modifica-
tions to formulate all the crack terms while the thermal effects are introduced in form
of thermal in-plane moments and forces. The final governing equation is solved using
Galerkin’s method and the relation for critical buckling temperature as affected by fi-
bre orientation is obtained. The variation of critical buckling temperature as affected
by fibre orientation for different values of crack length, crack location and length scale
parameter is presented. Also, the effect of fibre orientation on fundamental frequency
under the thermal domain is analysed.
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1 Introduction

The orthotropic plate being an elementary structural unit is vastly used to obtain desired
mechanical properties, especially in automobile, aerospace and naval applications. The
application of orthotropic materials in micro-sized structure is evident from the litera-
ture [5, 11, 45]. It is seen that as the dimensions of general structures such as plates and
shells reduce, the mechanical properties of such a micro-sized structure becomes size-
dependent. For example, classical theories like Kirchhoff’s thin plate theory and classical
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shell theory underpredict the stiffness of micro-sized plates and shells. The micro-sized
plates find their usage in various engineering applications such as micro-resonators, sen-
sors and actuators, atomic force microscopes (AFMs), and micro-switches etc. At various
instances, these micro-sized structures have to operate under the thermal domain which
affects their stability, as well as mechanical properties, e.g. micro-sized computer ele-
ments in the form of plates and shells, are operated at wide range of temperature. Owing
to its wide application, the mechanical properties of micro-sized structures has to be ac-
curately determined including the external factor such as temperature or flaws in the
form of cracks and holes.

In literature, it has been also observed that the presence of defects in form of cracks
or holes in these structural units makes the dynamic behaviour severely different from
that of an intact plate. Mostly numerical techniques are used for static solutions for the
cracked plate, but an approximate analytical approach has been presented employing
the simplified Line Spring Model (LSM). This model (LSM) was firstly proposed by Rice
and Levy [37] and their concept of the line spring model was based on Kirchhoff’s clas-
sical plate theory. They developed the line spring model for cracked plate considering
bending and stretching compliances to determine the stress intensity factors at crack tips.
King [29] established a pair of linear algebraic equations to analyze parameters of frac-
ture by doing simplification of integral equations of LSM given in [37]. Later, Zeng and
Dai [38] used this model [29] and calculated the stress intensity factors of a plate having
angled surface crack subjected to a biaxial state of stresses. Bose and Mohanty [6] devel-
oped a model for vibration problems of a cracked thin isotropic plate having arbitrary
crack position and orientation of crack and concluded that the crack orientation affects
the frequency of the plate. Stahl and Keer [44] used the Fredholm integral equation of
the second kind to investigate the natural frequency of the plate containing a centrally lo-
cated internal crack and a side crack. Recently Xu et al. [49] have established an accurate
and efficient solution method for free vibration and buckling of cracked NFRC rectan-
gular thin plate using a symplectic approach and the line spring model. In their work,
they concluded that both length and crack location are important factors that affect the
vibration response and hygrothermal ageing of NFRC plates.

Solecki [39] analyzed the flexural vibration of a plate having an arbitrarily located
crack for simply supported boundary condition by using the Fourier transformation
functions and green gauss theorem. Liew et al. [31] has given the frequency response
of cracked plates by employing the virtual principle with the Ritz method. Khadem and
Rezaee [23] given a technique to detect the crack using modified comparison functions
in a simply supported plate. The deviation of frequencies of a rectangular plate with
arbitrary orientation of narrow slits is experimentally performed by Maruyama and Ichi-
nomiya [47]. Using the application of the Ritz method Huang et al. [13] developed the
new function for vibration response of plate with through internal crack of various ori-
entations. Wu and Law [48] found that if the orientation of the crack is changed then
it affects the vibration response of the plate having a moderate thickness. Jha et al. [20]
thoroughly reviewed the literature on FGM plate and performed stability and dynamic
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analysis of functionally graded plates. Israr et al. [15, 16] have proposed an analytical
approach for analysis of an isotropic plate having a part-through crack parallel to one
of its edges and gave approximate analytical results for vibrations characteristics. Their
results show the decreasing effect of crack length on the frequency response of the plate.
Extending this further, Ismail and Cartmell [14] presented results for a plate with a vari-
ably angled crack.

Jeyaraj et al. [19] used ANSYS and SYSNOISE to study the sonic response and vi-
bration in isotropic plate subjected to an increase in temperature. Further, they also
extended this work for composite plates [18]. Natarajan et al. [34] used FSDTA and per-
formed a parametric study on vibration and thermal buckling of FGM plate considering a
through internal crack. Jalaei and Civalek [17] studied the dynamic instability of embed-
ded viscoelastic porous FG nanobeams under axially oscillating loading and magnetic
field based on the Kelvin-Voigt model. Gupta et al. [9, 11] used MCST in combination
with CPT to present frequencies of cracked micro-plates. In their work, they also showed
the effect of fibre-orientation and microstructure on vibrations of cracked specially or-
thotropic micro plate [10]. Joshi et al. [23, 25] developed the analytical models to obtain
vibration characteristics of thin isotropic and orthotropic lamina containing two cross
(perpendicular) internal as well as surface cracks located at the centre. Further extending
their work, they studied the buckling response of cracked thin isotropic [26] and spe-
cially orthotropic [24] plates subjected to an increase in temperature. Soni et al. [40–42]
presented an analytical model to show the effect of surrounding fluidic medium on vi-
bration characteristics of partially cracked isotropic [40], orthotropic [42] and MEE [42]
plates.

For reliable design, it becomes interesting to study the impact of temperature on
plate structures when it contains flaws such as cracks or holes. In the literature, a lot
of researchers have put importance on vibration analysis of plates under thermal effects.
Murphy et al. [33] worked out thermal buckling of clamped rectangular plates both the-
oretically and experimentally. The effect of temperature rise, volume fraction, edge con-
ditions on vibration parameters of FGM plates has been studied by Yang and Shen [50]
using higher-order theory. Li et al. [30] employed the 3D theory of elasticity whereas,
Kim [28] considered third-order shear deformation to model thermal heating of FGM
plate vibration.

Both, analytically and experimentally it has been established that the microstructure
affects the stiffening of the plate and thus changes the vibration characteristics [32, 51].
Mindlin and Eshel [32] proposed a single internal length scale parameter to capture the
size-effect of the plate. Papargyri-Beskou and Beskos [36] derived the governing equa-
tion of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane
constant forces on bending and presented a 6th order equation of gradient elasticity for a
plate. To capture the microstructure effect in their study on the bending of a thin rectan-
gular plate Mousavi and Paavola [35] considered two internal length scale parameters.

A novel mathematical equation for micro-plate employing the modified couple stress
theory (MCST) is developed by Tsiatas [46]. Applying the model developed by Tsi-
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atas [46] and Yin et al. [51] showed that the fundamental frequencies obtained from
MCST are higher as compared to the Classical approach. Gao and Zhang [8] proposed
a non-classical Kirchhoff plate model incorporating microstructure, surface energy and
foundation effect and concluded that the presence of the elastic foundation reduces the
plate deflection and increases the plate natural frequency. Akgöz and Civalek [1] have
investigated the vibration response of non-homogenous and non-uniform microbeams
in conjunction with Bernoulli-Euler beam and modified couple stress theory. Extending
their work they have also presented the analytical solutions for bending, vibration and
buckling problems of micro-sized plates based on modified couple stress theory [2] and
modified strain gradient theory [3]. In their work they performed a detailed parametric
study to demonstrate the effect of length scale parameter, length-to-thickness ratio on
buckling load, deflection, and fundamental frequencies of micro plates. Based on Euler
Bernoulli’s beam theory Akgöz and Civalek [4] also have investigated the buckling and
bending behavior of micro beams for various types of boundary conditions. They [4]
studied the effects of additional material length scale parameters, material property vari-
ation function and slenderness ratio on the buckling response of FGM micro beams and
also compared the results for different non-classical theories.

The literature [23–26] shows that the buckling behaviour of plates is affected by the
presence of crack which is further influenced if the plate is functioning under the thermal
domain. In the case of the orthotropic plate, the work of researchers [11,43] show that the
stiffness of the plate is affected by the orientation of the fibres and length scale parameter.
As per the author’s knowledge, there has been no work reported in the literature where
researchers have attempted to analytically obtain the critical buckling temperature as af-
fected by the fibre orientation. The reason behind the lack of results may be due to the
difficulty in the coupling of the shear and normal stresses for fibre orientation under the
thermal domain. Thus, the study of the influence of crack and fibre orientation on the
buckling behaviour of orthotropic plates with thermal effects becomes significant and
therefore the present study proposes a new analytical model which addresses the follow-
ing: 1. Buckling analysis of partially cracked orthotropic plate considering the effect of
fibre orientations using non-classical analytical modelling. 2. A unique relation for criti-
cal buckling temperature (Tbcr) of cracked orthotropic micro-plate is derived considering
the effect of fibre orientations. 3. The coupling effect of the shear and normal stresses us-
ing coefficients of mutual influence under the thermal domain has been incorporated in
the constitutive relations. 4. The effect of temperature rise, fibre orientation, crack length,
crack location and length scale parameter, on fundamental frequency and critical buck-
ling temperature of the cracked orthotropic plate is studied under the thermal domain
for two boundary conditions. 5. Graphical results are presented to show the effect of the
length scale parameter on critical buckling temperature as affected by the reduction in
plate dimensions.

The plate under investigation is shown in Fig. 1. Linear dimensions along x and y
directions are L1 and L2, the plate thickness is h and the length of the crack is 2a. The
depth of the crack is kept constant throughout the work. The location of the crack is
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Fig. 1.  Fibrous Orthotropic plate containing a partial crack of length 2a 

 

2. Governing Equation 

The equation of motion which governs the linear vibration of an orthotropic rectangular plate with a part-through 
surface crack is derived using the equilibrium principle. It is considered that the crack is in the form of a continuous 
line. The modeling is subjected to the following assumptions; 

1. The plate is assumed to be elastic, homogenous and the plate material is isotropic. 

2. The plate has a uniform thickness ‘h’ which is very small as compared to its in-plane dimensions and all strain 
components follow Hooke’s law. 

3. The normal stress acting in the transverse direction of the plate is considered to be small and is neglected in the 
stress-strain relations. 

4. It is assumed that the plane section normal to the middle surface will remain plane and normal to that surface 
before and after deformation. Hence the shear deformation is neglected. 

5. The cracks terms are formulated using the line spring model and the phenomenon of crack opening or closing is 
neglected. 

6. Effects of Rotary inertia and shear deformation are neglected. 

The governing equation of a cracked orthotropic rectangular plate under influence of the thermal environment and 
based on approach of classical plate theory has been rigorously treated in Refs. (Joshi et al. 2016) and can be stated 
as; 
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h 

L2 
2a 

Crack depth 

y 
z,w 

x 

β Fibres 

L1 
Rise in Temperature T 

Figure 1: Fibrous Orthotropic plate containing a partial crack of length 2a.

varied within the center line of the plate and parallel to the x-axis. β is the angle of fibres
with one of the edges of the plate. Since, the plate under consideration is thin, hence
the thickness of the plate h is much small as compared to the other two dimensions.
Different values of internal material length scale parameter l are considered to compare
the classical and non-classical results in the case of micro-plate.

2 Governing equation

The equation of motion which governs the linear vibration of an orthotropic rectangular
plate with a part-through surface crack is derived using the equilibrium principle. It is
considered that the crack is in the form of a continuous line. The modeling is subjected
to the following assumptions:

1. The plate is assumed to be elastic, homogenous and the plate material is isotropic.

2. The plate has a uniform thickness h, which is very small as compared to its in-plane
dimensions and all strain components follow Hooke’s law.

3. The normal stress acting in the transverse direction of the plate is considered to be
small and is neglected in the stress-strain relations.

4. It is assumed that the plane section normal to the middle surface will remain plane
and normal to that surface before and after deformation. Hence the shear deforma-
tion is neglected.

5. The cracks terms are formulated using the line spring model and the phenomenon
of crack opening or closing is neglected.

6. Effects of Rotary inertia and shear deformation are neglected.
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The governing equation of a cracked orthotropic rectangular plate under influence
of the thermal environment and based on approach of classical plate theory has been
rigorously treated in [24] and can be stated as;
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(
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)
is the effective torsional rigidity. Ex, Ey, Gxy, ϑx and ϑy are the elastic constants. Pz is
the lateral load, w is transverse deflection, ρ and h are the density and thickness of the
orthotropic plate. MTx, MTy and NTx, NTy are the bending moment and in-plane com-
pressive forces due to the thermal environment. my and ny are the moment and force due
to line crack.

Similarly, following the force and moment equilibrium principle and considering the
extra force and moments due to the inclusion of the cracks and thermal environment,
the governing equation of the cracked orthotropic plate with various fibre orientations is
stated in the work of Soni et al. [43] as

−
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Where

Dx =
Exl2h

2(1+ϑx)
and Dy =

Eyl2h
2
(
1+ϑy

)
are the additional flexural rigidities due to the microstructure. mx and my are the coeffi-
cients of mutual influence which depends upon the elastic constants and fibre orientation.
The relations for these coefficients can be written as [43]
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{
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In the present work, the governing equation of a cracked orthotropic plate derived in [43]
is further used to get the relation for critical buckling temperature and fundamental fre-
quency. The assumptions involved in the formulation are taken according to classical
plate theory for thin plates [11, 45].

2.1 Relationship between the crack tip stresses and the far-field stresses

In the available literature, it is found that Rice and Levy [37] derived an approximate
relation between tensile and bending stresses at the location of the crack and the nominal
and bending stresses at the far sides of the plate. The line spring model given by Rice and
Levy [37], reduces the purely three-dimensional problem into a two-dimensional prob-
lem. In [14–16], line spring model is used for the formulation of crack terms. King [29],
developed a simplified line spring model considering that the part through the surface
crack is the combination of a through crack and an edge crack. Joshi et al. [23] further
modified these relations for a specially orthotropic plate. Extending their work Joshi et
al. [24, 25] have also proposed the relations for crack terms in presence of thermal ef-
fects for the isotropic and orthotropic plates. Similar relations for in-plane forces ny and
bending moments my for the cracked orthotropic plate can be proposed as

my =−
2a

3
( αbt

6 +αbb
)
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My∗ , (2.4a)
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NTy. (2.4b)

Where, αbb, αtt and αbt = αtb are compliance coefficients used to match stretching and
bending resistance of symmetric loading. The values for these coefficients can be found
in [6]. For the arbitrary location of the crack along the x-axis, the above compliance
coefficients are multiplied by(

2
/√

π
(γ

Γ
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exp

(
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here ξc = d/L1 is the eccentricity ratio, d is the offset distance between the plate centre
and centre of the crack, γ=(h/L1) and Γ=(a/L1). Similar formulation for considering of
the effect of crack location can be found in the work of Gupta et al. [11], Joshi et al. [22],
Gupta et al. [9] and Bose et al. [6]. Hence, the influence of change in crack location can be
determined by using the appropriate compliance coefficients.

On substituting Eqs. (2.4a) and (2.4b) in Eq. (2.2) and expressing the moments M∗y in
form of lateral deflection (w) from [43], one can obtain the required governing equation
of cracked orthotropic plate as(
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3 Solution of governing equation

For the approximate solution of above differential governing equation (Eq. (2.3)), the
Galerkin’s method is used by defining the trail modal functions. These modal functions
are chosen to satisfy all the kinematic boundary conditions. We can express the lateral
displacement (w) of the plate in form of modal functions as [6]

w(x,y,t)=
∞

∑
n=1

∞

∑
m=1

AmnXmYnφmn(t). (3.1)

In the above equation Xm and Yn are the trail modal functions, Amn is the arbitrary am-
plitude and φmn(t) is the time dependent function. The trail modal functions for the two
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different boundary conditions (SSSS and CCSS) used in present study can be found in
literature [15, 24, 26].

In the governing equation Eq. (2.2) of cracked orthotropic plate, the thermal effects
are included in the form of thermal moments (MTx, MTy and MTxy) and in-plane thermal
forces (NTx , NTy and NTxy). It is known that in different industrial applications, thin plate
structures are used with a little temperature gradient and good thermal conductivity.
Thus for simplification of present work, the solution for the above governing equation
is given for the case of uniformly heated plates (MTx = MTy = MTxy = 0) with in-plane
deflections restricted. It means the thermal moments are neglected and only the in-plane
thermal forces (NTx, NTy and NTxy) are considered. For uniformly heated plates, the
constant in-plane thermal forces can be written in terms of lateral deflection as [43];

NTx =
ExTch(

1−ϑxϑy
)
(ϑymy+mx

)(
αxy+myEyαy

)(
1

Gxy
−m2

yEy

) +
(
αx+αyϑy

), (3.2a)

NTy =
EyTch(

1−ϑxϑy
)
(ϑxmx+my

)(
αxy+mxExαx

)(
1

Gxy
−m2

xEx

) +
(
αxϑx+αy

), (3.2b)

NTxy =
Tch
(
αxy+mxEx

(
αx+αyϑy

)
+myEy

(
αy+αxϑx

))(
1−ϑxϑy

) . (3.2c)

Where, αx, αy and αxy are the coefficients of thermal expansion. Tc is the rise in tempera-
ture above which the plate is stress-free.

On employing Eq. (3.1) and Eq. (3.2) in Eq. (2.5) and multiplying Eq. (2.5) by XmYn
and then integrating over plate area, the governing equation of plate can be stated as;
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− 2a
3
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=
∫ l2

0

∫ l2

0
PzXmYndxdy. (3.3)

Based on the application of the appropriate delta function, the lateral load Pz can be
readily expressed as [15]

Pz =P0(t)δ(x−x0)δ(y−y0).

Where, P0(t) denotes the time-dependent lateral load and (x0,y0) is the position coordi-
nate of the load.

On substituting Pz from Eq. (3.2) into Eq. (3.1), the force term of Eq. (3.1) can be ex-
pressed as

Pmn =P0(t)
∫ l1

0

∫ l2

0
δ(x−x0)δ(y−y0)XmYndxdy,

Pmn =P0(t)Xm (x0)Yn (y0),
Pmn =P0(t)Qmn.

Where, Qmn =Xm(x0)Yn(y0) shows the position of lateral load (P0(t)) on plate for differ-
ent boundary conditions.

The lateral load pz can be neglected for free vibrations. On expressing Eq. (3.3) in the
form of Duffing equation as

Mmn
∂2φmn(t)

∂t2 +Kmnφmn(t)=0, (3.4)

where
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∞
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Kmn =
∞

∑
n=1

∞

∑
m=1

Amnφmn(t)
∫ L1

0

∫ L2

0

{(Dx+DLx){(Xiv
mYn+ϑyXii

myii
n

)
+
(ϑymy+mx)

1
Gxy
−m2

y Ey

(
2Xiii

m yi
n+myEyXii

myii
n

)}
1− Ex(ϑymy+mx)

(1−ϑxϑy)
(

1
Gxy
−m2

y Ey

) (mx+myϑx
Ey
Ex

)



254 A. Gupta, S. Soni and N. K. Jain / Adv. Appl. Math. Mech., 15 (2023), pp. 244-266
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From Eq. (3.5b), the fundamental frequency can be determined as ω2
mn =Kmn/Mmn.

4 Relationship for critical buckling temperature

In this section a classical relation for critical buckling temperature of a cracked orthotropic
plate is presented using the equilibrium equation of plate. It is well known that the
thermal buckling depends on the in-plane compressive forces induced by temperature
rise. The relation of critical buckling temperature of an intact and cracked isotropic plate
can be obtained in literature [5, 21, 45]. In present work the relationship for buckling
temperature is derived by finding the equilibrium position between the stiffness and the
thermal stresses of the plate from Eq. (3.3). For geometrically linear i.e., MTx = MTy =
MTxy=0 and constant in-plane compressive forces (Eq. (3.2)) due to uniform temperature
rise NTx, NTy and NTxy; only the static boundary conditions are to be satisfied. So, in the
absence of thermal bending moment and the presence of constant in-plane thermal forces
the equation of equilibrium for buckling phenomenon of cracked orthotropic micro plate
can be written as
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From Eq. (4.1) the relationship for buckling temperature can be expressed as
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This relationship for buckling temperature depends upon the boundary conditions, for
e.g., the solution for a simply supported (SSSS) and two adjacent edges are clamped while
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the other two edges are simply supported (CCSS) boundary conditions can be written as

For SSSS w(x,y)=Amn sin(αmx)sin(βny), (4.3a)

For CCSS w(x,y)=Amn sin(αmx)sin
(αmx

2

)
sin(βny)sin

(
βny

2

)
. (4.3b)

Where
αm =

mπ

L1
and βn =

nπ

L2
.

On substituting the solution of lateral deflection (w) from Eq. (4.3a) into Eq. (4.2) and
placing the mode number m = n = 1, we can get the critical buckling temperature Tbcr
from Eq. (4.2). Here Tbcr is calculated for m = n = 1 as for other values of m and n, the
buckling temperature obtained is higher.

5 Results and discussion

In this section, the results for buckling temperature and its effect on fundamental fre-
quency is presented for cracked orthotropic micro plate as a function of fibre orientation
(β), uniform temperature rise (T∗), crack length (a/l1), crack location (ξc), and length
scale parameter (l/l1). The above results are presented for two different SSSS and CCSS
boundary condition. The rise in temperature is expressed in non-dimensional form as
T∗ = T/Tbcr, where T is the rise in temperature of orthotropic plate. Boron Epoxy is
taken as plate material with following properties, Ey=18.9GPa, Ex=208GPa, ϑ2=0.0208,
ϑ1 =0.23, G12 =5.7GPa, ρ=2000kg/m3. The crack depth to plate thickness ratio is taken
constant as 0.6 throughout this work and the plate in-plane dimensions are L1=L2=1m.
The results for fundamental frequency as a function of critical buckling temperature for
cracked orthotropic plate with fibre orientation in thermal domain are not available in lit-
erature, however the results are available for cracked isotropic plate in thermal domain.
The present model can be easily reduced to the isotropic one by considering suitable ma-
terial parameter for isotropic plate. Hence the present model holds good agreement with
the existing results of [26] for isotropic plate as seen in Table 1.

Table 2 shows a comparison of results for the frequency parameter of an orthotropic
plate as a function of fibre orientation, crack length and length scale parameter. The
properties of the orthotropic plate for the validation in Table 2 are taken from [11]. It is
observed from Table 2 that, there is an exact agreement between present results and the
published results which verify the correctness of the present model when the effect of
temperature is neglected.

Fig. 2(a) and Fig. 2(b) shows the variation of critical buckling temperature with crack
length and fibre orientation for a cracked orthotropic SSSS and CCSS square plate (l/l1=
0). It is observed that as the fibre orientation increases from 0◦ to 45◦, the critical buck-
ling temperature also rises and reaches a maximum value at 45◦, this variation in critical
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Table 1: Comparison of frequency (ωmnl2
1
√

ρh/D) for intact and cracked isotropic CCSS (m=n=1, l1/l2=1).

Intact plate Cracked plate
Temperature T∗ Half crack length, a/l1=0.0 Half crack length, a/l1=0.01

present [26] present [26]
0 28.35 28.35 27.50 27.50

0.1 26.89 26.89 26.00 26.00
0.2 25.35 25.35 24.51 24.51
0.3 23.72 23.72 22.93 22.93
0.4 21.96 21.96 21.23 21.23
0.5 20.05 20.05 19.38 19.38

Table 2: Comparison of frequency parameter for an orthotropic plate as a function of fibre orientation, crack
length and length scale parameter. L1/L2 =1, ∆T=0.

Frequency parameter (ρhωmn2L4
1/
√

Dx Dy)
Length Scale parameter (l)

Half crack length (a) Fibre angle (β) l/l1 =0 (CPT) l/l1 =0.001 (MCST)
Present [11] Present [11]

a/l1 =0 0 20.03 20.03 20.48 20.48
(Intact) 15 21.85 21.85 22.16 22.16

30 25.08 25.08 25.31 25.31
45 26.55 26.55 26.75 26.75
60 25.08 25.08 25.31 25.31
75 21.85 21.85 22.16 22.16
90 20.03 20.03 20.48 20.48

a/l1 =0.001 0 19.89 19.89 20.33 20.33
(Cracked) 15 21.61 21.61 21.91 21.91

30 24.84 24.84 25.05 25.05
45 26.32 26.32 26.51 26.51
60 24.83 24.83 25.05 25.05
75 21.41 21.41 21.71 21.71
90 18.86 18.86 19.27 19.27

buckling temperature from 0◦ to 45◦ fibre orientation is worth noting as the critical buck-
ling temperature at 45◦ is almost five times the critical buckling temperature at 0◦. The
result in Fig. 2 also shows the effect of crack length on the critical buckling temperature
with fibre orientation. It is observed that as the crack length increases the critical buckling
temperature decreases when compared to their intact counterpart. One more interesting
point to note in Fig. 2 is that the critical buckling temperature for cracked plate is not
symmetric about 45◦ like the one seen for an intact plate. This is because the crack is
kept constant along the x-axis while the fibre orients from 0◦ to 45◦, hence the stiffness
of the plate is least affected when the crack is parallel to the fibre (0◦) and most affected
when the crack is across the fibre (90◦). Fig. 2(c) and Fig. 2(d) shows a similar result for
micro-sized orthotropic plate (l/l1 = 0.001). The results are higher when compared to
Fig. 2(a) and Fig. 2(b) due to the consideration of additional bending rigidity arising due
to consideration of internal material length scale parameter based on modified couple
stress theory.
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Figure 2: Critical buckling temperature (◦) as affected by crack length for various fibre orientations. (a) and
(b) -CPT (l/l1 =0) and (c) and (d) -MCST (l/l1 =0.001).

The variation in critical buckling temperature (Tbcr) of cracked orthotropic micro-plate
as with various material length scale parameter and fibre orientation is shown in Fig. 3
for SSSS and CCSS boundary conditions. It is found that for fixed orientation of fibres, the
buckling temperature increases with the increase in length scale parameter. Although the
change in buckling temperature is quantitatively different for SSSS and CCSS boundary
conditions, the effect of crack length, fibre orientation and material length scale parame-
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Table 3: Critical buckling temperature (◦C) for micro plate as affected by crack location for various fibre
orientations (a/l1 =0.2, l/l1 =0.001).

Critical Buckling Temperature (Tbcr)

Boundary conditions β
Crack location

ξc =0 ξc =0.1 ξc =0.2
0 9.104 9.520 9.660

15 16.739 17.946 18.391
30 26.932 29.065 29.870

SSSS 45 36.600 39.243 40.209
60 29.795 31.868 32.596
75 15.237 16.981 17.590
90 3.963 5.337 5.832
0 17.835 18.642 18.913

15 29.837 31.985 32.777
30 41.601 44.963 46.233

CCSS 45 53.541 57.548 59.016
60 45.726 49.073 50.252
75 26.652 29.854 30.975
90 7.461 10.202 11.189

ter for CCSS plate is principally same for both SSSS and CCSS plate.
Table 3 shows the critical buckling temperature of cracked micro-plate as affected

by crack location and fibre orientation. It has been observed that for a fixed crack length
a/l1=0.2 and length scale parameter l/l1=0.001, as the crack moves away from the centre
the critical buckling temperature increases for all orientations of fibres, this is because at
the centre of the plate, the crack affects plate’s stiffness to the maximum. From Table 3, it
is also seen that the reduction in stiffness is more pronounced fibre orientation 90◦ than
for 0◦.

Fig. 4 shows the variation of frequency as affected by temperature rise (T∗) and fibre
orientation (β) for SSSS and CCSS boundary conditions. It is seen that as the temperature
rises the fundamental frequency decreases, it is due to the reduction in thermal stiffness
of the plate. It is also observed that as the fibre orientation increases from 0◦ to 45◦, the
frequency also rises till 45◦ and a symmetrical pattern is obtained thereafter for an intact
orthotropic plate (Figs. 4(a) and (b)). However, for a cracked plate (Figs. 4(c) and (d))
the frequency variation is not symmetric about 45◦ as the fibres are differently affected
by a crack at each fibre orientation. Hence, the present result brings out an important
conclusion that the frequency can be altered with the help of fibre orientation for an
orthotropic plate under thermal environment. Also, the effect of crack on stiffness of the
plate can be minimized by selecting optimum fibre orientation.

The variation in the fundamental frequency with length scale parameter and fibre
orientation for a cracked orthotropic micro-plate is presented in Fig. 5. It is seen that
for both SSSS and CCSS plate, the pattern of frequency variation with fibre orientation
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Figure 3: Critical buckling temperature (◦) for cracked orthotropic plate as affected by internal material length
scale parameter for various fibre orientations (a/l1 =0.05).

is the same as in Fig. 4. On comparing the results for frequency obtained using CPT
(l/l1 = 0) and MCST (l/l1 6= 0) in Fig. 5, it is found that for a given value of a/l1 = 0.05
and T∗=0.1 the frequency increases with increase in length scale parameter. This increase
in frequency is due to increased flexural rigidity which adds to the stiffness of plate. A
similar change in frequency is also observed in [11] for intact and cracked orthotropic
plate in the absence of thermal effects. In the present work, such variation is also found
to be true in the case of cracked orthotropic plate in thermal domain (Fig. 5). Thus, the
application of length scale parameter to consider the effect of microstructure is significant
in thermal domain as well.

Effect of crack location on frequency of cracked orthotropic micro-plate as affected
by non-dimensional temperature T∗ is shown in Table 4 and Table 5 for SSSS and CCSS
boundary conditions respectively. For a fixed length scale parameter l/l1 =0.001, length
of crack a/l1 = 0.2 and fibre orientation β = 45◦, it is observed that as the crack moves
away from the centre from ξc = 0 to 0.2; the fundamental frequency increases. It means
frequency is more affected when crack is located at the centre and least affected when it
moves away from centre.

Fig. 6 shows an important comparison between results obtained by CPT and MCST
for critical buckling temperature as affected by the plate dimensions. In order to change
the plate dimensions uniformly, plate length to plate thickness ratio is kept constant at
L1/h= 100 and L1 = L2. It can be seen in Fig. 6 that as the plate dimension reduces the
CPT starts under-predicting the critical buckling temperature thereby reflecting the con-
tribution of internal material length scale parameter on flexural rigidity of micro-sized
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Figure 4: Fundamental frequency of an orthotropic plate as a function of temperature (T∗) and fibre orientation
(β) for l/l1 =0.001. (a) and (b) -Intact. (c) and (d) -Cracked (a/l1 =0.05).

plates. The differences in result between both the theories are found in the case of intact
as well as cracked plate and for both SSSS and CCSS boundary conditions.
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Figure 5: Fundamental frequency of an orthotropic plate as a function of length scale parameter (l) and fibre
orientation (β) for T∗=0.1 and a/l1 =0.05.

Figure 6: Variation of critical buckling temperature with plate size (L1/h=100), (L1 =L2).

6 Conclusions

The obtained results are helpful in designing the structures comprising of orthotropic
plates which are subjected to a thermal environment. As per the author’s knowledge, this



A. Gupta, S. Soni and N. K. Jain / Adv. Appl. Math. Mech., 15 (2023), pp. 244-266 263

Table 4: Fundamental frequency for a cracked orthotropic SSSS micro plate (a/l1 =0.2) as affected by crack
location (l/l1 =0.001, β=45◦).

T∗ Fundamental Frequency (rad/s)
ξc =0 ξc =0.1 ξc =0.2

0 420.856 423.283 424.160
0.1 399.259 401.561 402.394
0.2 376.425 378.596 379.380
0.3 352.113 354.144 354.878
0.4 325.994 327.873 328.553
0.5 297.590 299.306 299.926
0.6 266.173 267.707 268.262
0.7 230.512 231.841 232.322
0.8 188.213 189.298 189.690
0.9 133.086 133.854 134.131

Table 5: Fundamental frequency for a cracked orthotropic CCSS micro plate (a/l1 =0.2) as affected by crack
location (l/l1 =0.001, β=45◦).

T∗ Fundamental Frequency (rad/s)
ξc =0 ξc =0.1 ξc =0.2

0 569.102 573.085 574.523
0.1 539.897 543.676 545.041
0.2 509.020 512.582 513.869
0.3 476.145 479.477 480.681
0.4 440.824 443.909 445.024
0.5 402.416 405.232 406.249
0.6 359.931 362.450 363.360
0.7 311.710 313.891 314.679
0.8 254.510 256.291 256.934
0.9 179.966 181.225 181.680

is the first attempt to analytically quantify the critical buckling temperature as affected
by fibre orientation, size effects and effect of crack.

The present analytical model is also capable to capture the size-effect and hence can be
applied in optimum designing of orthotropic micro-plates. Micro-plates are frequently
used as sensing devices and are often subjected to different surroundings like fluidic
medium and thermal environment.

Results are presented for critical buckling temperature and its effect on fundamen-
tal frequency for various parameters like crack length, fibre orientation and length scale
parameter. It is concluded that by varying the fibre orientation, the critical buckling tem-
perature can be altered to a large extent. Further, the present work explains the impor-
tance of the length scale parameter for a micro-sized plate and concludes that the length
scale parameter has a positive impact on critical buckling temperature. The importance
of size-effect on critical buckling temperatures is shown by comparing the result obtained
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using CPT and MCST.
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[1] B. AKGÖZ AND Ö. CIVALEK, Free vibration analysis of axially functionally graded tapered
Bernoulli-Euler microbeams based on the modified couple stress theory, Compos. Struct., 98 (2013),
pp. 314–322.
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