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Abstract

In this paper, we formulate a single-species model of contraception control
with white noise on the death rate. Firstly, the uniqueness of global positive
solution of the model is proved. Secondly, uniformly bounded mean of solution
is obtained by using the Liyapunov function and Chebyshev inequality. Lastly,
stochastic global asymptotic stability of zero equilibriums is analyzed.
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1 Introduction

Small mammalian pests pose major ecological and/or economic problems. A

wide range of ways controlling small mammalian pest are available to farmers, such

as physical, chemical, biological and cultural tools. Effectively controlling pests has

become an increasingly complex issue over the past two decades. Farmers often catch

pests by mechanical tools or poison pests by use of pesticides[1,2]. However, overuse

of chemicals has created many ecological and sociological problems, hence chemical

control now needs to be used reasonably. As an alternative to these methods, con-

traceptive control is based on reducing birth rates. There are many advantages of

contraception for biological control. In recent years, many models have been for-

mulated to investigate theoretically the potential function of contraception in the

controlling of mammalian pests. [3] established the following model{
F ′(t) = F (b− d1 − k(F (t) + S(t))− µ),

S′(t) = µF (t)− d1S(t),
(1)
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where F (t) and S(t) represent the densities of the fertile specie and the sterile specie

at time t respectively. b > 0 and d1 denote the birth and the death rates of the single

specie respectively; µ stands for the rate from the fertile specie to the sterile specie.

For (1), Liu and Li discussed the global stability of nonnegative equilibrium.

As well known, the growth of any species is interpreted by many small random

factors such as sunlight, temperature, moisture, etc. These factors are intergrad-

ed as white noise effect. So, the stochastic differential equation ([4,5]) has more

practical significance than the deterministic differential equation. This motivates

us to investigate a model of single-species model with random perturbation under

contraceptive control{
dF (t) = F (b− d1 − k(F (t) + S(t))− µ)dt− σF (t)dBt,

dS(t) = [µF (t)− d1S(t)]dt− σS(t)dBt.
(2)

Here σ2 is a constant which represents the environmental stochastic perturbation on

the death rate. B(t) is a real Wiener process defined on stochastic basis (Ω,z, P ).

The initial condition of (2) satisfies

(F (0), S(0)) = (φ1(0), φ2(0)) ∈ R2
+.

2 Stochastically Ultimately Bounded

Theorem 1 There exists a unique solution (F (t), S(t)) on t ≥ 0 in R2
+ with

probability 1 for any given initial value (F (0), S(0)) ∈ R2
+.

Proof Let x(t) = lnF (t), y(t) = S(t), t ≥ 0, then (2) is transformed into{
dx(t) = (b− d1 − k(ex(t) + y(t))− µ)dt− σdBt,

dy(t) = [µex(t) − d1y(t)]dt− σy(t)dBt.
(3)

Obviously, (3) satisfies the linear and local Lipschitz conditions, then there is a

unique local solution (x(t), y(t)) on t ∈ [0, τe), where τe is the explosion time. Fur-

ther, by Ito’s formula, it is easy to obtain that F (t) = ex(t), S(t) = y(t), t ∈ [0, τe),

is the unique positive local solution of (2) with an initial value (F (0), S(0)) ∈ R2
+.

Next, we show that this solution is global, that is, τe = ∞. Because (F (0), S(0)) ∈
R2

+, we can choose an N0 large enough such that (F (0), S(0)) ∈ [ 1
N0

, N0]× [ 1
N0

, N0].

For every integer N > N0, define the stopping time τN = inf{t ∈ [0, τe)|F (t) /∈
[ 1N , N ] or S(t) /∈ [ 1N , N ]}. Obviously, τN increases as to N . Let τ∞ = lim

N→+∞
τN ,

then we obtain τ∞ < τe a.s.. We can claim τ∞ = ∞. Assume τ∞ ̸= ∞, then there

exist constants T > 0 and δ ∈ (0, 1) such that

P{τ∞ ≤ T} > δ. (4)
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Therefore there exists a N1 > N0, satisfying P{τN ≤ T} > δ, N > N1. Define a

positive function V (F, S) = 1
k (F (t) − 1 − lnF (t)) + 1

d1
(S(t) − 1 − lnS(t)), where

(F (t), S(t)) ∈ R2
+. From Ito’s formula, we get

dV (F, S) = L(V )dt− σ(F (t)− 1)

k
dBt −

σ(S(t)− 1)

d1
dBt. (5)

Here

L(V ) =
1

k

∂V

∂F
F (t)(b− d1 − k(F (t) + S(t))− µ) +

1

d1

∂V

∂S
(µF (t)− d1S(t))

+
1

2
Tr

[(
−σF (t) 0

0 −σS(t)

)( 1
kF 2(t)

0

0 1
d1S2(t)

)(
−σF (t) 0

0 −σS(t)

)]
=

1

k

(
1− 1

F (t)

)
F (t)(b− d1 − k(F (t) + S(t))− µ)

+
1

d1

(
1− 1

S(t)

)
(µF (t)− d1S(t)) +

σ2(k + d1)

2kd1

≤ 1 +
σ2(k + d1)

2kd1
+

[d1(b− d1 − µ) + k(µ+ d1)]
2

4k2d21
+
∣∣∣b− d1 − µ

k

∣∣∣.
Integrating both sides of (5) from 0 to τN ∧ T , by calculation we get

E(V (F (τN ∧ T ), S(τN ∧ T ))) ≤ V (F (0), S(0)) +M1T, (6)

where

M1 =
2kd1σ

2(k + d1) + 4kd21(k + 4kd21|b− d1 − µ|) + [d1(b− d1 − µ) + k(µ+ d1)]
2

4k2d21
.

Define ΩN = {τN ≤ T}, then by the inequality (4), we have P{ΩN} > δ. From the

definition of ΩN and the stopping time, we derive that for any ω ∈ ΩN ,

V (F (τN , ω), S(τN , ω)) ≥ g(N),

where

g(N) = min
{1
k
,
1

d1

}
min

{
N − 1− lnN,

1

N
− 1− ln

1

N

}
.

Combining with (6), we have

V (F (0), S(0)) +M1T ≥ E(IΩN
V (F (τN ∧ T ), S(τN ∧ T ))) ≥ δg(N). (7)

When N → +∞, by taking the limit to both sides of inequality (7), we get that

V (F (0), S(0)) +M1T ≥ E(IΩN
V (F (τN ∧ T ), S(τN ∧ T ))) ≥ +∞,

which leads to a contradiction. Therefore, the assumption does not hold. That is

τ∞ = ∞. Further, we have τe = ∞. The proof of Theorem 1 is completed.
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Theorem 2 For the initial (F (0), S(0)) ∈ R2
+, the mean of solution (F (t), S(t))

of (2) is uniformly bounded.

Proof From Theorem 1, for any given initial (F (0), S(0)) ∈ R2
+, (F (t), S(t)) ∈

R2
+, t ∈ R+.

Choosing a Lyapunov function V (F (t), S(t)) = F (t) + S(t), by using Ito’s for-

mula, we obtain that

dV = [(b− d1 − k(F (t) + S(t)))F (t)− d1S(t)]dt− σ(F (t) + S(t))dBt.

Then,

d(ed1tV (F (t), S(t))) = d1e
d1tV (F, S)dt+ ed1td(V (F, S))

= ed1t[(bF (t)− k(F + S)F (t))dt− σ(F (t) + S(t))dBt].

Define a stopping time ρN = inf{t ∈ R+ :
√

F 2(t) + S2(t) > N}, for a integer N >√
F 2(0) + S2(0). Further, we have

E(ed1tV (F (t), S(t))) < V (F (0), S(0))+E
[∫ t∧ρN

0
ed1v(bF (v)−k(F (v)+S(v))F (v))dv

]
≤ V (F (0), S(0)) + E

[ ∫ t∧ρN

0
ed1v

b2

4k
dv
]
.

So, we obtain

ed1tE(V (F (t), S(t))) < V (0) +
b2

4k
ed1t.

Therefore,

E(V (F (t), S(t))) < V (0)e−d1t +
b2

4k
.

That is

E|(F (t), S(t))| ≤ E(V (F (t), S(t))) < V (0)e−d1t +
b2

4k
.

Further, we get

lim sup
t→+∞

E|(F (t), S(t))| ≤ b2

4k
.

The proof of Theorem 2 is completed.

Theorem 3 For a given initial (F (0), S(0)) ∈ R2
+, the solution (F (t), S(t)) of

(2) is stochastically ultimately bounded.

Proof By using Chebyshev inequality, we get

P{|(F, S)| > β} ≤ E|(F (t), S(t))|
β

.

For any ϵ, we can choose β = 4kϵ
b2

. Therefore, we obtain

P{|(F, S)| > β} ≤ ϵ.

The proof of Theorem 3 is completed.
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3 Extinction

Theorem 4 When µ > b− d1 +
σ2

2 and d1 − σ2

2 > 0, the trivial solution of (2)

is globally asymptotically stable in probability.

Proof Define a positive function V (t) = 1
2F

2(t) + c1
2 S

2(t). From Ito’s formula,

we obtain

dV = L(V )dt− σ(F 2(t) + S2(t))dB(t).

Here

L(V )=
(
b−d1−µ+

1

2
σ2
)
F 2(t)−kF 2(t)(F (t)+S(t))−

(
c1d1−

1

2
σ2c1

)
S2(t)+c1µF (t)S(t)

≤
(
b− d1 − µ+

1

2
σ2
)
F 2(t)−

(
c1d1 −

1

2
σ2c1

)
S2(t) + c1µF (t)S(t).

We can choose a constant c1 =
(d1+µ−b− 1

2
σ2)(2d1−σ2)

µ2 , such that

L(V )≤−
(d1+µ−b− 1

2σ
2)

µ2
[µF (t)−(2d1−σ2)S(t)]2−

3(2d1−σ2)2(d1+µ−b− 1
2σ

2)

4µ2
S2(t).

Further, if µ > b−d1+
σ2

2 and d1− σ2

2 > 0, then L(V ) is negative definite. Therefore,

the trivial solution of (2) is globally asymptotically stable in probability. Thus, the

system is stochastically extinct in probability, when µ > b−d1+
σ2

2 and d1− σ2

2 > 0.

The proof of this theorem is completed.
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