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Abstract

The purpose of this paper is to introduce a split generalized mixed equi-
librium problem (SGMEP) and consider some iterative sequences to find a
solution of the generalized mixed equilibrium problem such that its image un-
der a given bounded linear operator is a solution of another generalized mixed
equilibrium problem. We obtain some weak and strong convergence theorems.
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1 Introduction and Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥ and C be

a nonempty closed convex subset of H. Let f be a bi-function from C×C to R and

φ : C → R be a function, where R is the set of real numbers. Let B : C → H be a

nonlinear mapping. Then we consider the following generalized mixed equilibrium

problem: There exists an x ∈ C, such that

f(x, y) + φ(y)− φ(x) + ⟨Bx, y − x⟩ ≥ 0, for any y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (f, φ,B).

If B = 0, problem (1.1) becomes the following mixed equilibrium problem: There

exists an x ∈ C, such that

f(x, y) + φ(y)− φ(x) ≥ 0, for any y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by MEP (f, φ).
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If φ = 0, problem (1.1) reduces to the following generalized equilibrium problem:

There exists an x ∈ C, such that

f(x, y) + ⟨Bx, y − x⟩ ≥ 0, for any y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by GEP (f,B).

If φ = 0 and B = 0, problem (1.1) becomes the following equilibrium problem:

There exists an x ∈ C, such that

f(x, y) ≥ 0, for any y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP (f).

Equilibrium problem is very general in the sense that it includes, as special

cases, optimization problems, variational inequalities, mini or max problems, Nash

equilibrium problem in noncooperative games and others; see for instance [1-20].

In 2012, Zhenhua He [12] proposed a new equilibrium problem which is called

split equilibrium problem (SEP). Let E1 and E2 be two real Banach spaces, C be a

closed convex subset of E1, K be a closed convex subset of E2, A : E1 → E2 be a

bounded linear operator, f be a bi-function from C×C into R and g be a bi-function

from K ×K into R. The SEP is to find an element x∗ ∈ C, such that

f(x∗, y) ≥ 0, for any y ∈ C,

and such that u := Ax∗ ∈ K satisfying

g(u, v) ≥ 0, for any v ∈ K.

Inspired and motivated by the above works, we propose a split generalized mixed

equilibrium problem (SGMEP). Let E1 and E2 be two real Banach spaces, E∗
1 and

E∗
2 denote the dual of E1 and E2, respectively, C be a closed convex subset of E1,

K be a closed convex subset of E2, A : E1 → E2 be a bounded linear operator, f be

a bi-function from C×C into R, g be a bi-function from K×K into R, B : C → E∗
1

and S : K → E∗
2 be two mappings, φ : C → R and ψ : K → R be two functions.

The SGMEP is to find an element p ∈ C such that

f(p, y) + φ(y)− φ(p) + ⟨Bp, y − p⟩ ≥ 0, for any y ∈ C, (1.5)

and that u := Ap ∈ K satisfies

g(u, v) + ψ(v)− ψ(u) + ⟨Su, v − u⟩ ≥ 0, for any v ∈ K. (1.6)

For convenience, we denote the solution set of the SGMEP by Ω, that is, Ω =

{x ∈ GMEP (f, φ,B) : Ax ∈ GMEP (g, ψ, S)}.
Now, we give two examples to show Ω ̸= ∅.
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Example 1.1 Let E1 = E2 = R, C := [1,+∞), K := [−2,+∞). Let Ax = −2x

for all x ∈ R, then A is a bounded linear operator. Let f(x, y) = y − x, φ(x) = x,

Bx = x2, g(u, v) = v − u, ψ(u) = −2u, Su = u2. Clearly, GMEP (f, φ,B) =

{1} and A(1) = −2 ∈ GMEP (g, ψ, S). So Ω = {x ∈ GMEP (f, φ,B) : Ax ∈
GMEP (g, ψ, S)} ̸= ∅.

Example 1.2 Let E1 = R2 with the norm ∥α∥ = (a21+a
2
2)

1
2 for each α = (a1, a2)

and E2 = R with the standard norm | · |. Let C := {α = (a1, a2) ∈ R2| a2 − a1 ≥ 1}
and K := [1,+∞). Define f(p, y) = −[p21(y1 − p1) + p22(y2 − p2)], φ(p) = p2 − p1,

Bp = (p21, p
2
2), where p = (p1, p2), y = (y1, y2) ∈ C. For each α = (a1, a2) ∈ E1,

let Aα = a2 − a1, then A is a bounded linear operator from E1 into E2. Next we

define g(u, v) = v − u, Su = u2, ψ(v) = −v for all u, v ∈ K. Direct computation

shows that GMEP (f, φ,B) = {p = (p1, p2)| p2 − p1 = 1} and Ap = p2 − p1 = 1 ∈
GMEP (g, ψ, S). So Ω = {x ∈ GMEP (f, φ,B) : Ax ∈ GMEP (g, ψ, S)} ̸= ∅.

Remark If B = S = θ, the SGMEP reduces to the split mixed equilibrium

problem (SMEP); if φ = ψ = 0, the SGMEP becomes the split generalized equilib-

rium problem (SGEP); if B = S = θ and φ = ψ = 0, the SGMEP reduces to the

split equilibrium problem (SEP) (see [12]).

In this paper, we construct two iterative algorithms to solve the SGMEP. Some

weak and strong convergence theorems are established. The results obtained in this

paper improve and extend the corresponding results announced by many others.

2 Preliminaries

In this paper, we denote the sets of positive integers and real numbers by N and

R, respectively. We also denote by “→” and “⇀” the strong convergence and weak

convergence, respectively.

Recall that the mapping S : C → C is said to be nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥, for any x, y ∈ C.

We denote by Fix(S) the sets of fixed points of the mapping S.

A mapping B : C → H is said to be α-inverse-strongly monotone if there exists

a constant α > 0 such that

⟨Bx−By, x− y⟩ ≥ α∥Bx−By∥2, for any x, y ∈ C.

For all x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such

that ∥x − PC(x)∥ ≤ ∥x − y∥ for all y ∈ C. The mapping PC is called the metric

projection of H onto C. It is also known that PC satisfying

⟨x− PC(x), PC(x)− y⟩ ≥ 0,

for all x ∈ H and y ∈ C.
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Lemma 2.1 Let C be a closed convex subset of H. Define a mapping PC as

the metric projection from H onto C. Then PC has the following characters:

(1) ⟨x− y, PC(x)− PC(y)⟩ ≥ ∥PC(x)− PC(y)∥2, for any x, y ∈ H;

(2) for x∈H and z∈C, z=PC(x) if and only if ⟨x−z, z−y⟩≥0, for any y∈C;
(3) for x ∈ H and y ∈ C, ∥y − PC(x)∥2 + ∥x− PC(x)∥2 ≤ ∥x− y∥2.
Definition 2.1 A Banach space (X, ∥ · ∥) is said to satisfy Opial’s condition if,

for each sequence {xn} in X which converges weakly to a point x ∈ X, we have

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, for any y ∈ X, y ̸= x.

It is well known that each Hilbert space satisfies Opial’s condition.

Lemma 2.2[3] Let H be a real Hilbert space, C be nonempty closed convex

subset of H and S : C → C be a nonexpansive mapping. Then the mapping I − S

is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x and

xn − Sxn → 0, then x ∈ Fix(S).

Lemma 2.3 Let H be a real Hilbert space. Then for any x, y ∈ H, we have

(1) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2, α ∈ (0, 1);

(2) ⟨x, y⟩ = 1
2(∥x∥

2 + ∥y∥2 − ∥x− y∥2).
Let H1 and H2 be two Hilbert spaces. The operator A from H1 into H2 and

the operator A∗ from H2 into H1 are two bounded linear operators. A∗ is called

the adjoint operator of A, if for all x ∈ H1, y ∈ H2, A
∗ satisfies ⟨Ax, y⟩ = ⟨x,A∗y⟩.

Then A∗ has the following characters:

(1) ∥A∗∥ = ∥A∥;
(2) A∗ is a unique adjoint operator of A.

For solving the split generalized mixed equilibrium problem, we assume that the

function f : C × C → R satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C;

(A2) f is monotone, that is f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(A3) for each y ∈ C, x 7→ f(x, y), is weakly upper semicontinuous;

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous;

(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and

yx ∈ C such that for any z ∈ C\Dx,

f(z, yx) + φ(yx)− φ(z) +
1

r
⟨yx − z, z − x⟩ < 0;

(B2) C is a bounded set.

Lemma 2.4[2,14] Let C be a nonempty closed convex subset of H, f be a bi-

function from C × C to R satisfying (A1)-(A4) and φ : C → R be a proper lower

semicontinuous and convex function. For r > 0 and x ∈ H, define a mapping

T f,φr : H → C as follows:
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T f,φr (x) = {z ∈ C : f(z, y) + φ(y)− φ(z) +
1

r
⟨y − z, z − x⟩ ≥ 0, for any y ∈ C},

for all x ∈ H. Assume that either (B1) or (B2) holds. Then the following results

hold:

(1) For each x ∈ H,T f,φr ̸= ∅;
(2) T f,φr is single-valued;

(3) T f,φr is firmly non-expansive, that is for any x, y ∈ H

∥T f,φr (x)− T f,φr (y)∥2 ≤ ⟨T f,φr (x)− T f,φr (y), x− y⟩;

(4) Fix(T f,φr ) =MEP (f, φ);

(5) MEP (f, φ) is closed and convex.

3 Main Results

Theorem 3.1(Weak convergence theorem) Let C be a nonempty closed convex

subset of H1, K be a nonempty closed convex subset of H2, where H1 and H2 are

two real Hilbert spaces, f : C × C → R and g : K × K → R be two bi-functions

which satisfy (A1)-(A4), φ : C → R be a lower semicontinuous and convex function,

ψ : K → R be a lower semicontinuous and convex function, A : H1 → H2 be a

bounded linear operator with the adjoint operator A∗, B : C → H1 be an α-inverse-

strongly monotone mapping and S : K → H2 be a β-inverse-strongly monotone

mapping. Assume that GMEP (f, φ,B) ̸= ∅ and GMEP (g, ψ, S) ̸= ∅. Let {xn}
and {un} be sequences generated in the following manner:

x1 ∈ C,

f(un, y) + φ(y)− φ(un) +
1
r ⟨y − un, un − xn⟩+ ⟨Bxn, y − un⟩ ≥ 0,

g(wn, z) + ψ(z)− ψ(wn) +
1
r ⟨z − wn, wn −Aun⟩+ ⟨S(Aun), z − wn⟩ ≥ 0,

xn+1 = αnxn + (1− αn)PC(un + µA∗(wn −Aun)),

(3.1)

for any y ∈ C, z ∈ K, n ∈ N, where r ∈ (0, a), a = min{2α, 2β}, αn ∈ (0, 1)

and µ ∈ (0, 1
∥A∗∥2 ) are constants. Suppose that Ω = {x ∈ GMEP (f, φ,B) : Ax ∈

GMEP (g, ψ, S)} ̸= ∅. For f, φ and C, assume that either (B1) or (B2) holds. For

g, ψ and K, assume that either (B1) or (B2) also holds, then the sequences {xn}
and {un} converge weakly to an element p ∈ GMEP (f, φ,B), while {wn} converges

weakly to Ap ∈ GMEP (g, ψ, S).

Proof Let x∗ ∈ Ω, namely x∗ ∈ GMEP (f, φ,B) and Ax∗ ∈ GMEP (g, ψ, S).

By Lemma 2.4, it follows that

T f,φr (I − rB)(x) = {z ∈ C : f(z, y) + φ(y)− φ(z)

+
1

r
⟨y − z, z − (I − rB)x⟩ ≥ 0, for any y ∈ C},
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namely,

T f,φr (I − rB)(x) = {z ∈ C : f(z, y) + φ(y)− φ(z)

+
1

r
⟨y − z, z − x⟩+ ⟨Bx, y − z⟩ ≥ 0, for any y ∈ C}.

Hence, we obtain that GMEP (f, φ,B) = Fix(T f,φr (I − rB)). We also have that

GMEP (g, ψ, S) = Fix(T g,ψr (I − rS)). From (3.1), we get

un = T f,φr (I − rB)(xn), (3.2)

wn = T g,ψr (I − rS)(Aun), (3.3)

x∗ = T f,φr (I − rB)x∗, Ax∗ = T g,ψr (I − rS)Ax∗. (3.4)

For any x, y ∈ C, we see that

∥(I − rB)x− (I − rB)y∥2 = ∥(x− y)− r(Bx−By)∥2

= ∥x− y∥2 − 2r⟨x− y,Bx−By⟩+ r2∥Bx−By∥2

≤ ∥x− y∥2 − 2rα∥Bx−By∥2 + r2∥Bx−By∥2

= ∥x− y∥2 − r(2α− r)∥Bx−By∥2

≤ ∥x− y∥2. (3.5)

So, I − rB is nonexpansive. In a similar way, we can deduce that I − rS is nonex-

pansive. By (3.2),(3.3) and (3.3), we notice that

∥un − x∗∥ = ∥T f,φr (I − rB)xn − x∗∥ ≤ ∥xn − x∗∥, (3.6)

∥wn −Ax∗∥ = ∥T g,ψr (I − rS)Aun −Ax∗∥ ≤ ∥Aun −Ax∗∥. (3.7)

From (3.5), we have

∥un − x∗∥2 = ∥T f,φr (I − rB)xn − x∗∥2

≤ ∥(I − rB)xn − (I − rB)x∗∥2

≤ ∥xn − x∗∥2 − r(2α− r)∥Bxn −Bx∗∥2, (3.8)

∥wn −Ax∗∥2 = ∥T g,ψr (I − rS)Aun −Ax∗∥2

≤ ∥(I − rS)Aun − (I − rS)Ax∗∥2

≤ ∥Aun −Ax∗∥2 − r(2β − r)∥S(Aun)− S(Ax∗)∥2. (3.9)

By (3.7), we obtain that
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2µ⟨un − x∗, A∗(wn −Aun)⟩
= 2µ⟨A(un − x∗) + (wn −Aun)− (wn −Aun), wn −Aun⟩
= 2µ(⟨wn −Ax∗, wn −Aun⟩ − ∥wn −Aun∥2)

= 2µ
(1
2
∥wn −Ax∗∥2 + 1

2
∥wn −Aun∥2 −

1

2
∥Aun −Ax∗∥2 − ∥wn −Aun∥2

)
≤ 2µ

(1
2
∥Aun −Ax∗∥2 + 1

2
∥wn −Aun∥2 −

1

2
∥Aun −Ax∗∥2 − ∥wn −Aun∥2

)
= 2µ

(1
2
∥wn −Aun∥2 − ∥wn −Aun∥2

)
= −µ∥wn −Aun∥2. (3.10)

We also have

∥A∗(wn −Aun)∥2 ≤ ∥A∗∥2∥wn −Aun∥2. (3.11)

From (3.1),(3.6),(3,10) and (3.11), we see that

∥xn+1 − x∗∥2

= ∥αnxn + (1− αn)PC(un + µA∗(wn −Aun))− x∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥PC(un + µA∗(wn −Aun))− PCx
∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)(∥un − x∗∥2 + ∥µA∗(wn −Aun)∥2

+2µ⟨un − x∗, A∗(wn −Aun)⟩)
≤ αn∥xn − x∗∥2 + (1− αn)(∥un − x∗∥2 + µ2∥A∗∥2∥wn −Aun∥2 − µ∥wn −Aun∥2)
= αn∥xn − x∗∥2 + (1− αn)∥un − x∗∥2 − µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2

≤ ∥xn − x∗∥2 − µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2. (3.12)

Notice that µ ∈ (0, 1
∥A∗∥2 ), αn ∈ (0, 1). It follows from (3.12) that lim

n→∞
∥xn−x∗∥

exists. So {xn} is bounded and from (3.1), {un} is also bounded.

Again by (3.12), it implies that

µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2 ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2,

hence

lim
n→∞

∥wn −Aun∥ = 0. (3.13)

Put zn = PC(un + µA∗(wn − Aun)), for each n ≥ 1. It follows from (3.6) and

(3.12) that

∥zn − x∗∥ ≤ ∥un − x∗∥ ≤ ∥xn − x∗∥. (3.14)

From (3.12), we have
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∥xn+1 − x∗∥2 ≤ αn∥xn − x∗∥2 + (1− αn)∥zn − x∗∥2

= ∥xn − x∗∥2 + (1− αn)(∥zn − x∗∥2 − ∥xn − x∗∥2).

This shows that

0 ≤ (1− αn)(∥xn − x∗∥2 − ∥zn − x∗∥2) ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2.

It follows from (3.14) that

lim
n→∞

∥un − x∗∥ = lim
n→∞

∥zn − x∗∥ = lim
n→∞

∥xn − x∗∥. (3.15)

From (3.8), we obtain that

lim
n→∞

∥Bxn −Bx∗∥ = 0. (3.16)

Applying (3) of Lemma 2.4 and (2) of Lemma 2.3, we have

∥un − x∗∥2 = ∥T f,φr (I − rB)xn − T f,φr (I − rB)x∗∥2

≤ ⟨(I − rB)xn − (I − rB)x∗, un − x∗⟩

=
1

2
(∥(I − rB)xn − (I − rB)x∗∥2 + ∥un − x∗∥2

−∥(I − rB)xn − (I − rB)x∗ − (un − x∗)∥2)

≤ 1

2
(∥xn − x∗∥2 + ∥un − x∗∥2 − ∥xn − un − r(Bxn −Bx∗)∥2)

=
1

2
(∥xn − x∗∥2 + ∥un − x∗∥2 − (∥xn − un∥2

+r2∥Bxn −Bx∗∥2 − 2r⟨xn − un, Bxn −Bx∗⟩)), (3.17)

which yields that

∥un − x∗∥2 ≤ ∥xn − x∗∥2 − ∥xn − un∥2 + 2r∥xn − un∥∥Bxn −Bx∗∥,

namely

∥xn − un∥2 ≤ ∥xn − x∗∥2 − ∥un − x∗∥2 + 2r∥xn − un∥∥Bxn −Bx∗∥.

Further, combining (3.15) with (3.16), we have

lim
n→∞

∥xn − un∥ = 0. (3.18)

Since {xn} is bounded, there exists a subsequence {xnj} which converges weakly to

p ∈ C. Then unj ⇀ p and Aunj ⇀ Ap by (3.18).

Next we prove p ∈ Ω. By (3) of Lemma 2.4, we have GMEP (f, φ,B) =

Fix(T f,φr (I − rB)), GMEP (g, ψ, S) = Fix(T g,ψr (I − rS)). Since

lim
j→∞

∥xnj − unj∥ = lim
j→∞

∥xnj − T f,φr (I − rB)xnj∥ = 0,
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and T f,φr (I − rB) : C → C is nonexpansive, we have T f,φr (I − rB)p = p by Lemma

2.2. This shows p ∈ GMEP (f, φ,B). We also can prove Ap ∈ GMEP (g, ψ, S),

similarly.

Finally, we prove {xn} and {un} converge weakly to p ∈ Ω, respectively, while

{wn} converges weakly to Ap. Assume that there exists another subsequence {xnk
}

of {xn}, such that {xnk
} converges weakly to q ∈ Ω, where p ̸= q. In view of the

Opial’s condition, we see that

lim
n→∞

∥xn − q∥ = lim inf
k→∞

∥xnk
− q∥ < lim inf

k→∞
∥xnk

− p∥ = lim
n→∞

∥xn − p∥

= lim inf
j→∞

∥xnj − p∥ < lim inf
j→∞

∥xnj − q∥ = lim
n→∞

∥xn − q∥.

This is a contradiction, so we have p = q. Hence {xn} and {un} converge weakly to

p ∈ Ω. Furthermore, from (3.13) we notice that lim
n→∞

∥wn − Aun∥2 = 0, so we get

that Aun ⇀ Ap and wn ⇀ Ap. The proof is completed.

If B = S = θ in Theorem 3.1, then the split generalized mixed equilibrium

problem (SGMEP) is reduced to a split generalized equilibrium problem (SMEP).

Corollary 3.1 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4),

φ : C → R be a lower semicontinuous and convex function, ψ : K → R be a lower

semicontinuous and convex function, A : H1 → H2 be a bounded linear operator with

the adjoint operator A∗. Assume that MEP (f, φ) ̸= ∅ and MEP (g, ψ) ̸= ∅. Let

{xn} and {un} be sequences generated in the following manner:
x1 ∈ C,

f(un, y) + φ(y)− φ(un) +
1
r ⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

g(wn, z) + ψ(z)− ψ(wn) +
1
r ⟨z − wn, wn −Aun⟩ ≥ 0, z ∈ K,

xn+1 = αnxn + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

where r > 0 and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants. Suppose that Ω = {x ∈

MEP (f, φ) : Ax ∈ MEP (g, ψ)} ̸= ∅. For f, φ and C, assume that either (B1) or

(B2) holds. For g, ψ and K, assume that either (B1) or (B2) also holds, then the

sequences {xn} and {un} converge weakly to an element p ∈MEP (f, φ), while {wn}
converges weakly to Ap ∈MEP (g, ψ).

If φ = ψ = 0 in Theorem 3.1, then the split generalized mixed equilibrium

problem (SGMEP) is reduced to a split generalized equilibrium problem (SGEP).

Corollary 3.2 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4),
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A : H1 → H2 be a bounded linear operator with the adjoint operator A∗, B : C → H1

be a α-inverse-strongly monotone mapping and S : K → H2 be a β-inverse-strongly

monotone mapping. Assume that GEP (f,B) ̸= ∅ and GEP (g, S) ̸= ∅. Let {xn}
and {un} be sequences generated in the following manner:

x1 ∈ C,

f(un, y) +
1
r ⟨y − un, un − xn⟩+ ⟨Bxn, y − un⟩ ≥ 0, y ∈ C,

g(wn, z) +
1
r ⟨z − wn, wn −Aun⟩+ ⟨S(Aun), z − wn⟩ ≥ 0, z ∈ K,

xn+1 = αnxn + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

where r ∈ (0, a), a = min{2α, 2β} and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants.

Suppose that Ω = {x ∈ GEP (f,B) : Ax ∈ GEP (g, S)} ̸= ∅, then the sequences

{xn} and {un} converge weakly to an element p ∈ GEP (f,B), while {wn} converges

weakly to Ap ∈ GEP (g, S).

If B = S = θ and φ = ψ = 0 in Theorem 3.1, then the split generalized mixed

equilibrium problem (SGMEP) is reduced to a split equilibrium problem (SEP) (see

[12]).

Corollary 3.3 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4),

A : H1 → H2 be a bounded linear operator with the adjoint operator A∗. Assume

that EP (f) ̸= ∅ and EP (g) ̸= ∅. Let {xn} and {un} be sequences generated in the

following manner:
x1 ∈ C,

f(un, y) +
1
r ⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

g(wn, z) +
1
r ⟨z − wn, wn −Aun⟩ ≥ 0, z ∈ K,

xn+1 = αnxn + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

where r > 0 and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants. Suppose that Ω = {x ∈

EP (f) : Ax ∈ EP (g)} ̸= ∅, then the sequences {xn} and {un} converge weakly to

an element p ∈ EP (f), while {wn} converges weakly to Ap ∈ EP (g).

Theorem 3.2(Strong convergence theorem) Let C be a nonempty closed convex

subset of H1 and K be a nonempty closed convex subset of H2, where H1 and H2 are

two real Hilbert spaces. Let f : C × C → R and g : K ×K → R be two bi-functions

which satisfy (A1)-(A4), φ : C → R be a lower semicontinuous and convex function,

ψ : K → R be a lower semicontinuous and convex function, A : H1 → H2 be a

bounded linear operator with the adjoint operator A∗, B : C → H1 be an α-inverse-

strongly monotone mapping and S : K → H2 be a β-inverse-strongly monotone
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mapping. Assume that GMEP (f, φ,B) ̸= ∅ and GMEP (g, ψ, S) ̸= ∅. Let {xn}
and {un} be sequences generated in the following manner:

x1 ∈ C = C1,

f(un, y) + φ(y)− φ(un) +
1
r ⟨y − un, un − xn⟩+ ⟨Bxn, y − un⟩ ≥ 0, y ∈ C,

g(wn, z) + ψ(z)− ψ(wn) +
1
r ⟨z − wn, wn −Aun⟩+ ⟨S(Aun), z − wn⟩ ≥ 0, z ∈ K,

yn = αnun + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

Cn+1 = {v ∈ Cn : ∥yn − v∥ ≤ ∥un − v∥ ≤ ∥xn − v∥}, for any n ∈ N,

xn+1 = PCn+1(x0),
(3.19)

where r ∈ (0, a), a = min{2α, 2β} and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants.

Suppose that Ω ̸= ∅. For f, φ and C, assume that either (B1) or (B2) holds. For

g, ψ and K, assume that either (B1) or (B2) also holds, then the sequences {xn} and

{un} converge strongly to an element p ∈ GMEP (f, φ,B), while {wn} converges

strongly to Ap ∈ GMEP (g, ψ, S).

Proof By Lemma 2.4, it follows that

GMEP (f, φ,B) = Fix(T f,φr (I − rB)), GMEP (g, ψ, S) = Fix(T g,ψr (I − rS)),

un = T f,φr (I − rB)xn, wn = T g,ψr (I − rS)Aun.

In fact Ω∈Cn, for n∈N . For each x∗∈Ω, it follows from (3.10), (3.11) and (3.6) that

∥yn − x∗∥2

= ∥αnun + (1− αn)PC(un + µA∗(wn −Aun))− x∗∥2

≤ αn∥un − x∗∥2 + (1− αn)∥PC(un + µA∗(wn −Aun))− PCx
∗∥2

≤ αn∥un − x∗∥2 + (1− αn)(∥un − x∗∥2

+∥µA∗(wn −Aun)∥2 + 2µ⟨un − x∗, A∗(wn −Aun)⟩)
≤ αn∥un − x∗∥2 + (1− αn)(∥un − x∗∥2 + µ2∥A∗∥2∥wn −Aun∥2 − µ∥wn −Aun∥2)
= αn∥un − x∗∥2 + (1− αn)∥un − x∗∥2 − µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2

= ∥un − x∗∥2 − µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2

≤ ∥xn − x∗∥2 − µ(1− αn)(1− µ∥A∗∥2)∥wn −Aun∥2. (3.20)

This shows that

∥yn − x∗∥2 ≤ ∥un − x∗∥2 ≤ ∥xn − x∗∥2.

It implies that x∗ ∈ Cn+1 ⊂ Cn, so Ω ∈ Cn+1 ⊂ Cn and Cn ̸= ∅ for all n ∈ N .

Next we show that Cn is a closed convex set for n ∈ N . It is obvious that Cn is

closed for n ∈ N , so we just need to prove that Cn is convex for n ∈ N . In fact, let

v1, v2 ∈ Cn+1 for each λ ∈ (0, 1), then we have
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∥yn − (λv1 + (1− λ)v2)∥2

= ∥λ(yn − v1) + (1− λ)(yn − v2)∥2

= λ∥yn − v1∥2 + (1− λ)∥yn − v2∥2 − λ(1− λ)∥v1 − v2∥2

≤ λ∥un − v1∥2 + (1− λ)∥un − v2∥2 − λ(1− λ)∥v1 − v2∥2

= ∥un − (λv1 + (1− λ)v2)∥2. (3.21)

namely

∥yn − (λv1 + (1− λ)v2)∥ ≤ ∥un − (λv1 + (1− λ)v2)∥.

In a similar way, we can obtain that ∥un−(λv1+(1−λ)v2)∥ ≤ ∥xn−(λv1+(1−λ)v2)∥.
This shows λv1 + (1− λ)v2 ∈ Cn+1, so Cn+1 is a convex set for n ∈ N .

By (4) of Lemma 2.4, Fix(T f,φr ) is closed and convex. Since T fr (I − rB) is

nonexpansive, we see that Fix(T f,φr (I−rB)) is closed convex. So Ω is a closed convex

set, and there exits a unique element q = PΩ(x0) ∈ Ω ⊂ Cn. For xn = PCn(x0) and

q ∈ Ω ⊂ Cn, we get ∥xn − x0∥ ≤ ∥q − x0∥, which implies that {xn} is bounded, so

are {un} and {yn}.
Note that Cn+1 ⊂ Cn and xn+1 = PCn+1(x0) ∈ Cn+1, we obtain that

∥xn+1 − x0∥ ≤ ∥xn − x0∥, (3.22)

which shows that lim
n→∞

∥xn − x0∥ exists.

For some m,n ∈ N with m > n, from xm = PCm(x0) and (3) of Lemma 2.1 we

arrive at

∥xn−xm∥2+∥x0−xm∥2 = ∥xn−PCm(x0)∥2+∥x0−PCm(x0)∥2 ≤ ∥xn−x0∥2. (3.23)

Applying (3.22) and (3.23), we see lim
n→∞

∥xn − xm∥ = 0, so {xn} is a Cauchy

sequence. Let xn → p.

Now we prove p ∈ Ω. Since xn+1 = PCn+1(x0) ∈ Cn, from (3.19) we get

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn − xn+1∥ ≤ 2∥xn − xn+1∥ → 0, (3.24)

∥un − xn∥ ≤ ∥un − xn+1∥+ ∥xn − xn+1∥ ≤ 2∥xn − xn+1∥ → 0, (3.25)

∥yn − un∥ ≤ ∥yn − xn∥+ ∥xn − un∥ → 0. (3.26)

Using (3.20) and (3.26), we obtain

∥wn −Aun∥2 ≤
1

µ(1− αn)(1− µ∥A∗∥2)
(∥xn − x∗∥2 − ∥yn − x∗∥2)

≤ 1

µ(1−αn)(1−µ∥A∗∥2)
∥xn−yn∥(∥xn−x∗∥+∥yn−x∗∥) → 0, (3.27)

namely
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lim
n→∞

∥wn −Aun∥ = lim
n→∞

∥T g,ψr (I − rS)Aun −Aun∥ = 0. (3.28)

Since T f,φr (I − rB) is nonexpansive and xn → 0, it follows from (3.25) that

∥T f,φr (I − rB)p− p∥ ≤ ∥T f,φr (I − rB)p− T f,φr (I − rB)xn∥
+∥T f,φr (I − rB)xn − xn∥+ ∥xn − p∥

≤ ∥xn − p∥+ ∥un − xn∥+ ∥xn − p∥ → 0,

which yields that p ∈ GMEP (f, φ,B). Furthermore we have ∥Axn − Ap∥ → 0 by

xn → p. Then by (3.28), we see that

∥T g,ψr (I − rS)Ap−Ap∥
≤ ∥T g,ψr (I−rS)Ap−T g,ψr (I−rS)Axn∥+∥T g,ψr (I−rS)Axn−Axn∥+ ∥Axn −Ap∥
≤ ∥Axn −Ap∥+ ∥T g,ψr (I − rS)Axn −Axn∥+ ∥Axn −Ap∥ → 0,

which yields that Ap ∈ GMEP (g, ψ, S). Hence {xn} converges strongly to p ∈ Ω

and {un} converges strongly to p ∈ Ω by (3.25).

Then, we get Aun → Ap by un → p. Note that lim
n→∞

∥wn −Aun∥ = 0 by (3.28),

so wn → Ap. This completes the proof.

Corollary 3.4 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4),

φ : C → R be a lower semicontinuous and convex function, ψ : K → R be a lower

semicontinuous and convex function and A : H1 → H2 be a bounded linear operator

with the adjoint operator A∗. Assume that MEP (f, φ) ̸= ∅ and MEP (g, ψ) ̸= ∅.
Let {xn} and {un} be sequences generated in the following manner:

x1 ∈ C = C1,

f(un, y) + φ(y)− φ(un) +
1
r ⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

g(wn, z) + ψ(z)− ψ(wn) +
1
r ⟨z − wn, wn −Aun⟩ ≥ 0, z ∈ K,

yn = αnun + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

Cn+1 = {v ∈ Cn : ∥yn − v∥ ≤ ∥un − v∥ ≤ ∥xn − v∥}, for any n ∈ N,

xn+1 = PCn+1(x0),

where r > 0 and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants. Suppose that Ω ̸= ∅. For

f, φ and C, assume that either (B1) or (B2) holds. For g, ψ and K, assume that

either (B1) or (B2) also holds, then the sequences {xn} and {un} converge strongly

to an element p ∈MEP (f, φ), while {wn} converges strongly to Ap ∈MEP (g, ψ).

Corollary 3.5 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4),
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A : H1 → H2 be a bounded linear operator with the adjoint operator A∗, B : C → H1

be an α-inverse-strongly monotone mapping and S : K → H2 be a β-inverse-strongly

monotone mapping. Assume that GEP (f,B) ̸= ∅ and GEP (g, S) ̸= ∅. Let {xn}
and {un} be sequences generated in the following manner:

x1 ∈ C = C1,

f(un, y) +
1
r ⟨y − un, un − xn⟩+ ⟨Bxn, y − un⟩ ≥ 0, y ∈ C,

g(wn, z) +
1
r ⟨z − wn, wn −Aun⟩+ ⟨S(Aun), z − wn⟩ ≥ 0, z ∈ K,

yn = αnun + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

Cn+1 = {v ∈ Cn : ∥yn − v∥ ≤ ∥un − v∥ ≤ ∥xn − v∥}, for any n ∈ N,

xn+1 = PCn+1(x0),

where r ∈ (0, a), a = min{2α, 2β} and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants.

Suppose that Ω = {x ∈ GEP (f,B) : Ax ∈ GEP (g, S)} ̸= ∅, then the sequences {xn}
and {un} converge strongly to an element p ∈ GEP (f,B), while {wn} converges

strongly to Ap ∈ GEP (g, S).

Corollary 3.6 Let C be a nonempty closed convex subset of H1 and K be a

nonempty closed convex subset of H2, where H1 and H2 are two real Hilbert spaces.

Let f : C ×C → R and g : K ×K → R be two bi-functions which satisfy (A1)-(A4)

and A : H1 → H2 be a bounded linear operator with the adjoint operator A∗. Assume

that EP (f) ̸= ∅ and EP (g) ̸= ∅. Let {xn} and {un} be sequences generated in the

following manner:

x1 ∈ C = C1,

f(un, y) +
1
r ⟨y − un, un − xn⟩ ≥ 0, y ∈ C,

g(wn, z) +
1
r ⟨z − wn, wn −Aun⟩ ≥ 0, z ∈ K,

yn = αnun + (1− αn)PC(un + µA∗(wn −Aun)), for any n ∈ N,

Cn+1 = {v ∈ Cn : ∥yn − v∥ ≤ ∥un − v∥ ≤ ∥xn − v∥}, for any n ∈ N,

xn+1 = PCn+1(x0),

where r > 0 and αn ∈ (0, 1), µ ∈ (0, 1
∥A∗∥2 ) are constants. Suppose that Ω = {x ∈

EP (f) : Ax ∈ EP (g)} ̸= ∅, then the sequences {xn} and {un} converge strongly to

an element p ∈ EP (f), while {wn} converges strongly to Ap ∈ EP (g).
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