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Abstract. In this paper, the Peng-Robinson equation of state with dynamic bound-
ary conditions is discussed, which considers the interactions with solid walls. At
first, the model is introduced and the regularization method on the nonlinear term
is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite el-
ement method in spatial are used to handle the Peng-Robinson equation of state. Then,
the energy dissipation law of the numerical method is obtained. Also, we acquire the
convergence of the discrete SAV finite element method (FEM). Finally, a numerical ex-
ample is provided to confirm the theoretical result.
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1 Introduction

Hydrocarbon reservoirs engineering is a technical science which is engaged in the oil-
field development design and engineering analysis method [1, 2]. Its research concludes
the movement law and displacement mechanism of oil, gas, and water in the develop-
ment process of the reservoir (or gas reservoir). And it is also formulates corresponding
engineering measures in order to improve the recovery rate and recovery factor, reason-
ably. The numerical simulation is a great choice to research this process. A very impor-
tant research direction in hydrocarbon reservoirs engineering is using diffusion interface
theory [3–5] to carry out numerical simulation of physical phenomena such as gas bub-
bles, droplets and capillaries pressure by the interface between phases. So, using the
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phase-field model is a general method for numerical simulation in this direction. Then,
a density-dependent nonlinear system is obtained by applying the variational derivative
to the Helmholtz free energy. Such a system is more consistent with the rules of energy
dissipation. The Peng-Robinson equation of state is widely used phase-field model in
hydrocarbon reservoirs engineering [6–12]. Compared with the two-well potential in the
Allen-Cahn equation and Cahn-Hilliard equation [13–15], because of logarithmic term of
the nonlinear term, the Peng-Robinson equation of state is more accurate and can reflect
the real state of the fluids.

Usually, periodic boundary condition and the Neumann boundary condition are used
in phase-field model [14,16]. By using these boundary conditions, the positive symmetry
of the stiffness matrix can be maintained while using the finite element method, spec-
tral method and difference method and so on, and the computational complexity of a
small area on the boundary can be reduced greatly, especially for the fast algorithm FFT.
Moreover, the models with classical boundary conditions leave the influence of external
factors on the boundary out of consideration, which results in unsatisfactory outcomes.
Recently, the dynamic boundary condition is proposed by the research [17], where the
existence and uniqueness of a global weak solution are proved. According to the law
of energy and the equilibrium of the system, the dynamic boundary condition is deter-
mined. The relationship between the two intersecting interfaces is better simulated, as
well as, the calculation is also more complicated.

It is necessary to carry out numerical simulation of the phase-field models to describe
the diffusion phenomenon, since the exact solution is difficult to confirm. Generally,
the implicit scheme is applied to discrete the models in order to keep the energy un-
conditional stable. It is unavoidable to use the inner iteration, which increase the com-
putational cost. For purpose of decreasing the time consumption, a lot of methods are
proposed for the numerical solution of the phase-field model. The ETD methods in [18]
refer to exact integration of the governing equations followed by an explicit approxima-
tion of a temporal integral relating to the nonlinear terms. Recently, the SAV method was
introduced in the researches [15, 19], which can keep the energy stability of the whole
system. By applying this method, we solve a constant coefficient equation at each step
of the calculation. Furthermore, a new SAV method was proposed in [20] by applying
the new scalar variable to make two linear equations into one linear equation, which re-
duce half of the time cost and keep original SAV method the other strengths. In addition,
the convex splitting energy stable scheme make the equations have the property of un-
conditionally energy stable [11, 21]. Another interesting method is IEQ [22, 24], which
discretized the nonlinear terms by the semi-explicit method. Meanwhile, the linear sys-
tem is positive and the properties of the whole system are maintained.

In this paper, we mainly study the Peng-Robinson equation of state with dynamic
boundary conditions and use the SAV method to keep the conservation of mass and
energy dissipation in the bulk and on the surface. At the same time, we give the cor-
responding error analysis and a numerical example. In Section 2, we introduce the Peng-
Robinson equation of state and dynamic boundary conditions. Meanwhile, we adopt the
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regularization method on the nonlinear term. In Section 3, we discretize the equations
of state in space and time by using the SAV finite element method and obtain the energy
dissipation law of the numerical method. In Section 4, we prove the first-order conver-
gence of discrete Peng-Robinson equation of state. By a numerical example, we compare
the difference between dynamic boundary conditions and classical boundary conditions
in Section 5.

2 The SAV scheme of Peng-Robinson equation of state

2.1 The Holmholtz free energy of two-phase fuild with the dynamic
boundary conditions

Let us start with some standard notations [25]. We assume that the bulk Ω∈Rd(d=2,3) is
a bounded Lipschitz domain with the boundary Γ. In this paper, the spaces Wm,p(Ω) and
Wm,p(Γ) mean the normal Sobolev spaces. Especially, the spaces Wm,2(Ω) and Wm,2(Γ)
are denoted by Hm(Ω) and Hm(Γ), respectively. (·,·) and 〈·,·〉 are the inner product in
the bulk and on the surface, respectively.

We focus on a two-phase fluid system at constant temperature, constant number of
molecules, and a fixed domain. Then, we denote by u the molar density in the bulk. By
the second law of thermodynamics, we know that the whole system is in equilibrium,
when the Holmholtz free energy E[u] is at its minimum [10]. The Holmholtz free energy
can contribute in two ways. One part comes from the energy produced by the homoge-
neous fluid, and the other part comes from the energy produced by the imhomogeneous
fluid

E[u]=
∫

Ω

( c
2
|∇u|2+F(u)

)
dx+Ĉ,

where the parameter c is determined by the temperature and the molar density. While,
molar density has very little effect on c. Consequently, c is a constant when the temper-
ature T is given. And Ĉ is a positive constant to ensure E[u]> 0. F(u) is a nonlinear
function of u. We denote by uΓ the molar density on the surface. By using the denotation
in [17], the Holmholtz free energy can be divided into the bulk and the surface

Etotal [u] :=Ebulk[u]+Esur f ace[uΓ], (2.1)

where

Ebulk[u]=
∫

Ω

( c
2
|∇u|2+F(u)

)
dx+Ĉ1, (2.2a)

Esur f ace[uΓ]=
∫

Γ

(κc
2
|∇ΓuΓ|2+κG(uΓ)

)
ds+Ĉ2, (2.2b)
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with the constants c,κ > 0. And we can force G(uΓ)= F(uΓ). Ĉ1 and Ĉ2 are the positive
constant assuring Ebulk[u]>0 and Esur f ace[uΓ]>0. Then, we record

E1[u] :=
∫

Ω
F(u)dx+Ĉ1, E2[uΓ] :=

∫
Γ

G(uΓ)ds+Ĉ2,

respectively.

2.2 SAV Peng-Robinson equation of state

Peng-Robinson equation of state is the most common fluid model in hydrocarbon reser-
voirs engineering. Based on this model, the free energy of the imhomogeneous fuild is
given as follows

F(u)=F1(u)+F2(u),
F1(u) :=RTu(lnu−1)−RTuln(1−bu),

F2(u) :=
a(T)u
2
√

2b
ln
(1+(1−

√
2)bu

1+(1+
√

2)bu

)
,

where R is the universal gas constant, and the energy parameter a(T) and the co-volume
parameter b are related to the mixing rules of the pure fluids. Theoretically, u∈ (0,1/b).
It is easy to see that the domain of F2(u) is (−

√
2−1
b ,∞). So it is bounded at the interval

[0, 1
b ]. However, when u=0 and u= 1

b , F1(u) is singular. In [12], based on the regularization
method, F1(u) can be given as a convex, C2 continuous, piecewise function,

F̂1(u) :=



RTu
(

ln
δ

b
−1
)
−RTuln(1−bu)+RT

( bu2

2δ
− δ

2b

)
, if u∈

[
0,

δ

b

)
,

RTu(lnu−1)−RTuln(1−bu), if u∈
[ δ

b
,
1−δ

b

]
,

RTu(lnu−1)−RTulnδ

+RT
[ bδ+b

2δ2

(
u− 1−δ

b
+

δ(1−δ)

b(1+δ)

)2
− (1−δ)

2b(1+δ)

]
, if u∈

(1−δ

b
,
1
b

]
,

(2.3)

where for any δ>0. And F̂1(u)→F1(u), when δ→0. So we have a nonlinear function that
is bounded at the interval [0, 1

b ] and nonsingular,

F̂(u)= F̂1(u)+F2(u). (2.4)

For convenience, we redefine F̂(u) as F(u).

Lemma 2.1. There exists positive constants C̄1,C̄2 such that

−C̄1δ−1≤F
′′
(u)≤ C̄2δ−2. (2.5)
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Proof. Firstly, we consider the function F1(u). If u∈ [ δ
b , 1−δ

b ], we get

bRT+
bRT

δ
≤F

′′
1 (u)=

RT
u

+
bRT(2−bu)
(1−bu)2 ≤

bRT
δ

+2bRT. (2.6)

Next, if u∈ [0, δ
b ), we have

bRT(1−b)2

δ
≤F

′′
1 (u)=

RTb[(1−bu)2(1−b2)+δ]

δ(1−bu)2 ≤ bRT(1−b)2

δ
+1. (2.7)

Then, if u∈ ( 1−δ
b , 1

b ], (2.3) becomes to

bRT
δ

+bRT≤F
′′
1 (u)=

RT
u

+RT
b(1+δ)

δ2 ≤ bRT(1+δ)

δ2 +bRT. (2.8)

In addition, as for the function f2(u), if u∈ [0, 1
b ], we get

F
′′
2 (u)=−

a(T)
1+bu+bu(1−bu)

− a(T)(1−b3u2)

(1+bu+bu(1−bu))2 . (2.9)

It is evident that F
′′
2 (u) is a continuous function at the closed interval [0, 1

b ]. So, there exists
C̄3,C̄4 such that

−C̄3≤F
′′
2 (u)≤ C̄4. (2.10)

Combining (2.6)-(2.10), we can complete the proof of the Lemma 2.1.

From (2.1) and (2.4), by using the variational derivative, we can obtain the SAV Peng-
Robinson equation of state with dynamic boundary conditions

ut =−µ in Ω×(0,T],
ut,Γ =−µΓ on Γ×(0,T],

µ+κµΓ =−c∆u−κc∆ΓuΓ+
r1√
E1[u]

f (u)

+
κr2√
E2[uΓ]

g(uΓ) in Ω̄×(0,T],

rt,1=
1

2
√

E1[u]
( f (u),ut) in (0,T],

rt,2=
1

2
√

E2[uΓ]
〈g(uΓ),ut,Γ〉 in (0,T],

(2.11)

where f (u) := F
′
(u) and we can force g(uΓ)= f (uΓ) := F

′
(uΓ). Then ∆Γ means Laplace-

Beltrami operator. Also, r1(t)=
√

E1[u] and r2(t)=
√

E2[uΓ] are scalar auxiliary variables,
respectively. In addition, the SAV Peng-Robinson equation of state has the initial value
conditions

u(x,0)=u0(x), r1(0)=
√

E1[u(0)], r2(0)=
√

E2[uΓ(0)]. (2.12)
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And, uΓ, µΓ are the limits of u, µ on the surface, which are

u|Γ(x,t)=uΓ(x,t), µ|Γ(x,t)=µΓ(x,t) on Γ×(0,T]. (2.13)

There exist the unique solutions u,uΓ in (2.11) such that

u∈C(0,T;H1(Ω))∩L2(0,T;H2(Ω)), uΓ∈C(0,T;H1(Γ))∩L2(0,T;H2(Γ)). (2.14)

The proof is similar to the way in [23] and we omit the process.
Then we reword the Peng-Robision equation of state in a weak formula: for any t∈

(0,T], finding (u,uΓ,µ,µΓ,r1,r2) ∈H1(Ω)×H1(Γ)×L2(Ω)×L2(Ω)×C1(0,T]×C1(0,T] such
that

(ut,θ1)=−(µ,θ1), ∀θ1∈L2(Ω), (2.15a)

〈ut,Γ,θ2〉=−〈µΓ,θ2〉, ∀θ2∈L2(Γ), (2.15b)
(µ,v)+κ〈µΓ,v〉= c(∇u,∇v)+κc〈∇ΓuΓ,∇Γv〉

+
r1√
E1[u]

( f (u),v)+
κr2√
E2[uΓ]

〈g(u),v〉, ∀v∈H1(Ω̄), (2.15c)

rt,1=
1

2
√

E1[u]
( f (u),ut), (2.15d)

rt,2=
1

2
√

E2[uΓ]
〈g(uΓ),ut,Γ〉. (2.15e)

3 Discrete SAV FEM scheme and its energy dissipation

In order to approximating the solution of the weak formula (2.15a)-(2.15e), we apply the
finite element method in spatial. Assuming that Vh is a finite element space included
in H1(Ω̄). Then, there is a discrete finite element scheme as follows: finding a solution
(un+1

h ,un+1
h,Γ ,µn+1

h ,µn+1
h,Γ , rn+1

h,1 ,rn+1
h,2 )∈ [Vh]

4×R2 satisfying that

(un+1
h −un

h ,θ1)=−∆t(µn+1
h ,θ1), ∀θ1∈Vh, (3.1a)

〈un+1
h,Γ −un

h,Γ,θ2〉=−∆t〈µn+1
h,Γ ,θ2〉, ∀θ2∈Vh, (3.1b)

(µn+1
h ,v)+κ〈µn+1

h,Γ ,v〉= c(∇un+1
h ,∇v)+κc〈∇Γun+1

h,Γ ,∇Γv〉

+
rn+1

h,1√
E1[un

h ]
( f (un

h),v)+
κrn+1

h,2√
E2[un

h,Γ]
〈g(un

h),v〉, ∀v∈Vh, (3.1c)

rn+1
h,1 −rn

h,1=
1

2
√

E1[un
h ]
( f (un

h),u
n+1
h −un

h), (3.1d)

rn+1
h,2 −rn

h,2=
1

2
√

E2[un
h,Γ]
〈g(un

h,Γ),u
n+1
h,Γ −un

h,Γ〉, (3.1e)
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with

u0
h =Phu(x,0), r0

1,h =
√

E1[u0
h], r0

2,h =
√

E2[u0
h,Γ], (3.2)

where Ph : L2→Vh is the L2 projection, and uh,Γ, µh,Γ are the limit of uh, µh on the surface
Γ,

uh|Γ(x,t)=uh,Γ(x,t), µh|Γ(x,t)=µh,Γ(x,t). (3.3)

Firstly, we present that the SAV FEM scheme satisfies the energy dissipation.

Lemma 3.1. For the Peng-Robinson equation of state (3.1a)-(3.1e) and any n≤ T
∆t , we have

c
2
||∇un+1

h ||2+ κc
2
||∇Γun+1

h,Γ ||
2+(rn+1

h,1 )2+κ(rn+1
h,2 )2

≤ c
2
||∇un

h ||2+
κc
2
||∇Γun

h,Γ||2+(rn
h,1)

2+κ(rn
h,2)

2. (3.4)

Proof. Let θ1=µn+1
h , θ2=µn+1

h,Γ , v=un+1
h −un

h in (3.1a)-(3.1c), respectively, and multiplying
(3.1d) and (3.1e) by 2rn+1

h,1 , κ ·2rn+1
h,2 , respectively. We can derive

c
2
||∇un+1

h ||2+ κc
2
||∇Γun+1

h,Γ ||
2+(rn+1

h,1 )2+κ(rn+1
h,2 )2− c

2
||∇un

h ||2

− κc
2
||∇Γun

h,Γ||2−(rn
h,1)

2−κ(rn
h,2)

2+
c
2
||∇(un+1

h −un+1
h )||2

+
κc
2
||∇Γ(un+1

h,Γ −un+1
h,Γ )||2+(rn+1

h,1 −rn
h,1)

2+κ(rn+1
h,2 −rn

h,2)
2

≤−∆t||∇µn+1
h ||2−κ∆t||∇Γµn+1

h,Γ ||
2≤0. (3.5)

Rewrite (3.5) and then Lemma 3.1 can be proved, immediately.

Thus, the scheme is unconditionally energy stable by (3.5). Next, the following is used
to describe how the SAV FEM scheme is implemented. bn

h,1, bn
h,2 are given as

bn
h,1 :=

Ph f (un
h)√

E1[un
h ]

, bn
h,2 :=

Phg(un
h,Γ)√

E2[un
h,Γ]

. (3.6)

Combining (3.1a)-(3.1e) to eliminate µn+1
h , µn+1

h,Γ , rn+1
h,1 and rn+1

h,2 , we derive

(un+1
h −un

h ,v)+κ〈un+1
h,Γ −un

h,Γ,v〉
=−∆t(c(∇un+1

h ,∇v)+κc〈∇un+1
h,Γ ,∇v〉)

−∆t
(

rn
h,1+

1
2
(bn

h,1,un+1
h −un

h)(b
n
h,1,v)+κrn

h,2

+
1
2
〈bn

h,2,un+1
h,Γ −un

h,Γ〉〈bn
h,2,v〉

)
. (3.7)
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After defining dn
h,1,dn

h,2∈Vh as

dn
h,1=

(
1+

∆t
2
(bn

h,1,bn
h,1)
)
(un

h ,v)−∆trn
h,1(b

n
h,1,v), (3.8a)

dn
h,2=

(
1+

∆t
2
〈bn

h,2,bn
h,2〉
)
〈un

h,Γ,v〉−∆trn
h,2〈bn

h,2,v〉, (3.8b)

Eq. (3.7) can be rewritten as(
1+

∆t
2
(bn

h,1,bn
h,1)
)
(un+1

h ,v)+
(

1+
∆t
2
〈bn

h,2,bn
h,2〉
)
〈un+1

h,Γ ,v〉

+c∆t(∇un+1
h ,∇v)+κc∆t〈∇un+1

h,Γ ,∇v〉
=(dn

h,1,v)+〈dn
h,2,v〉. (3.9)

In conclusion, we implement the SAV algorithm of the Peng-Robinson equation of state
(3.1a)-(3.1e) as follows:

i). Calculate bn
h,1, bn

h,2 from (3.6).

ii). Calculate dn
h,1, dn

h,2 from (3.8a) and (3.8b).

iii). Solve un+1
h , un+1

h,Γ from (3.9).

iv). Update rn+1
h,1 , rn+1

h,2 from

rn+1
h,1 = rn

h,1+
1
2
(bn

h,1,un+1
h )− 1

2
(bn

h,1,un
h),

rn+1
h,2 = rn

h,2+
1
2
〈bn

h,2,un+1
h,Γ 〉−

1
2
〈bn

h,2,un
h,Γ〉.

v). Go to the next time step.

Therefore, the discrete scheme of (3.1a)-(3.1e) is decoupled.

Remark 3.1. The unique solvability of the proposed SAV FEM scheme (3.1a)-(3.1e) is
obvious since Eqs. (3.6)-(3.9) present the outline of solvability. If fact, it can be seen that
the bilinear form

a(un+1
h ,v)=

(
1+

∆t
2
(bn

h,1,bn
h,1)
)
(un+1

h ,v)+
(

1+
∆t
2
〈bn

h,2,bn
h,2〉
)
〈un+1

h,Γ ,v〉

+c∆t(∇un+1
h ,∇v)+κc∆t〈∇un+1

h,Γ ,∇v〉

is positive definite from the equation (3.9). We only need solve a linear system (3.9) and
calculate three formulas (3.6)-(3.7) to obtain the numerical solution. That is to say, SAV
method transform a nonlinear problem into a linear solver while keeping the uncondi-
tional stable. This is the glamorous advantage of SAV method!
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4 Error estimate

In this section, we present the error estimate in temporal and in spatial, respectively. In
order to get the main result, we introduce the following lemmas.

Lemma 4.1 ([25]). Let us denote the Ritz projection operator by Rh : H1→Vh, that is,

(∇(u−Rhu),∇v)=0, ∀u∈H1(Ω), v∈Vh, (4.1)

with ∫
Ω

Rhudx=
∫

Ω
udx.

If u∈Hk+1(Ω), it holds

||u−Rhu||L2(Ω)≤Chk+1||u||Hk+1(Ω), ||u−Rhu||H1(Ω)≤Chk||u||Hk+1(Ω). (4.2)

Next, before discussing the error estimate in temporal, let us denote

Dtφ
n+1 :=

φn+1−φn

∆t

for any function value {φn}N
n=0, and the exact solution (u,uΓ,µ,µΓ,r1,r2) satisfies

(un+1−un,θ1)=−∆t(µn+1,θ1)+∆t(En
u ,θ1), ∀θ1∈L2(Ω) (4.3a)

〈un+1
Γ −un

Γ,θ2〉=−∆t〈µn+1
Γ ,θ2〉+∆t〈En

u,Γ,θ2〉, ∀θ2∈L2(Γ), (4.3b)

(µn+1,v)+κ〈µn+1
Γ ,v〉= c(∇un+1,∇v)+

rn+1
1√

E1[un]
( f (un),v)+(En

µ,v)

+κc〈∇Γun+1
Γ ,∇Γv〉+ κrn+1

2√
E2[un

Γ]
〈g(un

Γ),v〉

+κ〈En
µ,Γ,v〉, ∀v∈L2(Ω), (4.3c)

rn+1
1 −rn

1 =
1

2
√

E1[un]
( f (un),un+1−un)+∆tEn

r,1, (4.3d)

rn+1
2 −rn

2 =
1

2
√

E2[un
Γ]
〈g(un

Γ),u
n+1
Γ −un

Γ〉+∆tEn
r,2, (4.3e)

where

|En
u |= |Dtun+1−∂tun+1|≤

∫ tn+1

tn
|utt(·,τ)|dτ, (4.4a)

|En
u,Γ|= |Dtun+1

Γ −∂tun+1
Γ |≤

∫ tn+1

tn
|utt,Γ(·,s)|ds, (4.4b)
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|En
r,1|=

∣∣∣Dtrn+1
1 −∂trn

1−
1

2
√

E1[un]
( f (un),Dtun+1−∂tun)

∣∣∣
≤C

(∫ tn+1

tn
|rtt,1(τ)|dτ+

∫ tn+1

tn

∫
Ω
|utt,1(x,τ)|dτdx

)
, (4.4c)

|En
r,2|=

∣∣∣Dtrn+1
2 −∂trn

2−
1

2
√

E2[un
Γ]
〈g(un

Γ),Dtun+1
Γ −∂tun

Γ〉
∣∣∣

≤C
(∫ tn+1

tn
|rtt,2(τ)|dτ+

∫ tn+1

tn

∫
Γ
|utt,2(x,τ)|dτds

)
, (4.4d)

En
µ = rn+1

1

( f (un+1)√
E1(un+1)

− f (un)√
E1(un)

)
, (4.4e)

En
µ,Γ = rn+1

2

( g(un+1
Γ )√

E2(un+1
Γ )
− g(un

Γ)√
E2(un

Γ)

)
. (4.4f)

Lemma 4.2. According to (2.14), assume that the following regularities hold

u∈L∞([0,T];W1
∞(Ω)), ut∈L∞([0,T];H1(Ω)), utt∈L2((0,T);L2(Ω)), (4.5a)

uΓ∈L∞([0,T];W1
∞(Γ)), ut,Γ∈L∞([0,T];H1(Γ)), utt,Γ∈L2((0,T);L2(Γ)). (4.5b)

Then, for any N≤T/∆t, the error estimate in temporal satisfies

max
1≤n≤N

(
||En

u ||L2(Ω)+||En
u,Γ||L2(Γ)+||En

µ||L2(Ω)+||En
µ,Γ||L2(Γ)+|En

r,1|+|En
r,2|
)
≤C∆t,

where C>0 is independent of ∆t.

Proof. Taking the temporal derivative of (2.15d) and (2.15e), respectively, we derive

rtt,1=−
1

4
√

E1[u]3
(( f (u),ut))

2+
1

2
√

E1[u]
(( f

′
(u),u2

t )+( f (u),utt)),

rtt,2=−
1

4
√

E2[uΓ]3
(〈g(uΓ),ut,Γ〉)2+

1
2
√

E2[uΓ]
(〈g′(uΓ),u2

t,Γ〉+〈g(uΓ),utt,Γ〉).

From (2.14), we notice that u ∈ C(0,T;H1(Ω))∩L2(0,T;H2(Ω)) and uΓ ∈ C(0,T;H1(Γ))
∩L2(0,T;H2(Γ)), so u∈ L∞([0,T];L∞(Ω)) and uΓ∈ L∞([0,T];L∞(Γ)). Then, combing (2.5)
and (4.5), using Young’s inequality and imbedding theorems, we have∫ T

0
|rtt,1|2dt≤C

∫ T

0
(||ut||4L4(Ω)+||utt||2L2(Ω))dt

≤C
∫ T

0
(||ut||4H1(Ω)+||utt||2L2(Ω))dt≤C, (4.6a)∫ T

0
|rtt,2|2dt≤C

∫ T

0
(||ut,Γ||4L4(Γ)+||utt,Γ||2L2(Γ))dt

≤C
∫ T

0
(||ut,Γ||4H1(Γ)+||utt,Γ||2L2(Γ))dt≤C. (4.6b)
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For (4.4e)-(4.4f), from (2.5), (4.6a), (4.6b) and using the mean value theorem, we deduce

||En
µ||Hs(Ω)= |rn+1

1 |
∥∥∥ f (un+1)√

E1(un+1)
− f (un)√

E1(un)

∥∥∥
Hs(Ω)

≤ sup
t∈[0,T]

|r1(t)|
(
|| f (un)||Hs(Ω)

|E1(un)−E1(un+1)|√
E1(un+1)E1(un)(E1(un)+E1(un+1))

+
|| f (un+1)− f (un)||Hs(Ω)√

E1(un+1)

)
≤C∆t, (4.7a)

||En
µ,Γ||Hs(Γ)= |rn+1

2 |
∥∥∥ g(un+1

Γ )√
E2(un+1

Γ )
− g(un

Γ)√
E2(un

Γ)

∥∥∥
Hs(Γ)

≤ sup
t∈[0,T]

|r2(t)|
(
||g(un

Γ)||Hs(Γ)
|E2(un

Γ)−E2(un+1
Γ )|√

E2(un+1
Γ )E2(un

Γ)(E2(un
Γ)+E2(un+1

Γ ))

+
||g(un+1

Γ )−g(un
Γ)||Hs(Γ)√

E2(un+1
Γ )

)
≤C∆t. (4.7b)

Associating with (4.4a)-(4.4f), (4.7a)-(4.7b) and the assumption (4.5), we complete the
proof.

Now, we present the main result of this paper as follows.

Theorem 4.1. Let (u,uΓ,µ,µΓ,r1,r2) and (uh,uΓ,h,µh,µΓ,h,rh,1,rh,2) be the solutions of (2.11)
and (3.1a)-(3.1e), respectively, then for any N≤T/∆t, we have the following error estimate

max
0≤l≤N

(
||ul+1−ul+1

h ||
2
H1(Ω)+||u

l+1
Γ −un+1

h,Γ ||
2
H1(Γ)+(rl+1

h,1 −rl+1
1 )2+(rl+1

h,2 −rl+1
2 )2)

≤Ch2k+C∆t2, (4.8)

where C>0 is independent of h and ∆t and dependent of the regularized parameter δ in (2.3).

Proof. Now we define

un+1
h −un+1=(un+1

h −Rhun+1)−(un+1−Rhun+1)=αn+1
u −βn+1

u ,

un+1
h,Γ −un+1

Γ =(un+1
h,Γ −Rhun+1

Γ )−(un+1
Γ −Rhun+1

Γ )=αn+1
u,Γ −βn+1

u,Γ ,

µn+1
h −µn+1=(µn+1

h −Rhµn+1)−(µn+1−Rhµn+1)=αn+1
µ −βn+1

µ ,

µn+1
h,Γ −µn+1

Γ =(µn+1
h,Γ −Rhµn+1

Γ )−(µn+1
Γ −Rhµn+1

Γ )=αn+1
µ,Γ −βn+1

µ,Γ ,

en+1
1 = rn+1

h,1 −rn+1
1 , en+1

2 = rn+1
h,2 −rn+1

2 .

From (2.11), (3.1a)-(3.1e) and (4.1), we have

(Dtα
n+1
u ,θ1)+(αn+1

µ ,θ1)=(Dtβ
n+1
u ,θ1)+(βn+1

µ ,θ1)−(En
u ,θ1), (4.9a)
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〈Dtα
n+1
u,Γ ,θ2〉+〈αn+1

µ,Γ ,θ2〉= 〈Dtβ
n+1
u,Γ ,θ2〉+〈βn+1

µ,Γ ,θ2〉−〈En
u,Γ,θ2〉, (4.9b)

(αn+1
µ ,v)+κ〈αn+1

µ,Γ ,v〉−c(∇αn+1
u ,∇v)−κc〈∇Γαn+1

u,Γ ,∇Γv〉

=(βn+1
µ ,v)+κ〈βn+1

µ,Γ ,v〉+
en+1

1√
E1(un)

( f (un),v)

+κ
en+1

2√
E2(un

Γ)
〈g(un

Γ),v〉+rn+1
h,1

( f (un
h)√

E1(un
h)
− f (un)√

E1(un)
,v
)

+κrn+1
h,2

〈 g(un
h,Γ)√

E2(un
h,Γ)
− g(un

Γ)√
E2(un

Γ)
,v
〉
−(En

µ,v)−κ〈En
µ,Γ,v〉, (4.9c)

Dten+1
1 − 1

2

( f (un
h)√

E1(un
h)

,Dtα
n+1
u

)
=

1
2

( f (un
h)√

E1(un
h)
− f (un)√

E1(un)
,Dtun+1

)
−En

r,1, (4.9d)

Dten+1
2 − 1

2

〈 g(un
h,Γ)√

E2(un
h,Γ)

,Dtα
n+1
u,Γ

〉
=

1
2

〈 g(un
h,Γ)√

E2(un
h,Γ)
− g(un

Γ)√
E2(un

Γ)
,Dtun+1

Γ

〉
−En

r,2. (4.9e)

Then substituting θ1 =αn+1
u , θ2 =αn+1

u , v=αn+1
u into (4.9a)-(4.9c), respectively, and multi-

plying (4.9d) and (4.9e) with 2en+1
1 , 2en+1

2 , separately, we deduce
c
2
(||αn+1

u ||2H1(Ω)−||α
n
u||2H1(Ω))+

κc
2
(||αn+1

uΓ
||2H1(Γ)−||α

n
u,Γ||2H1(Γ))

+(en+1
1 )2−(en

1 )
2+(en+1

2 )2−(en
2 )

2≤
4

∑
i=1

Ai (4.10)

with

A1=∆t(Dtβ
n+1
u ,αn+1

u )−∆t(En
u ,αn+1

u )+κ∆t〈Dtβ
n+1
u,Γ ,αn+1

u,Γ 〉

−κ∆t〈En
u,Γ,αn+1

u,Γ 〉+∆t(En
µ,αn+1

u )+κ∆t〈En
µ,Γ,αn+1

u,Γ 〉,

A2=−rn+1
1 ∆t

( f (un
h)√

E1(un
h)
− f (un)√

E1(un)
,αn+1

u

)
−κrn+1

2 ∆t
〈 g(un

h,Γ)√
E2(un

h,Γ)
−

g(un
Γ)√

E2(un
Γ)

,αn+1
u,Γ

〉

+en+1
1 ∆t

( f (un
h)√

E1(un
h)
− f (un)√

E1(un)
,Dtun+1

)
+κen+1

2 ∆t
〈 g(un

h,Γ)√
E2(un

h,Γ)
−

g(un
Γ)√

E2(un
Γ)

,Dtun+1
Γ

〉
,

A3=−en+1
1 ∆t

( f (un
h)√

E1(un
h)

,Dtβ
n+1
u

)
−κen+1

2 ∆t
〈 g(un

h,Γ)√
E2(un

h,Γ)
,Dtβ

n+1
u,Γ

〉
−2∆ten+1

1 En
r,1

−2κ∆ten+1
2 En

r,2−
en+1

1 ∆t√
E1(un)

( f (un),αn+1
u )−κ

en+1
2 ∆t√
E2(un

Γ)
〈g(un

Γ),α
n+1
u,Γ 〉,

A4=
en+1

1 ∆t√
E1(un

h)
( f (un

h),Dtα
n+1
u )+κ

en+1
2 ∆t√
E2(un

h,Γ)
〈g(un

h,Γ),Dtα
n+1
u,Γ 〉.
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Now, we estimate each term on the right hand side of (4.10). For A1, by (4.2) and Lemma
4.2, we have

A1≤C∆t(||Dtβ
n+1
u ||2L2(Ω)+κ||Dtβ

n+1
u,Γ ||

2
L2(Γ))+C∆t(||αn+1

u ||2L2(Ω)+κ||αn+1
u,Γ ||

2
L2(Γ))

+C∆t(||En
u ||2L2(Ω)+κ||En

u,Γ||2L2(Γ)+||E
n
µ||2L2(Ω)+κ||En

µ,Γ||2L2(Γ))

≤C∆t||Dtβ
n+1
u ||2H1(Ω)+C∆t(||αn+1

u ||2L2(Ω)+κ||αn+1
u ||2L2(Γ))

+C∆t(||En
u ||2H1(Ω)+||E

n
µ||2H1(Ω))

≤Ch2k
∫ tn+1

tn
||ut||2Hk+1(Ω)dt+C∆t(||αn+1

u ||2L2(Ω)+||α
n+1
u ||2L2(Γ))

+C∆t2
∫ tn+1

tn
||utt||2H1(Ω)dt+C∆t3.

In view of (4.5), we yield

A2≤C∆t(||αn+1
u ||2L2(Ω)+κ||αn+1

u,Γ ||
2
L2(Γ))+C∆t((en+1

1 )2+(en+1
2 )2)

+C∆t
(∥∥∥ f (un

h)√
E1(un

h)
− f (un)√

E1(un)

∥∥∥2

L2(Ω)
+κ
∥∥∥ g(un

h,Γ)√
E2(un

h,Γ)
− g(un

Γ)√
E2(un

Γ)

∥∥∥2

L2(Γ)

)
. (4.11)

The last term on the right hand side of (4.11) can be treated as follows

f (un
h)√

E1(un
h)
− f (un)√

E1(un)

=
f (un)(E1(un)−E1(un

h))√
E1(un

h)E1(un)(E1(un)+E1(un
h))

+
f (un

h)− f (un)√
E1(un

h)

= J1+ J2, (4.12a)
g(un

h,Γ)√
E2(un

h,Γ)
− g(un

Γ)√
E2(un

Γ)

=
g(un

Γ)(E2(un
Γ)−E2(un

h,Γ))√
E2(un

h,Γ)E2(un
Γ)(E2(un

Γ)+E2(un
h,Γ))

+
g(un

h,Γ)−g(un
Γ)√

E2(un
h,Γ)

= J3+ J4. (4.12b)

Note that f (uh), f ′(uh), g(uh,Γ), g′(uh,Γ) all have upper bounds by (2.5), then the terms J1,
J2, J3, J4 are bounded by

||J1||L2(Ω)≤C|| f (un)||L2(Ω)||un−un
h ||L2(Ω)

≤Cδ−1(||αn
u||L2(Ω)+||βn

u||L2(Ω)), (4.13a)
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||J3||L2(Γ)≤C||g(un
Γ)||L2(Γ)||un

Γ−un
h,Γ||L2(Γ)

≤Cδ−1(||αn
u,Γ||L2(Γ)+||βn

u,Γ||L2(Γ))

≤Cδ−1(||αn
u||L2(Γ)+||βn

u||H1(Ω)), (4.13b)

||J2||L2(Ω)≤C|| f (un
h)− f (un)||

≤C(|| f ′(un)||L2(Ω)||un−un
h ||L2(Ω))

≤Cδ−1(||αn
u||L2(Ω)+||βn

u||L2(Ω)), (4.13c)

||J4||L2(Γ)≤C||g(un
h,Γ)−g(un

Γ)||

≤C(||g′(un
Γ)||L2(Γ)||un

Γ−un
h,Γ||L2(Γ))

≤Cδ−1(||αn
u,Γ||L2(Γ)+||βn

u,Γ||L2(Γ))

≤Cδ−1(||αn
u||L2(Γ)+||βn

u||H1(Ω)). (4.13d)

Combining (4.12a)-(4.13d), applying trace theorem and interpolation theory, we have∥∥∥ f (un
h)√

E1(un
h)
− f (un)√

E1(un)

∥∥∥2

L2(Ω)
+κ
∥∥∥ g(un

h,Γ)√
E2(un

h,Γ)
− g(un

Γ)√
E2(un

Γ)

∥∥∥2

L2(Γ)

≤Cδ−1(||βn
u||2L2(Ω)+||α

n
u||2L2(Ω)+||α

n
u||2L2(Γ)+||β

n
u||2H1(Ω))

≤Cδ−1h2k||un||2Hk+1(Ω)+Cδ−1(||αn
u||2L2(Ω)+||α

n
u,Γ||2L2(Γ)). (4.14)

Again, by using (2.5), (4.4c) and (4.4d), we have

A3≤C∆t((en+1
1 )2+(en+1

2 )2)+Cδ−1∆t(||Dtβ
n+1
u ||2L2(Ω)+||Dtβ

n+1
u,Γ ||

2
L2(Γ))

+C∆t(||En+1
r,1 ||

2
L2(Ω)+||E

n+1
r,2 ||

2
L2(Γ))+Cδ−1∆t(||αn+1

u ||2L2(Ω)+||α
n+1
u,Γ ||

2
L2(Γ))

≤C∆t((en+1
1 )2+(en+1

2 )2)+Cδ−1∆t(||Dtβ
n+1
u ||2L2(Ω)+||Dtβ

n+1
u ||2H1(Ω))

+C∆t(||En+1
r,1 ||

2
L2(Ω)+||E

n+1
r,2 ||

2
L2(Γ))+Cδ−1∆t(||αn+1

u ||2L2(Ω)+||α
n+1
u,Γ ||

2
L2(Γ))

≤C∆t((en+1
1 )2+(en+1

2 )2)+Cδ−1h2k
∫ tn+1

tn
||ut||2Hk+1(Ω)dt+C∆t3

+Cδ−1∆t(||αn+1
u ||2L2(Ω)+||α

n+1
u,Γ ||

2
L2(Γ)).

Then, by Young’s inequality and Taylor expansion, A4 satisfies

A4≤Cε(en+1
1 )2+Cε(en+1

2 )2+C∆t2.

We combine the estimates for each term Ai, 1≤ i≤4, and (4.14) to get

1
2
(||αn+1

u ||2H1(Ω)−||α
n
u||2H1(Ω)+||α

n+1
u,Γ ||

2
H1(Γ)−||α

n
u,Γ||2H1(Γ))

+((en+1
1 )2−(en

1 )
2)+((en+1

2 )2−(en
2 )

2)
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≤C(1+δ−1)∆t(||αn+1
u ||2L2(Ω)+||α

n
u||2L2(Ω)+||α

n+1
u,Γ ||

2
L2(Ω)+||α

n
u,Γ||2L2(Ω))

+C∆t2
∫ tn+1

tn
||utt(s)||2H1(Ω)ds+C∆t3+Ch2k

∫ tn+1

tn
||ut||2Hmax(1,k+1)(Ω)

dt

+Ch2k∆t(||un||2Hk+1(Ω)+||µ
n+1||2Hk+1(Ω))+C∆t(en+1

1 )2+(en+1
2 )2. (4.15)

Note that

||α0
u||L2(Ω)+h||∇α0

u||L2(Ω)+||α0
u,Γ||L2(Γ)+h||∇α0

u,Γ||L2(Γ)+|e0
1|+|e0

2|≤Chk+1.

When summing (4.15) from n=1,··· ,l, (1≤l≤N), by discrete Gronwall’s inequality, there
exists small positive constants h1 and ∆t1, such that when h<h1 and ∆t<∆t1,

||αl+1
u ||2H1(Ω)+||α

l+1
u,Γ ||

2
H1(Γ)+(el+1

1 )2+(el+1
2 )2≤C(h2k+∆t2), (4.16)

which is the desired result of Theorem 4.8.

5 Numerical example

In this section, we present a numerical example to show theoretical result and simulate
the interactions between solid walls with dynamic boundary conditions. We choose do-
main Ω̄ = [0,L]2, where L = 2E−8 meters, and suppose the temperature T is 350K. In
the subdomain of [ 3L

8 , 5L
8 ]2, we assume it as the gas of isobutane, then the rest of the do-

main is filled with the liquid of isobutane. Such an assume is opposite to the experiments
in [7, 8, 12].

We use SAV FEM scheme to calculate with four different time steps ∆t=1E−2,5E−
3,7.5E−4, respectively. The approximate solution obtained with time step ∆t= 1E−6 is
selected as the basic solution for calculating the error. From Table 1, we can observe that
the SAV scheme has the first order convergence.

Next, we will numerically simulate the evolution of molar density over time at the
gas-liquid interface in two-dimensional space. As can be seen from Fig. 1, the initial con-
tact surface in the bulk is square. As time goes on, it gets rounder slowly. Finally, the
shape of the bubble for the gas becomes a circle. At the same time, the phenomenon of
gradient decline will also appear on the surface. Fig. 2 shows that the surface tension
contribution of Helmholtz free energy density at the gas-liquid interface also decreases

Table 1: The L2(Ω) errors and the temporal convergence of the approximate solutions for the molar density at
t=0.1 on the uniform 200×200 mesh.

Time step size L2 error Rate of L2 error
1E-2 5.836E-6 -
5E-3 3.024E-6 0.9481

7.5E-4 1.523E-6 0.9895
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Figure 1: The simulated dynamical evolution of the molar density at time t=0,1,2,3,4,7 with δ=0.02, κ=1,
∆t=1E−3 and a 200×200 grid, when the Peng-Robinson equation of state equipped with dynamic boundary
conditions.

Figure 2: The simulated surface tension contribution of Helmholtz free energy density at time t= 0,1,2,3,4,7
with δ=0.001, κ=1, ∆t=1E−3 and a 200×200 grid, when the Peng-Robinson equation of state equipped with
dynamic boundary conditions.

gradually in the bulk and on the surface, and becomes circular finally. These show the
interactions of materials in the bulk and the interactions with solid walls. For compar-
ison, we also consider the case with periodic boundary conditions on the surface under
the same assumption. As shown in Figs. 3 and 4, the shapes of the bubble and the sur-
face tension contribution become circular as well. Obviously, the density and the surface
tension contribution do not evolve on the surface.

Fig. 5 shows that the mass of the whole system is conserved. In Fig. 6, we can clearly
see that the energy decline rate is relatively fast at the beginning. As time goes on, the
energy decline rate is significantly reduced, which indicates the energy is stable.
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Figure 3: The simulated dynamical evolution of the molar density at time t=0,1,2,3,4,7 with δ=0.001, ∆t=1E−3
and a 200×200 grid, when the Peng-Robinson equation of state equipped with periodic boundary conditions.

Figure 4: The simulated surface tension contribution of Helmholtz free energy density at time t= 0,1,2,3,4,7
with δ = 0.001, ∆t = 1E−3 and a 200×200 grid, when the Peng-Robinson equation of state equipped with
periodic boundary conditions.

6 Conclusions

In this paper, we focused on the Peng-Robinson equation of state with dynamic boundary
conditions. Comparing with the classical boundary conditions, the system with the dy-
namic boundary conditions considered the interactions with solid walls, and it was better
to simulate the two intersecting interfaces. Firstly, we introduced the the Peng-Robinson
equation of state, and adopted the regularization method on the nonlinear term. For
purpose of solving the Peng-Robinson equation of state, we used the SAV method in
temporal and finite element method in spatial, and derived the energy dissipation law of
the discrete SAV FEM scheme. Next, we proven that the scheme is convergent. At last,
by a numerical example, we confirmed the theoretical result.
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Figure 5: Conservation of mass.

Figure 6: Decrease of energy.

In turn, in the resulting numerical scheme, the positivity preserving property for both
1+u and 1−u are not available, due to the explicit treatment of the nonlinear singular
terms. Meanwhile, there have been many related works of positivity-preserving analysis
for numerical schemes to various gradient flow models in recent years, such as the Cahn-
Hilliard equation with Flory-Huggins or Flory-Huggins-Degennes energy, the Poisson-
Nernst-Planck and Poisson-Nernst-Planck-Cahn-Hilliard system, liquid thin film coars-
ening model, reaction diffusion equations with detailed balance, etc. The point-wise
positivity of the numerical solution has been theoretically established in these existing
works [26–38].
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