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Abstract. We present a novel compression algorithm for 2D scientific data and im-
ages based on exponentially-convergent adaptive higher-order finite element meth-
ods (FEM). So far, FEM has been used mainly for the solution of partial differential
equations (PDE), but we show that it can be applied to data and image compression
easily. The adaptive compression algorithm is trivial compared to adaptive FEM al-
gorithms for PDE since the error estimation step is not present. The method attains
extremely high compression rates and is able to compress a data set or an image
with any prescribed error tolerance. Compressed data and images are stored in the
standard FEM format, which makes it possible to analyze them using standard PDE
visualization software. Numerical examples are shown. The method is presented
in such a way that it can be understood by readers who may not be experts of the
finite element method.
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1 Introduction

The finite element method (FEM) is the most widely used numerical method for the
solution of partial differential equations (PDEs) — see, e.g., [3, 6, 10]. The PDEs de-
scribe various natural processes on macroscopic scale, such as fluid flow, elasticity,
heat transfer, electromagnetics, etc. The FEM splits the computational domain into
a set of geometrically simple subdomains (elements) such as quadrilaterals in 2D or
hexahedra in 3D. Inside the elements, the physical fields are approximated by poly-
nomials. The coefficients of the polynomials are called degrees of freedom (DOF). Per-
formance of an adaptive FEM algorithm is the rate at which the approximation error
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decreases. This rate can be measured either in terms of the CPU (computer) time or
the number of DOF in the discrete problem.

The hp-FEM is a modern version of FEM capable of extremely fast (exponential)
convergence [1,2]. In practical computations, adaptive hp-FEM routinely outperforms
standard adaptive FEM by orders of magnitude in terms of both the number of DOF
and CPU time [8, 9]. The extremely high efficiency of the hp-FEM has its roots in the
approximation theory: Very smooth functions with small local changes are approxi-
mated optimally using large elements equipped with high-degree polynomials, while
small low-degree elements are much more efficient in areas where the solution exhibits
important small-scale features.

The outline of this paper is as follows: In Section 2 we describe the main idea of
how adaptive hp-FEM can be applied to data and image compression. In Sections 3
we illustrate the methodology on three different examples. Conclusions and outlook
are drawn in Section 4.

2 Applying FEM to data and image compression

The typical application of FEM is to approximate unknown solutions of PDE. How-
ever, FEM can also be applied to data and image compression naturally as follows:
In 2D, the computational domain Ω is a rectangle containing the image. Usually, the
domain is split into a finite number of pixels, and a greyscale image is represented
by a discontinuous, pixel-wise constant function f . A color image consists of three
such functions fr, fg, fb for the red, green, and blue components, respectively. Unlike
standard image compression algorithms such as JPEG, however, our method is not re-
stricted to pixel-wise constant functions f – the data can be represented by an arbitrary
real function f defined in Ω.

2.1 Finite element approximation

Let us explain briefly the way FEM works. The method uses a finite element mesh,
which is a collection of nonoverlapping convex polygons covering Ω. Given the shape
of Ω in our application, it is natural to use rectangular elements. A finite element mesh
is said to be regular if no vertex of an element lies inside of an edge of another one, and
irregular otherwise. This is illustrated in Fig. 1.

Most existing finite element codes use regular meshes, since they are easier to im-
plement and analyze mathematically. However, when used with automatic adaptive
algorithms, such meshes produce regularity-enforced refinements which slow down their
convergence [7]. Irregular meshes are much better for adaptive algorithms since ele-
ment refinement is a local operation, i.e., it does not cause any changes in neighboring
elements. Technical details of hp-FEM approximation on arbitrarily-irregular meshes
lie beyond the scope of this presentation, and we refer to [7].

The mesh over Ω consists of M elements K1, K2, . . . , KM which are equipped with
polynomial degrees 1 ≤ pi = p(Ki). Is standard FEM, the polynomial degree typically
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Figure 1: Regular mesh (left) and irregular mesh (right).

is uniformly pi = 1 or pi = 2 for all i = 1, 2, . . . , M. In the hp-FEM, polynomial de-
grees in elements vary. The geometry and polynomial degrees of elements determine
uniquely a linear space of continuous, piecewise-polynomial functions

Vh,p = {v; v is continuous in Ω; v restricted to Ki is polynomial of degree pi}. (2.1)

In practice, we allow different directional polynomial degrees on quadrilateral elements,
but this is a detail that we can skip for the moment (see, e.g., [9]).

The linear space Vh,p has some dimension N and a basis consisting of piecewise-
polynomial functions v1, v2, . . . , vN . Any function uh,p in the space Vh,p can be ex-
pressed uniquely as a linear combination of the basis functions vj with some real coef-
ficients yj,

uh,p =
N

∑
j=1

yjvj. (2.2)

Typical variational (weak) formulation of a (linear, stationary) PDE reads: Find uh,p in the
space Vh,p such that the identity

a(uh,p, vi) = l(vi), (2.3)

holds for all basis functions v1, v2, . . . , vN . Both the bilinear form a and the linear form
l are dictated by the PDE.

Of course, the coefficients y1, y2, . . . , yN are unknown at the moment. However, we
can substitute (2.2) into (2.3) to obtain

N

∑
j=1

a(vj, vi)yj = l(vi) for all v1, v2, . . . , vN , (2.4)

which is a system of linear algebraic equations of the form

SY = F. (2.5)

The stiffness matrix S = (sij)N
i,j=1 has elements sij = a(vj, vi), the unknown vector Y

has the form Y = (y1, y2, . . . , yN)T, and the right-hand side vector F is defined as F =
(l(v1), l(v2), . . . , l(vN))T. After system (2.5) is solved and the coefficients y1, y2, . . . , yN
are known, the approximate solution uh,p is constructed via (2.2).
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2.2 Best approximation of f on a given mesh

Consider a finite element mesh consisting of elements K1, K2, . . . , KM equipped with
polynomial degrees p1, p2, . . . , pM. This mesh defines a linear space Vh,p of the form
(2.1). In general, the function f representing the data or image of course does not lie
in Vh,p. However, whenever f lies in some inner product space† V such that Vh,p ⊂ V
(which always is the case in practice), then the finite element method allows us to find
its best approximation in Vh,p easily.

Let us use the symbol (u, v)V for the inner product in V and ‖u‖V for the corre-
sponding norm related to (u, v)V via

‖u‖V =
√

(u, u)V .

By a classical result (see, e.g., [4]), the best approximation of f in Vh,p is its orthogo-
nal projection onto Vh,p. The orthogonal projection uh,p of f is defined via a simple
condition making the difference f − uh,p orthogonal to all basis functions of Vh,p:

( f − uh,p, vi)V = 0 for all v1, v2, . . . , vN . (2.6)

Using (2.2), condition (2.6) can be rewritten into

N

∑
j=1

(vj, vi)V︸ ︷︷ ︸
a(vj,vi)

yj = ( f , vi)V︸ ︷︷ ︸
l(vi)

for all v1, v2, . . . , vN . (2.7)

Hence we obtained a system of linear algebraic equations of the form (2.5). With a
standard choice of the hp-FEM basis [9], the stiffness matrix S is sparse and symmetric
positive definite, and thus it can be solved very efficiently using various precondi-
tioned iterative matrix solvers [5].

In spaces of continuous, piecewise polynomial functions there are two natural in-
ner products one can use: the L2 product that only takes into account function values,

(u, v)L2 =
∫

Ω
u(x, y)v(x, y) dxdy,

and the H1 product which also uses gradients,

(u, v)H1 =
∫

Ω
u(x, y)v(x, y) +∇u(x, y) · ∇v(x, y) dxdy.

Let us remark that although these products define global norms, the adaptivity algo-
rithm can be designed in such a way that it focuses on specific quantities of interest [8].

If we are compressing a standard image, then the function f is discontinuous and
thus it does not lie in the space V = H1. However, there is an easy way to convert it in
a lossless way into a continuous, pixel-wise bilinear function: In step 1, the function
values of f from pixel centers are shifted into pixel vertices as illustrated in Fig. 2.

†See Appendix A in [6] for an introductory course on linear, normed, and inner product spaces.
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Figure 2: Left: lossless conversion of a discontinuous, pixel-wise constant function into a continuous function
which is pixel-wise bilinear. Right: inverse transformation.

In step 2, values along the bottom and right edges are defined by duplicating val-
ues at adjacent vertices. Fig. 2 also depicts the inverse transformation. Note that the
composition of the forward and backward transformations yields the original pixel-
wise constant function.

2.3 Automatic adaptivity

In order to reduce the compression error ‖ f − uh,p‖V optimally, we employ the adap-
tive hp-FEM algorithm based on arbitrary-level hanging nodes [7]. We do not find it
necessary to reprint the algorithm here since it is used as-is, and moreover, it is part of
the C/C++/Python library Hermes2D‡ which is freely available to the reader under
the GPL license.

Let us only remark that in our case the adaptive hp-FEM is much faster compared
to solving a PDE, since are not looking for an unknown exact solution – our “exact
solution” is the function f . This removes the need for a-posteriori error estimation,
which is the most difficult and CPU time-consuming step of adaptive algorithms in-
cluding [7]. In our case, we simply use the error function f − uh,p to guide the refine-
ment decisions.

3 Examples

Next let us illustrate the performance of the adaptive hp-FEM algorithm on several
examples: a simple image containing three diagonal squares, a satellite photograph of
the Earth, and the standard image compression benchmark Lena.

3.1 Diagonal squares

First, let us compress a 512× 512 image containing three diagonal squares (Fig. 3) to
a prescribed relative error 0.01% in the L2-norm.

‡http://spilka.math.unr.edu/projects/hermes2d
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Figure 3: Sample 512× 512 image containing three diagonal squares.

The algorithm starts with a single lowest-degree element covering the entire im-
age, and it converges quickly during a few iterations. Figs.4-6 show the hp-FEM ap-
proximations along with the corresponding meshes. The symbols NDOF and ERR
stand for the number of degrees of freedom and the relative approximation error mea-
sured in L2-norm.

Various colors in the meshes represent polynomial degrees of finite elements. The
warmer the color, the higher the polynomial degree. Dark blue stands for p = 1,
light blue for p = 2, etc. The presence of two different colors in an element indicates
different polynomial orders in the horizontal and vertical directions.

Figure 4: Mesh and approximation, NDOF = 41, ERR = 18.1160%.

The reader can see that the image is represented well already with a relative er-
ror of 1%. We have observed the same with other images as well, which indicates
that this accuracy level could be enough for the compression of images. However,
other applications including scientific data compression may require a more accurate
approximation.

The convergence history of the adaptive process is shown in Fig. 7.
Comparing fairly the performance of our method to JPEG or any other compres-
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Figure 5: Mesh and approximation, NDOF = 105, ERR = 6.5249%.

Figure 6: Mesh and approximation, NDOF = 313, ERR = 0.9619%.

 1e-05

 1e-04

 0.001
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 1

 0  100  200  300  400  500  600  700

’DIAG_ERROR_L2’

Figure 7: Convergence of the adaptive hp-FEM algorithm. Horizontal and vertical axes represent the number
of DOF and the relative error in semi-logarithmic scale, respectively. The algorithm stopped after achieving
a relative error of 0.01%.
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sion technique which does not provide the compression error is problematic. In prin-
ciple, this would be possible but one would have to implement an algorithm that
measures the accuracy of the JPEG compression.

3.2 Satellite photograph of earth

Next we compress a satellite photograph of Earth shown in Fig. 8 (courtesy of NASA).
The dimensions of this image are 1024× 512 pixels.

Figure 8: Satellite image of Earth.

In this case we set the relative error tolerance to 0.1% in the L2 norm. The following
Figs. 9 – 13 show the progress of the adaptive algorithm. Similarly to the previous
example, the reader can see that a meaningful information about the structure of the
image is captured already with an extremely small number of degrees of freedom (see
Fig. 11).

Figure 9: Mesh and approximation, NDOF = 148, ERR = 26.1780%.

Fig. 14 shows the approximation error as a function of the number of degrees of
freedom. Notice that after a fast initial error drop, the convergence curve becomes a
straight line, i.e., it is exponential:
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Figure 10: Mesh and approximation, NDOF = 419, ERR = 18.2095%.

Figure 11: Mesh and approximation, NDOF = 3778, ERR = 6.3895%.

Figure 12: Mesh and approximation, NDOF = 12125, ERR = 3.0938%.

Figure 13: Mesh and approximation, NDOF = 40901, ERR = 1.1916%.



P. Solin and D. Andrs / Adv. Appl. Math. Mech., 1 (2009), pp. 56-68 65

 0.001

 0.01

 0.1

 1

 0  50000  100000  150000  200000
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Figure 14: Convergence of the adaptive hp-FEM algorithm. Horizontal and vertical axes represent the
number of DOF and the relative error in semi-logarithmic scale, respectively. The algorithm stopped after
achieving the prescribed relative error of 0.1%.

3.3 Lena

The next example is a standard image compression benchmark test case called Lena.
This is a 512× 512 image with many different features such as large smooth surfaces,
small details, blurred parts, sharp edges, etc. The image of Lena is shown in Fig. 15.

Figure 15: Lena: standard image compression benchmark problem.



66 P. Solin and D. Andrs / Adv. Appl. Math. Mech., 1 (2009), pp. 56-68

Figure 16: Mesh and approximation, NDOF = 420, ERR = 10.0344%.

Figure 17: Mesh and approximation, NDOF = 2129, ERR = 4.7012%.

Figure 18: Mesh and approximation, NDOF = 22372, ERR = 1.0449%.
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Figure 19: Convergence of the adaptive hp-FEM algorithm. Horizontal and vertical axes represent the
number of DOF and the relative error in semi-logarithmic scale, respectively. The algorithm stopped after
achieving a relative error of 1%.

Fig. 19 shows the approximation error as a function of the number of degrees of
freedom.

4 Conclusion and outlook

In the examples above, the approximation error was measured in the so-called L2-
norm (also called least-squares norm). This is not the only option. Examples of other
norms include the H1-seminorm, H1-norm, L∞-norm, and others. While the L2-norm
measures volumetrical differences in function values, H1-seminorm measures volu-
metrical differences in gradients, H1-norm both the function values and gradients,
and the L∞-norm measures absolute differences in function values. The choice of the
norm may influence the performance of the adaptive compression algorithm as well
as the quality of the compressed images.

On the computer-scientific level, we need to find out the best possible data format
to store the degrees of freedom and the finite element mesh. For the degrees of free-
dom, we will begin with applying the quantization tables used by JPEG, and we will
see whether they can be used, need to be adjusted, or whether we need to invent a
dffferent format. The mesh will not be stored via the coordinates of vertices. Our pre-
liminary calculations indicate that it will be more efficient to store the first (coarsest
element) plus the history of refinements.

Both the mathematical and computer-scientific aspects mentioned above involve
nontrivial open problems and need to be investigated systematically.
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