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Abstract. Most existing theoretical analysis of reinforcement learning (RL) is limited to the tabular setting or
linear models due to the difficulty in dealing with function approximation in high dimensional space with an
uncertain environment. This work offers a fresh perspective into this challenge by analyzing RL in a general
reproducing kernel Hilbert space (RKHS). We consider a family of Markov decision processes M of which the
reward functions lie in the unit ball of an RKHS and transition probabilities lie in a given arbitrary set. We
define a quantity called perturbational complexity by distribution mismatch ∆M(ǫ) to characterize the complexity
of the admissible state-action distribution space in response to a perturbation in the RKHS with scale ǫ. We
show that ∆M(ǫ) gives both the lower bound of the error of all possible algorithms and the upper bound of
two specific algorithms (fitted reward and fitted Q-iteration) for the RL problem. Hence, the decay of ∆M(ǫ)
with respect to ǫ measures the difficulty of the RL problem on M. We further provide some concrete examples
and discuss whether ∆M(ǫ) decays fast or not in these examples. As a byproduct, we show that when the
reward functions lie in a high dimensional RKHS, even if the transition probability is known and the action
space is finite, it is still possible for RL problems to suffer from the curse of dimensionality.
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1 Introduction

Modern reinforcement learning (RL) algorithms in practice often utilize function approx-
imation tools to deal with problems involving an enormous amount of states in high di-
mensions. However, the majority of existing theoretical analysis of RL is only applicable
to the tabular setting (see, e.g., [1–6]), in which both the state and action spaces are dis-
crete and finite, and no function approximation is involved. Relatively simple function
approximation methods, such as the linear model in [7, 8] or generalized linear model
in [9,10], have been recently studied in the context of RL with various statistical estimates.
Yet, these results are not sufficient to explain the practical success of RL algorithms in high
dimensions. In the tabular setting, the number of samples required by an RL algorithm
is proportional to the size of state-action pairs, which is enormous in practice. For linear
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model or generalized linear model, the assumption therein is pretty restrictive for practice.
The kernel function is a class of models that can approximate more general functions than
the tabular setting or linear model, and it is widely used in practice. Moreover, the kernel
function approximation is closely related to neural network approximation, as established
in the theory of neural tangent kernel in [11] and Barron space in [12]. RL with kernel
function approximation has been recently studied in [13–17]. Still, results therein either
suffer from the curse of dimensionality or require stringent assumptions on the kernel or
the dynamics. As pointed out in [18] and [17, Section 5], L∞-estimation, as a widely used
technique in classical RL analysis of the tabular setting, may give rise to a curse of dimen-
sionality in kernel method, which signifies new difficulties in RL algorithms with kernel
function approximation. In this paper, we aim at a systematic study of RL with kernel
function approximation and consider the following question:

When can a reinforcement learning problem be solved efficiently using kernel function approx-
imation?

Note that in this paper “efficiency” is considered in terms of sample complexity, i.e.,
the number of data an algorithm needs to collect to achieve a specified performance cri-
terion. Our analysis will focus on the sample complexity of the RL problem, while other
complexities such as computational complexity will not be covered. We are particularly in-
terested in high dimensional state-action spaces and want to identify RL problems that can
be solved efficiently with kernel function approximation even in high dimensions. Simi-
lar questions have been studied in the realm of supervised learning. There the answer is
quite clear: once the target function lies in a reproducing kernel Hilbert space (RKHS), no
matter how large the dimension is, the corresponding supervised learning problem can be
solved efficiently (see, e.g., [19]). In RL, the reward function plays a similar role with the
target function in supervised learning. This analogy motivates us to study a more concrete
question:

If the unknown reward function lies in an RKHS, what is the condition of the RKHS and tran-
sition dynamics to ensure that the reinforcement learning problem can be solved efficiently?

Below we give some intuition of the main challenge to answer this question and the
key concept we introduce in this paper. Given an RKHS H and a probability distribution
ν, existing results in supervised learning have shown that for any target distribution g
lying in the unit ball of H, one can efficiently obtain an estimation ĝ such that

‖g − ĝ‖H ≤ 2, ‖g − ĝ‖L2(ν) ≤ ǫ

for any ǫ > 0 (see, e.g., [19] or Lemma 5.1). We can then view ĝ as a ν-perturbation of g
and define the ν-perturbation space with scale ǫ as

Hǫ,ν = {g ∈ H : ‖g‖H ≤ 1, ‖g‖L2(ν) ≤ ǫ}.

While the distribution ν is given in supervised learning, in the theoretical analysis of RL,
one needs to control the difference of the expectation between the target function and es-
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timation with a probability distribution unknown a priori. That probability distribution
is unknown because that is the state distribution or state-action distribution induced by a
particular policy, which is unknown a priori. Take the estimation of the optimal Q-value
function Q∗

h (see (5.8) below for the detailed definition) for example. The optimal policy
can be derived from the optimal Q-value function through the greedy policy. In practice,
given any probability distribution ν, under certain conditions, one can estimate the opti-
mal Q-value function Q∗

h in the sense of L2(ν) using Q-learning algorithm in [20] or fitted
Q-iteration algorithm (see Algorithm 3 or [21] and [17]). In other words, one can obtain

Q̂∗
h , a ν-perturbation of Q∗

h. However, when evaluating the performance of π̂, the greedy

policy derived from Q̂∗
h, one needs to control the error between Q∗

h and Q̂∗
h under the state-

action distribution induced by the policy π̂ (see the performance difference lemma in [22]

or (5.16)), which is unknown before one obtains Q̂∗
h. We call this phenomenon distribu-

tion mismatch: mismatch between the distribution ν for estimation and the distribution for
evaluation that is unknown a priori. This phenomenon is ubiquitous in the analysis of RL
(see, e.g., [22, Section 6]). Although not detailed above, when estimating the optimal Q-
value function in the sense of L2(ν), one needs to deal with the error propagation between
steps, and distribution mismatch also brings difficulty.

To quantify the error brought by distribution mismatch, we define a semi-norm

‖g‖Π = sup
ρ∈Π

∣

∣

∣

∫

g dρ
∣

∣

∣
,

where Π is a set of probability distributions and introduce the perturbation response by
distribution mismatch:

R(Π,H, ǫ, ν) = sup
g∈Hǫ,ν

‖g‖Π.

One shall notice that if Π = {ν}, then R(Π,H, ǫ, ν) cannot be greater than ǫ. However,
in analysis, we usually can only choose Π as the possible state-action distributions under
a class of policies. The scale of perturbation response by distribution mismatch measures
the discrepancy between ν and Π and reflects the error brought by the fact that we do
not know the state-action distribution under the policy of interest. If Π consists of all
probability distributions, then the above semi-norm is just the L∞-norm, which is used
to handle the distribution mismatch in the tabular and linear RL problems. However, for
many common RKHSs, the L∞-estimation may suffer from the curse of dimensionality;
see [18] and [17, Section 5] for a detailed discussion. The challenge of L∞-estimation in
high dimensional space reveals the difficulty of RL problems in the RKHS compared to
the tabular setting or linear function approximation. In this sense, the introduced Π-norm
can be understood as a generalization of the L∞-norm to overcome this difficulty. This
concept takes into account the distribution structure of the RL problem and allows us
to do a more delicate error analysis. Following this idea, we introduce the perturbational
complexity by distribution mismatch ∆M(ǫ) for a large class of families of Markov decision
processes (MDPs) and prove that once the perturbational complexity decreases fast with
respect to ǫ, the RL problem can be solved efficiently. On the other hand, by considering
the RL problem in which one only knows the reward function lies in the unit ball of a
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general RKHS and transition probability lies in a given arbitrary set, we show that the
perturbational complexity ∆M(ǫ) must decay fast with respect to ǫ if this RL problem can
be solved efficiently.

Combining the above two types of results together, we show that the perturbational
complexity ∆M(ǫ) measures the intrinsic difficulty of an RL problem. Note that most of
our results still hold if we replace RKHS with a Banach space in which we can efficiently
obtain an L2-estimation, e.g., linear space or Barron space in [12]. Furthermore, our re-
sults shed some light on studying practical RL algorithms. First, the structure of Π has
been used in the previous analysis of RL in various settings; see e.g., [13, 23–25]. While
previous works mainly focus on the so-called concentration coefficients of Π and use re-
lated assumptions to prove upper bounds for RL problems, our work shows the necessity
of additional assumptions on Π in order to ensure that the RL problem in the RKHS can
be efficiently solved. As indicated by Proposition 6.3, if the eigenvalue decay of the ker-
nel is slow and Π consists of all probability distributions, then ∆M(ǫ) also decays slowly.
Therefore, to design efficient RL algorithms, one needs to better understand the set Π,
particularly when the eigenvalue decay of the kernel is slow. Second, when the unknown
reward function lies in the unit ball of an RKHS and the transition probability is known,
Theorems 4.1 and 5.1 show that solving the RL problem is equivalent to using finite val-
ues of a target function g to obtain a function estimate ĝ that is accurate with respect to
the Π-norm; see Remark 5.3 for detailed discussions. Theorems 4.2 and 5.2 also establish
a partial connection between these two problems in the case of unknown transition prob-
ability. Therefore, it is helpful to study this supervised learning problem as a prototype of
the RL problem.

Our contributions:

1. We define the perturbational complexity by distribution mismatch ∆M(ǫ) for the
families of MDPs M of which the reward functions lie in the unit ball of an RKHS and
transition probabilities lie in a given arbitrary set. We then show that ∆M(ǫ) gives
a lower bound for the error of every algorithm on the corresponding RL problem
(Theorems 4.1 and 4.2).

2. In the case of known transition (all transition probabilities in the families of MDPs are
the same), we show that ∆M(ǫ) also gives an upper bound of the error of the fitted
reward algorithm (Algorithm 2) without any further assumption (Theorem 5.1).

3. In the case of unknown transition (general case), with an additional assumption on
Bellman operators (5.11), we show that ∆M(ǫ) gives an upper bound for the error of
the fitted Q-iteration algorithm (Algorithm 3 and Theorem 5.2).

4. We give a concrete form of the perturbation response by distribution mismatch (Lemma
6.1) and show that when the assumptions on concentration coefficients in the existing
literature (see e.g., [13,17,21,24]) are satisfied or the eigenvalue decay of the kernel is
fast, ∆M(ǫ) decays fast with respect to ǫ (Proposition 6.2 and Proposition 6.3).

5. We give a concrete example in which the reward functions lie in a high dimensional
RKHS, the transition probability is known, and the action space is finite, but the



J. Mach. Learn., 1(1):1-37 5

corresponding RL problem can not be solved without the curse of dimensionality
(Proposition 6.4).

Related literature. While the optimal lower bound of the error of RL algorithms in the
tabular setting has been established in [2, 4], there are much fewer results about lower
bounds of RL with function approximation. [26] proves an optimal lower bound for Lips-
chitz function approximation. [27] shows that even when the value function, policy func-
tion, reward function, and transition probability can be approximated by a linear function,
it is still possible that solving the RL problem requires samples exponentially depending
on the horizon. [24] shows that even when the set of candidate approximating functions is
finite and includes the optimal Q-value function, there does not exist an algorithm whose
sample size is a polynomial function of the logarithm of the size of the candidate func-
tion set, the size of action space, horizon, and the reciprocal of accuracy. In other words,
the previous works either consider function spaces (Lipschitz function space) that are too
large to derive meaningful upper bound or only give lower bounds on special cases. In-
stead, we consider a fairly general class of RL problems associated with the RKHS and
give both lower bound and upper bound through the perturbational complexity by distri-
bution mismatch.

Previous works establish several upper bounds for RL algorithms with kernel function
approximation. Based on the type of used assumptions, these works can be divided into
two categories. The first category of upper bounds in [14–16] depends on the eigenvalue
decay of kernel while the second category in [17, 23] requires accessibility to reference
distributions that can uniformly bound all possible state-action distributions under ad-
missible policies (called assumption on concentration coefficients). In this work, we show
that the perturbational complexity ∆M(ǫ) decays fast in both situations and establish an
upper bound for the fitted reward algorithm (see Algorithm 2 in Section 5.1) and the fitted
Q-iteration algorithm (see Algorithm 3 in Section 5.2) under the assumption that ∆M(ǫ)
decays fast. In this sense, our work generalizes both categories of the previous work.

Besides the error bounds of the RL algorithms, there is recent work in [28] studying
policy evaluation in RKHS as a component of the RL algorithm and analyzing its optimal
convergence rate.

Notation: Let X be an arbitrary subset of a Euclidean space, we use C(X ) and P(X ) to
denote the bounded continuous function space and probability distribution space on X ,
respectively. We use ‖ · ‖C(X ) to denote the uniform norm on C(X ):

‖g‖C(X ) = sup
x∈X

|g(x)|.

Given a probability distribution ν on X , we use ‖ · ‖L2(ν) and ‖ · ‖∞ to denote L2-norm and

L∞-norm, respectively. Given two probability distributions µ and ν in P(X ), define the
total variation distance:

‖µ − ν‖TV = sup{|µ(A)− ν(A)| : A is a measurable subset of X}.

When µ is absolute continuous with respect to ν, define the Radon-Nikodym derivative
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dµ
dν and the Kullback-Leibler divergence:

KL(µ || ν) =
∫

X
log
( dµ

dν

)

dµ.

For any random variable, we use L(·) to denote the law of the random variable. Given
a positive integer H, [H] denotes the set {1, · · · , H}. N+ denotes the set of all positive

integers. Sd−1 denotes the unit sphere of Rd: {x ∈ Rd, ‖x‖2 = 1}. Given a Banach space
B, we use ‖ · ‖B to denote the norm of B. We say f (n) = Θ(g(n)), if there exist two
constants c, C > 0 independent of n such that cg(n) ≤ f (n) ≤ Cg(n).1

2 Preliminary

2.1 Markov Decision Process

We consider an episodic MDP (S ,A, H, P, r, µ) as the mathematical model for the RL prob-
lem. Here H is a positive constant integer indicating the length of each episode. S and
A denote the set of all the states and actions, respectively. We assume S is a subset of a
Euclidean space and A is a compact subset of a Euclidean space. P : [H]×S ×A 7→ P(S)
is the state transition probability. For each (h, s, a) ∈ [H] × S × A, P( · | h, s, a) denotes
the transition probability for the next state at step h if the current state is s and action a
is taken. r : [H] × S × A 7→ R is the reward function, denoting the expected reward at
step h if we choose action a at the state s. We assume each observed reward is the sum of
the expected reward and an independent standard Gaussian noise. µ ∈ P(S) is the initial
distribution.

We denote a policy by π = {πh}H
h=1 ∈ P(A | S , H), where

P(A | S , H) =
{

{πh( · | · )}H
h=1 : πh( · | s) ∈ P(A) for any s ∈ S and h ∈ [H]

}

.

Given a time step h, a transition probability P, a policy π and an initial distribution µ,
we use ρh,P,π,µ to denote the distribution of (Sh, Ah) where S1 ∼ µ, Ah follows the policy

πh( · | Sh) and Sh+1 is distributed according to the transition probability P( · | h, Sh , Ah).
Moreover, we use Π(h, P, µ) to denote the set of all the possible distributions of ρh,P,π,µ as
follows

Π(h, P, µ) = {ρh,P,π,µ : π ∈ P(A | S , H)},

and let
Π(P, µ) =

⋃

h∈[H]

Π(h, P, µ).

Given an MDP M and a policy π, we define the total reward as follows:

J(M, π) =
H

∑
h=1

∫

S×A
r(h, s, a)dρh,P,π,µ(s, a).

1Later we also use Θ to denote an index set associated with a family of MDPs. The specific meaning should be always
clear from context.
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The optimal total reward is defined as J∗(M) = supπ∈P(A | S ,H) J(M, π). We assume there

exists at least one optimal policy π∗ such that J(M, π∗) = J∗(M).

2.2 Reproducing Kernel Hilbert Space (RKHS)

Suppose k : (S ×A)× (S ×A) 7→ R is a continuous positive definite kernel that satisfies

1. k(z, z′) = k(z′, z), ∀z, z′ ∈ S ×A;

2. ∀m ≥ 1, z1, · · · , zm ∈ S ×A and c1, · · · , cm ∈ R, we have:

m

∑
i=1

m

∑
j=1

cicjk(zi, zj) ≥ 0.

Then, there exists a Hilbert space Hk ⊂ C(S ×A) such that

1. ∀ z ∈ S ×A, k(z, · ) ∈ Hk;

2. ∀ z ∈ S ×A and g ∈ Hk, g(z) = 〈g, k(z, · )〉k,

and k is called the reproducing kernel of Hk in [29] and we use ‖ · ‖k and 〈 ·, · 〉k to denote
the norm and inner product in the Hilbert space Hk, respectively.

Given a probability distribution ν on S × A, we will use {Λν
i }i∈N+ and {ψν

i }i∈N+ to
denote the eigenvalues and eigenfunctions of the operator

(Kνg)(z) :=
∫

S×A
k(z, z′)g(z′)dν(z′)

from L2(ν) to L2(ν). We further require that {Λν
i }i∈N+ is nonincreasing and {ψν

i }i∈N+ is

orthonormal in L2(ν). The famous Mercer decomposition states that

k(z, z′) =
+∞

∑
i=1

Λν
i ψν

i (z)ψ
ν
i (z

′). (2.1)

Moreover, for any g ∈ Hk

‖g‖2
k =

+∞

∑
i=1

1

Λν
i

|〈g, ψν
i 〉L2(ν)|2. (2.2)

See, e.g., [30, Section 2.1].
Given any two probability distributions ρ and ρ′ on S × A, the maximum mean dis-

crepancy (MMD) is defined as follows (see e.g. [31]):

MMDk(ρ, ρ′) = sup
‖g‖k≤1

∣

∣

∣

∫

S×A
g(z)dρ(z)−

∫

S×A
g(z)dρ′(z)

∣

∣

∣
.

An equivalent but more concrete expression of MMD is

MMDk(ρ, ρ′) =
√

∫

S×A

∫

S×A
k(z, z′)d(ρ − ρ′)(z)d(ρ − ρ′)(z′).
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3 Problem setup

We first specify our prior knowledge of the RL problem. We want to solve an RL problem
whose underlying MDP belongs to a family of MDPs

M = {Mθ = (S ,A, Pθ , rθ , H, µ) : θ ∈ Θ},

where S , A, H and µ are common state space, action space, length of each episode and
initial distribution. The possible transition probability Pθ and reward function rθ is in-
dexed by θ, and Θ is an index set. We do not know the exact value of θ but can access
a generative simulator. In other words, for any step h ∈ [H] and state-action pair (s, a),
we can observe a state x ∼ Pθ( · | h, s, a) and a noisy reward y ∼ N (rθ(h, s, a), 1), which is
called one sample or one access to the generative simulator. So far we need to assume the
noise of the reward is Gaussian to prove the lower bounds, but the noise can be relaxed to
be sub-Gaussian in the upper bounds. Another popular form of the simulator is the so-
called episodic simulator, through which one can only choose the initial state and a policy
to observe the whole path and corresponding rewards. Our lower bound is still valid if we
only have an episodic simulator but might be loose. How to obtain a tight lower bound in
those settings is left to future work.

We assume θ = (θP, θr) and the index set is a Cartesian product

Θ = {(θP, θr) : θP ∈ ΘP, θr ∈ Θr},

where θP and θr are the actual indexes of the transition probability and reward function,
i.e., Pθ = PθP

, rθ = rθr
. We also assume

{rθr
: θr ∈ Θr} = {r : ‖r(h, ·, ·)‖B ≤ 1, ∀h ∈ [H]},

where B is a Banach space such that B is a subset of C(S ×A) and ‖ · ‖C(S×A) ≤ B‖ · ‖B
with a positive constant B.

Following the intuition introduced in Section 1, we give the following definitions in
preparation for the analysis.

Definition 3.1.

(i) For any set Π consisting of probability distributions on S ×A, we define a semi-norm ‖ · ‖Π

on C(S ×A):

‖g‖Π := sup
ρ∈Π

∣

∣

∣

∫

S×A
g(s, a)dρ(s, a)

∣

∣

∣
.

We call this semi-norm Π-norm.

(ii) Given a Banach space, a positive constant ǫ > 0 and a probability distribution ν ∈ P(S ×
A), we define Bǫ,ν, a ν-perturbation space with scale ǫ, as follows:

Bǫ,ν := {g ∈ B : ‖g‖B ≤ 1, ‖g‖L2(ν) ≤ ǫ}.

(iii) The perturbation response by distribution mismatch is defined as the radius of Bǫ,ν under
Π-norm,

R(Π,B, ǫ, ν) := sup
g∈Bǫ,ν

‖g‖Π.
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3.1 Properties of perturbation response by distribution mismatch

We first state two propositions later used to give readers more understanding of the prop-
erties of perturbation response by distribution mismatch R(Π,B, ǫ, ν). The proofs of these
two propositions are postponed to Section 6. The first proposition gives a more concrete
formula of R(Π,B, ǫ, ν). Specifically, when B is an RKHS, R(Π,B, ǫ, ν) can be determined
by a maximin problem related to MMD; see (3.1).

Proposition 6.1. We have

R(Π,B, ǫ, ν) = sup
ρ∈Π

inf
g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖g‖L2(ν)],

where g ◦ ν is a signed measure such that

dg ◦ ν

dν
= g,

B∗ is the dual space of B and ‖ρ‖B∗ is the dual norm of linear functional

ρ(g) :=
∫

S×A
g(z)dρ(z), ∀g ∈ B,

for any signed measure ρ on S × A (we slightly abuse the notation that ρ are both the
signed measure and linear functional in B). If B is an RKHS with kernel k, then

R(Π,Hk, ǫ, ν) = sup
ρ∈Π

inf
g∈L2(ν)

[MMDk(ρ, g ◦ ν) + ǫ‖g‖L2(ν)]. (3.1)

When B is an RKHS, the kernel’s eigenvalues encode much information. The following
proposition shows that the perturbation response of P(S × A), the set of all probability
distributions on S × A, is closely related to the kernel’s eigenvalues. Later in Section 6
we will discuss how this proposition gives us the implication in the efficiency of RL algo-
rithms.

Proposition 6.3. Assume that
sup

z∈S×A
k(z, z) ≤ 1.

For any ρ ∈ P(S ×A), define

n(ρ) = max{i ∈ N
+ : nΛ

ρ
i ≥ 1}.

We have

R(P(S ×A),Hk, n− 1
2 , ν) ≥ 1

2

√

√

√

√ sup
ρ∈P(S×A)

+∞

∑
i=n(ν)+1

Λ
ρ
i ,

and, by n(ν) ≤ n,

inf
ν∈P(S×A)

R(P(S ×A),Hk, n− 1
2 , ν) ≥ 1

2

√

√

√

√ sup
ρ∈P(S×A)

+∞

∑
i=n+1

Λ
ρ
i .
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Moreover, if there exists a distribution ν̂ ∈ P(S ×A) such that

sup
i∈N+

‖ψν̂
i ‖∞ < +∞,

then

R(P(S ×A),Hk, n− 1
2 , ν̂) ≤ 2

√

√

√

√

n(ν̂)

n
+

∞

∑
i=n(ν̂)+1

Λν̂
i sup

i∈N+

‖ψν̂
i ‖∞.

3.2 General algorithm

Now we state in Algorithm 1 the general RL algorithm for estimating the optimal value
J∗(Mθ) with n samples. In Algorithm 1, the superscript θ indicates that the collected
data depends on the underlying MDP Mθ . The superscript ξ denotes the collection

{ f1, · · · , fn, F}, where fi are measurable mappings: ([H] × S × A × S × R)⊗i−1 × R 7→
[H] × S ×A, F is a measurable mapping: ([H] × S ×A× S × R)⊗n × R 7→ R. ξ can be
viewed as an RL algorithm, which adaptively chooses the step-state-action tuple (h, s, a)

at the i-th step based on all received data Dθ,ξ
i−1 according to function fi and receives a sub-

sequent state and reward through the generative simulator. After collecting n samples, the
algorithm outputs an estimate of the optimal value based on all data according to function
F. The randomness of the whole process in Algorithm 1 is related to i.i.d. standard nor-
mal random variables {ǫi}1≤i≤n, {ui}1≤i≤n, and ū, which all live in a common probability
space (Ω, P). ǫi denotes the noise in the observed reward. ui denotes the randomness
of the transition, for which we assume that, by the isomorhism theorem [32, Section 41],
pθ : [H]×S ×A× R 7→ S is a measurable function satisfying pθ(h, s, a, ui) ∼ Pθ( · | h, s, a)
for any θ ∈ Θ and h ∈ [H]. Again by the isomorphism theorem, we use ū to denote
all the randomness of the algorithm ξ itself besides the randomness within the simulator.
Mathematically, Algorithm 1 can also be summarized as follows:











Dθ,ξ
0 = ∅, Dθ,ξ

i = Dθ,ξ
i−1 ∪ {(hθ,ξ

i , s
θ,ξ
i , a

θ,ξ
i , x

θ,ξ
i , y

θ,ξ
i )}, 1 ≤ i ≤ n,

J
θ,ξ
n = F(Dθ,ξ

n , ū), (hθ,ξ
i , s

θ,ξ
i , a

θ,ξ
i ) = fi(Dθ,ξ

i−1, ū),

x
θ,ξ
i = pθ(h

θ,ξ
i , s

θ,ξ
i , a

θ,ξ
i , ui), y

θ,ξ
i = rθ(h

θ,ξ
i , s

θ,ξ
i , a

θ,ξ
i ) + ǫi.

(3.2)

We use Ξn to denote the set of all possible choices of ξ. So Ξn is the set of all possible RL
algorithms which only access the generative simulator n times. Our goal is to find the best
ξ, or the best RL algorithm, to minimize the worst-case error of the optimal total reward
given n opportunities to access the simulator:

inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξ
n − J∗(Mθ)|.

In Sections 4 and 5 below, we give lower and upper bounds for the worst-case error, re-
spectively. In both sections, we first consider the special case where the transition proba-
bility is known and then generalize our results to the case where the transition probability
is unknown. In practice, it is often of interest to estimate the optimal policy as well. In
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Algorithm 1 General Reinforcement Learning Algorithm for Estimating the Optimal Value

Input: Number of samples n

Initialize: Dθ,ξ
0 = ∅.

for i = 1, · · · , n do

Obtain i-th step-state-action tuple through (hθ,ξ
i , s

θ,ξ
i , a

θ,ξ
i ) = fi(Dθ,ξ

i−1, ū)

Collect the subsequent state x
θ,ξ
i = pθ(h

θ,ξ
i , s

θ,ξ
i , a

θ,ξ
i , ui) and the noisy reward y

θ,ξ
i =

rθ(h
θ,ξ
i , s

θ,ξ
i , a

θ,ξ
i ) + ǫi from the simulator

Set Dθ,ξ
i = Dθ,ξ

i−1 ∪ {(hθ,ξ
i , s

θ,ξ
i , a

θ,ξ
i , x

θ,ξ
i , y

θ,ξ
i )}

end

Output: J
θ,ξ
n = F(Dθ,ξ

n , ū) as an estimate of the optimal value J∗(Mθ)

the upper bound part, we also provide algorithms to obtain the optimal policy that gives
the estimated optimal total reward. Nevertheless, in the lower bound part, we abstractly
estimate the optimal total reward without estimating the optimal policy. Note that we
can always use the Monte-Carlo method to estimate the optimal total reward accurately
given an optimal or near-optimal policy. So our lower bound result still serves as a valid
difficulty measure of the RL problem aiming at finding the optimal policy.

4 Lower bound

4.1 The case of known transition

We first consider the case that the transition probability Pθ is known, assuming ΘP = {0}
is a single-point set. In this case, we have the following definition of the perturbational
complexity by distribution mismatch.

Definition 4.1. The perturbational complexity by distribution mismatch in the case of known
transition is

∆M(ǫ) := inf
ν∈P(S×A)

R(Π(P0, µ),B, ǫ, ν). (4.1)

The following theorem shows that this quantity can give a lower bound of the worst-
case error.

Theorem 4.1. Assume ΘP = {0}, i.e., there is only one possible transition probability, then

inf
ξ∈Ξn

sup
θ∈Θ

P(|Jθ,ξ
n − J∗(Mθ)| ≥

1

3
∆M(n− 1

2 )) ≥ 1

4
.

Therefore,

inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξ
n − J∗(Mθ)| ≥

1

12
∆M(n− 1

2 ).
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Proof. With fixed g ∈ B such that ‖g‖B ≤ 1, ξ ∈ Ξn and h∗ ∈ [H], we first estimate

‖L(J
θ1 ,ξ
n )−L(J

θ2 ,ξ
n )‖TV ,

where θ1, θ2 ∈ Θ satisfying

Pθ1
= Pθ2

= P0, rθ1
= 0, rθ2

(h, s, a) =

{

0, when h 6= h∗,

g(s, a), when h = h∗.

By the definition (3.2) and Pinsker’s inequality (see e.g. [33, 34]), we have

‖L(J
θ1 ,ξ
n )−L(J

θ2 ,ξ
n )‖2

TV ≤ ‖L(Dθ1,ξ
n , ū)−L(Dθ2,ξ

n , ū)‖2
TV

≤ 1

2
KL(L(Dθ1,ξ

n , ū)||L(Dθ2 ,ξ
n , ū)).

Calculation gives that

KL(L(Dθ1,ξ
n , ū)||L(Dθ2 ,ξ

n , ū))

= E log

( n

∏
i=1

exp
(

− (yθ1,ξ
i )2

2
+

y
θ1,ξ
i − rθ2

(hθ1,ξ
i , s

θ1,ξ
i , a

θ1,ξ
i )2

2

)

)

=
1

2

n

∑
i=1

E[|g(sθ1,ξ
i , a

θ1,ξ
i )|2 − 2g(sθ1,ξ

i , a
θ1,ξ
i )ǫi]1h

θ1,ξ

i =h∗

≤ 1

2

n

∑
i=1

E[|g(sθ1,ξ
i , a

θ1,ξ
i )|2].

Combining the last two inequalities, we know that

‖L(J
θ1 ,ξ
n )−L(J

θ2 ,ξ
n )‖2

TV ≤ 1

4

n

∑
i=1

E[g(sθ1,ξ
i , a

θ1,ξ
i )]2 =

n

4

∫

S×A
|g(s, a)|2 dνξ(s, a),

where

νξ =
1

n

n

∑
i=1

L(sθ1,ξ
i , a

θ1,ξ
i ).

By definition, we have

∆M(n− 1
2 ) ≤ sup

h∈[H]

sup
‖g‖B≤1,

√
n‖g‖

L2(νξ )
≤1

sup
ρ∈Π(h,P0,µ)

∫

S×A
g(s, a)dρ(s, a).

So we can choose g ∈ B with ‖g‖B ≤ 1 and h∗ ∈ [H] to define a reward function rθ2
such

that
∫

S×A
|g(s, a)|2 dνξ(s, a) ≤ 1

n
,

J∗(Mθ2
) ≥ 2

3
∆M(n− 1

2 ),
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which means that

‖L(J
θ1 ,ξ
n )−L(J

θ2 ,ξ
n )‖TV ≤ 1

2
,

{

x ∈ R : |x − J∗(Mθ2
)| < 1

3
∆M(n− 1

2 )

}

∩
{

x ∈ R : |x| < 1

3
∆M(n− 1

2 )

}

= ∅.

Noticing that J∗(Mθ1
) = 0, we can use the second condition above to have

P(|Jθ1 ,ξ
n − J∗(Mθ1

)| ≥ 1

3
∆M(n− 1

2 )

= P(|Jθ1 ,ξ
n | ≥ 1

3
∆M(n− 1

2 )

≥ P(|Jθ1 ,ξ
n − J∗(Mθ2

)| < 1

3
∆M(n− 1

2 )).

Therefore,

1

2
≥ P(|Jθ2 ,ξ

n − J∗(Mθ2
)| < 1

3
∆M(n− 1

2 ))− P(|Jθ1 ,ξ
n − J∗(Mθ2

)| < 1

3
∆M(n− 1

2 ))

≥ 1 − P(|Jθ2 ,ξ
n − J∗(Mθ2

)| ≥ 1

3
∆M(n− 1

2 ))− P(|Jθ1 ,ξ
n − J∗(Mθ1

)| ≥ 1

3
∆M(n− 1

2 )).

Rearranging the above inequality, we can then conclude that for any ξ ∈ Ξn,

sup
θ∈Θ

P(|Jθ,ξ
n − J∗(Mθ)| ≥

1

3
∆M(n− 1

2 )) ≥ 1

4
.

This completes the proof.

4.2 The case of unknown transition

In this section, we deal with the general case when there are multiple possible transition
probabilities. Following the idea of Theorem 4.1,

sup
θ∈Θ

∆Mθ
(n− 1

2 )

can provide a lower bound of the worst-case error, where Mθ is the subset of M whose
transition probability is Pθ . However, we can have an even better lower bound. The
critical observation is that we do not know the exact value of Pθ, but can only sample from
Pθ with finite observed data. So the optimal distribution ν for estimation corresponding to

∆Mθ
(n− 1

2 ) is generally inaccessible, and we can leverage this fact to better characterize the
perturbational complexity to improve the lower bound. To this end, we assume a general
sampling algorithm as follows to characterize the set of distribution ν:























Dθ,ξ̄
0 = ∅, Dθ,ξ̄

i = Dθ,ξ̄
i−1 ∪ {(hθ,ξ̄

i , s
θ,ξ̄
i , a

θ,ξ̄
i , x

θ,ξ̄
i )}, 1 ≤ i ≤ n,

(hθ,ξ̄
i , s

θ,ξ̄
i , a

θ,ξ̄
i ) = f̄i(Dθ,ξ̄

i−1, ū), x
θ,ξ̄
i = pθ(h

θ,ξ̄
i , s

θ,ξ̄
i , a

θ,ξ̄
i , ui),

νθ,ξ̄ =
1

n

n

∑
i=1

L(sθ,ξ̄
i , a

θ,ξ̄
i ).

(4.2)
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Here ξ̄ = ( f̄1, · · · , f̄n) and f̄i are measurable mappings ([H] × S × A × S)⊗(i−1) × R 7→
[H] × S × A. Eq. (4.2) shares a similar spirit with (3.2), but only focuses on sampling
the next-step states from the transition probability. Similar to ξ in (3.2), ξ̄ can be viewed
as a sampling algorithm which adaptively chooses n step-state-action tuples (h, s, a) and
obtains samples from Pθ( · | h, s, a). We let Ξ̄n denote the set of all possible choices of ξ̄.
Now we define the perturbational complexity by distribution mismatch in the case of
unknown transition.

Definition 4.2. The perturbational complexity by distribution mismatch in the case of un-
known transition is

∆M(ǫ) := inf
ξ̄∈Ξ̄

[1/ǫ2]

sup
θ∈Θ

R(Π(Pθ , µ),B, ǫ, νθ,ξ̄). (4.3)

Here we choose the number of samples to be [1/ǫ2] so that the result is consistent with
the case of known transition. The following theorem shows that perturbational complexity
gives a lower bound of the worst-case error in the case of unknown transition.

Theorem 4.2. We have

inf
ξ∈Ξn

sup
θ∈Θ

P(|Jθ,ξ
n − J∗(Mθ)| ≥

1

3
∆M(n− 1

2 )) ≥ 1

4
.

Therefore,

inf
ξ∈Ξn

sup
θ∈Θ

E|Jθ,ξ
n − J∗(Mθ)| ≥

1

12
∆M(n− 1

2 ).

Proof. Following the proof of Theorem 4.1, we know that for any ξ ∈ Ξn,

sup
θ∈Θ

P

(

|Jθ,ξ
n − J∗(Mθ)| ≥

1

3
sup
θ∈Θ

R(Π(Pθ , µ),B, n− 1
2 , νθ,ξ)

)

≥ 1

4
.

Here

νθ,ξ =
1

n

n

∑
i=1

L(sθ0(θ),ξ
i , a

θ0(θ),ξ
i ),

and {s
θ0(θ),ξ
i , a

θ0(θ),ξ
i }1≤i≤n is generated by the sampling path (3.2) with Pθ0(θ)

= Pθ and

rθ0(θ)
= 0. Hence, y

θ0(θ),ξ
i = ǫi for any 1 ≤ i ≤ n. Using the isomorphism theorem [32,

Section 41], we can find the measurable mappings Ti : R 7→ R for 1 ≤ i ≤ n + 1 such that

(T1(ū), · · · , Tn(ū), tn+1(ū)) has the same distribution with (ǫ1, · · · , ǫn, ū).

Therefore, for any ξ ∈ Ξn, there exists ξ̄ ∈ Ξ̄n such that for all θ ∈ Θ,

νθ,ξ̄ = νθ,ξ .

Therefore,

sup
θ∈Θ

R(Π(Pθ , µ),B, n− 1
2 , νθ,ξ) ≥ ∆M(n− 1

2 ),

which concludes our proof.
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5 Upper bound

In this section, we discuss how to use ∆M(ǫ) in Definitions 4.1, 4.2 to design sample-
efficient RL algorithms. We will use C to denote a universal positive constant, which may
vary from line to line. As motivated in the introduction, one important reason for us to
consider the perturbation response is to study those high-dimensional spaces in which L∞

estimation can not be obtained efficiently through finite samples. Many common RKHSs
are such examples. So in this section we focus on the case that B is an RKHS with kernel
k. We remark that most of our results still hold for general Banach spaces whenever an
L2 estimation can be obtained efficiently through finite samples, such as linear space and
Barron space [12].

5.1 The case of known transition

Again we first consider the case where the transition probability is known, i.e., ΘP = {0}.
We let

ν̂ = arg min
ν∈P(S×A)

R(Π(P0, µ),Hk, n− 1
2 , ν).

Here ν̂ is an intrinsic property of the MDP family M without any dependence of sampling.
In practice, the minimizer ν̂ is probably hard to obtain but similar argument holds if we
can obtain a probability distribution ν̂′ such that

R(Π(P0, µ),Hk, n− 1
2 , ν̂′)

is small. Once we know the distribution ν̂, we can sample n2 i.i.d. samples z1, · · · , zn2

from ν̂ and perform the following fitted reward algorithm to estimate the optimal policy.
Notice that, in order to solve (5.1) below, we only need to solve a convex optimization
problem with the same objective function but in the finite-dimensional set

{

‖r‖k ≤ 1 : r =
n2

∑
i=1

cik(·, zi)

}

.

The reason is that for any r ∈ Hk, we can always find coefficients {ci}1≤i≤n2 to construct a

function ∑
n2

i=1 cik(·, zi) such that

r(zj) =
n2

∑
i=1

cik(zj, zi), 1 ≤ j ≤ n2, and ‖r‖k ≥
∥

∥

∥

n2

∑
i=1

cik(·, zi)
∥

∥

∥

k
.

See, e.g., [35, Proposition 4.2].
The algorithm described above based on the fitted reward is summarized in Algo-

rithm 2, and we have the following convergence result.

Theorem 5.1. Assume ΘP = {0}, i.e., there is only one possible transition probability, and

sup
z∈S×A

k(z, z) ≤ 1.
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Algorithm 2 Fitted Reward Algorithm

Input: n2 i.i.d. samples z1, · · · , zn2 from distribution ν̂
for h = 1, 2, · · · , H do

Sample yθ,h
1 , · · · , yθ,h

n2 from N (rθ(h, z1), 1), · · · ,N (rθ(h, zn2), 1), respectively

Compute r̂θ(h, ·) as the minimizer of the optimization problem

min
‖r‖k≤1

n2

∑
i=1

[r(zi)− yθ,h
i ]2 (5.1)

end
Collect the fitted reward function to form the MDP (S ,A, H, P0, r̂θ , µ), of which both re-
ward function and transition are known. Denote it as M̂θ .
Output: π̂θ as the optimal policy of M̂θ .

For any θ ∈ Θ and p ∈ (0, 1), with probability at least 1 − p, we have

|J(Mθ , π̂θ)− J∗(Mθ)| ≤ CH∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

Remark 5.1. As we need Hn2 samples to achieve the upper bound ∆M(n− 1
2 ), the con-

vergence rate with respect to n in this theorem does not match the lower bound offered

in Theorem 4.1. Still, ∆M(n− 1
2 ) does give an indication whether an RL problem can be

solved efficiently or not. For example, if ∆M(n− 1
2 ) = Θ(n− 1

2 ), then the convergence rate

with respect to n is between n− 1
4 and n− 1

2 . We can hence know that the corresponding RL

problem can be solved efficiently. On the other hand, if and only if ∆Md
(n− 1

2 ) = Θ(n− 1
d ),

where (Md)d∈N+ are families of MDPs and d denotes the dimension of state-action space
of Md, we know that the RL problems suffer from the curse of dimensionality. Over-

all, whether we can establish a dimension-free convergence rate for ∆M(n− 1
2 ) determines

whether we can construct a dimension-free RL algorithm. Similar arguments hold for the
case of unknown transition; see Theorems 4.2 and 5.2.

Before proving Theorem 5.1, we first prove the following lemma concerning the L2-
distance between rθ and r̂ solved in Algorithm 2.

Lemma 5.1. Assume that
sup

z∈S×A
k(z, z) ≤ 1.

Let (z1,1, · · · , z1,n), · · · , (zn,1, · · · , zn,n) be i.i.d. drawn from a distribution ν ∈ (S ×A)⊗n (the
n-ary Cartesian power of S ×A) and

ν̄ =
1

n

n

∑
i=1

νi,
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where {νi}1≤i≤n are marginal distributions of ν. Random variables {ǫi,j}1≤i≤n,1≤j≤n, condi-

tional on {zi,j}1≤i≤n,1≤j≤n, are independent, 1-subguassian and mean zero. Given r∗ ∈ Hk with

‖r∗‖k ≤ 1, we let

r̂ = arg min
‖r‖k≤1

n

∑
i=1

n

∑
j=1

[r(zi,j)− r∗(zi,j)− ǫi,j]
2. (5.2)

Then, for any p ∈ (0, 1), with probability at least 1 − p, we have

‖r̂ − r∗‖L2(ν̄) ≤ C

√

1

n

[

1 + log
(n

p

)]

.

Remark 5.2. Note that the setting of Lemma 5.1 is more general than Theorem 5.1 since
we do not require zi,1, · · · , zi,n to be i.i.d. random variables and we know the error is
Gaussian instead of sub-Gaussian. We will use this general setting later to deal with the
case of unknown transition; see the proof of Theorem 5.2.

Proof. Following (5.2), we know that

n

∑
i=1

n

∑
j=1

[r̂(zi,j)− r∗(zi,j)− ǫi,j]
2 ≤

n

∑
i=1

n

∑
j=1

ǫ2
i,j.

Therefore,

n

∑
i=1

n

∑
j=1

[r̂(zi,j)− r∗(zi,j)]
2 ≤ 2

n

∑
i=1

n

∑
j=1

ǫi,j[r̂(zi,j)− r∗(zi,j)] ≤ 4 sup
‖r‖k≤1

n

∑
i=1

n

∑
j=1

ǫi,jr(zi,j).

Notice that

sup
‖r‖k≤1

n

∑
i=1

n

∑
j=1

ǫi,jr(zi,j) = sup
‖r‖k≤1

〈r,
n

∑
i=1

n

∑
j=1

ǫi,jk(·, zi,j)〉k

=

√

√

√

√

n

∑
i=1

n

∑
j=1

n

∑
i′=1

n

∑
j′=1

ǫi,jǫi′,j′k(zi,j, zi′,j′).

In other words, there exists a positive semi-definite matrix K ∈ Rn2×n2
whose diagonal en-

tries are no larger than 1 and a random vector ǫ̃ ∈ R
n2

whose entries are {ǫi,j}1≤i≤n,1≤j≤n

such that

sup
‖r‖k≤1

n

∑
i=1

n

∑
j=1

ǫi,jr(zi,j) =
√

(ǫ̃T)Kǫ̃.

Let K = JT J, then we have ‖J‖S ≤ ‖J‖F =
√

trace(K) ≤ n, where ‖ · ‖S and ‖ · ‖F denote
the spectral norm and Frobenious norm, respectively, and

sup
‖r‖k≤1

n

∑
i=1

n

∑
j=1

ǫi,jr(zi,j) = ‖Jǫ̃‖2.
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By the concentration of anisotropic random vectors (see, e.g., [36, Theorem 6.3.2]), we
can conclude that sup‖r‖k≤1 ∑

n
i=1 ∑

n
j=1 ǫi,jr(zi,j), conditional on {zi,j}1≤i≤n,1≤j≤n, is Cn-

subgaussian. Hence, with probability at least 1 − p, we have

sup
‖r‖k≤1

n

∑
i=1

n

∑
j=1

ǫi,jr(zi,j) ≤ Cn
√

1 + log(1/p).

Therefore, with probability at least 1 − p,

1

n2

n

∑
i=1

n

∑
j=1

[r̂(zi,j)− r∗(zi,j)]
2 ≤ C

n

√

1 + log(1/p). (5.3)

Noticing ‖r̂ − r∗‖k ≤ ‖r̂‖k + ‖r∗‖k ≤ 2, we next define ν̄n = 1
n2 ∑

n
i=1 δzi,j

and estimate

sup

‖r‖k≤2,‖r‖
L2(ν̄n)

≤C
√

1
n [1+log(1/p)]

‖r‖L2(ν̄)

to prove the result. Given ǫ > 0, we have

sup
‖r‖k≤1,‖r‖

L2(ν̄n)
≤ǫ

‖r‖L2(ν̄)

= sup
‖r‖k≤1,‖r‖

L2(ν̄n)
≤ǫ

sup
‖g‖

L2(ν̄)
≤1

∫

S×A
g(z)r(z)dν̄(z)

= sup
‖g‖

L2(ν̄)
≤1

sup
‖r‖k≤1,‖r‖

L2(ν̄n)
≤ǫ

∫

S×A
g(z)r(z)dν̄(z)

= sup
‖g‖

L2(ν̄)
≤1

inf
g′∈L2(ν̄n)

[MMDk(g ◦ ν̄, g′ ◦ ν̄n) + ǫ‖g′‖L2(ν̄n)]

= sup
‖g‖

L2(ν̄)
≤1

inf
c1,1,··· ,cn,n

[

MMDk

(

g ◦ ν̄,
1

n2

n

∑
i=1

n

∑
j=1

ci,jδzi,j

)

+ ǫ

√

√

√

√

1

n2

n

∑
i=1

n

∑
j=1

c2
i,j

]

≤ sup
‖g‖

L2(ν̄)
≤1

inf
c1,1,··· ,cn,n

[

1

n

n

∑
j=1

MMDk

(

g ◦ νj,
1

n

n

∑
i=1

ci,jδzi,j

)

+ ǫ

√

√

√

√

1

n2

n

∑
i=1

n

∑
j=1

c2
i,j

]

≤ 2

{

sup
‖g‖

L2(ν̄)
≤1

inf
c1,1,··· ,cn,n

[

1

n

n

∑
j=1

MMD2
k

(

g ◦ νj,
1

n

n

∑
i=1

ci,jδzi,j

)

+
ǫ2

n2

n

∑
i=1

n

∑
j=1

c2
i,j

]}
1
2

= 2

{

sup
∑

n
j=1 m2

j ≤n

1

n

n

∑
j=1

sup
‖g‖

L2(νj)
≤mj

inf
c1,··· ,cn

[

MMD2
k

(

g ◦ νj,
1

n

n

∑
i=1

ciδzi,j

)

+
ǫ2

n

n

∑
i=1

c2
i

]}
1
2

. (5.4)

In the third equality above, we have used Eq. (6.2) (when B is an RKHS with kernel k) that
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is proved in Lemma 6.1 below. For 1 ≤ j ≤ n, we then estimate

sup
‖g‖

L2(νj)
≤mj

inf
c1,··· ,cn

[

MMD2
k

(

g ◦ νj,
1

n

n

∑
i=1

ciδzi,j

)

+
ǫ2

n

n

∑
i=1

c2
i

]

.

We first find a probability distribution λ on N
+ and a measurable mapping φ : N

+× (S ×
A) such that

k(z, z′) = Eω∼λφ(ω, z)φ(ω, z′),

which can be achieved using Mercer decomposition (see, e.g., [30, Section 2.3]). Then,

MMD2
k

(

g ◦ νj,
1

n

n

∑
i=1

ciδzi,j

)

= Eω∼λ

[

∫

S×A
g(z)φ(ω, z)dνj(z)−

1

n

n

∑
i=1

ciφ(ω, zi,j)

]2

.

Recalling that z1,j, · · · , zn,j are i.i.d. drawn from νj, we can use Proposition 1 in [30] to
obtain that with probability at least 1 − p

sup
‖g‖

L2(νj)
≤1

inf
∑

n
i=1 c2

i ≤4n

Eω∼λ

[

∫

S×A
g(z)φ(ω, z)dνj(z)−

1

n

n

∑
i=1

ciφ(ω, zi,j)

]2

≤ 4t,

where t satisfies that

5d(t) log
(16d(t)

p

)

= n, (5.5)

and

d(t) = sup
z∈S×A

〈φ(·, z), (Σ + tI)−1φ(·, z)〉L2(λ)

≤ t−1 sup
z∈S×A

〈φ(·, z), φ(·, z)〉L2(λ)

= t−1 sup
z∈S×A

k(z, z) ≤ t−1, (5.6)

in which Σ is a self-adjoint, positive semi-definite operator on L2(λ) (see the detailed def-
inition in [30, Section 2.1]). Therefore, from (5.5), (5.6), we have

sup
‖g‖

L2(νj)
≤1

inf
∑

n
i=1 c2

i ≤4n

Eω∼λ

[

∫

S×A
g(z)φ(ω, z)dνj(z)−

1

n

n

∑
i=1

ciφ(ω, zi,j)

]2

≤ 4

d(t)
≤ C

n

[

1 + log
(n

p

)

]

,

which means that

sup
‖g‖

L2(νj)
≤mj

inf
c1,··· ,cn

[

MMD2
k

(

g ◦ νj,
1

n

n

∑
i=1

ciδzi,j

)

+
ǫ2

n

n

∑
i=1

c2
i

]

≤ Cm2
j

1

n

[

1+ log
(n

p

)

]

+Cm2
j ǫ2.
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Combining the last inequality with (5.4), we can obtain that

sup
‖r‖k≤1,‖r‖

L2(ν̄n)
≤ǫ

‖r‖L2(ν̄) ≤ C

√

1

n

[

1 + log
(n

p

)

]

+ Cǫ. (5.7)

Recalling inequality (5.3) and choosing ǫ = C
√

1
n [1 + log(1/p)] in (5.7), we know that

with probability at least 1 − p

sup

‖r‖k≤2,‖r‖
L2(ν̄n)

≤C
√

1
n [1+log(1/p)]

‖r‖L2(ν̄) ≤ C

√

1

n

[

1 + log
(n

p

)

]

,

which concludes the proof.

Proof of Theorem 5.1. Using Lemma 5.1 and the union bound, we know that for any θ ∈ Θ,
with probability at least 1 − p,

‖r̂θ(h, ·)− rθ(h, ·)‖L2(ν̂) ≤ C

√

1

n

[

1 + log
(nH

p

)

]

, ∀h ∈ [H].

Recalling the definition of ∆M(n− 1
2 ) in Definition 4.1 in the case of known transition

∆M(n− 1
2 ) = sup

h∈[H]

sup
‖r‖k≤1,

√
n‖r‖

L2(ν̂)
≤1

‖r‖Π(h,P0,µ),

we know that for any π ∈ P(A | S , H) and h ∈ [H],
∣

∣

∣

∣

∫

S×A
rθ(h, s, a)dρh,P0 ,π,µ(s, a)−

∫

S×A
r̂θ(s, a)dρh,P0 ,π,µ(h, s, a)

∣

∣

∣

∣

≤ C∆M(n− 1
2 )

√

1 + log
(nH

p

)

,

which means that for any π ∈ P(A | S , H)

|J(Mθ , π)− J(M̂θ , π)| ≤ CH∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

Therefore,

0 ≤ J∗(Mθ)− J(Mθ , π̂θ) = J∗(Mθ)− J∗(M̂θ) + J∗(M̂θ)− J(Mθ , π̂θ)

= sup
π∈P(A | S)

J(Mθ , π)− sup
π∈P(A | S)

J(M̂θ , π) + J(M̂θ , π̂θ)− J(Mθ , π̂θ)

≤ CH∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

This completes the proof.
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Remark 5.3. We remark that equivalence exists between the RL problem with known tran-
sition and the supervised learning problem with respect to the Π-norm in the RKHS. On
the one hand, the above proof shows that, for any function g in the unit ball of the RKHS
and any h ∈ [H], once we can use finite samples to obtain an estimation ĝ which is accurate
with respect to ‖ · ‖Π(h,P0,µ), then the corresponding RL problem can be solved efficiently.

On the other hand, Lemma 5.1 shows that one can always use finite samples to efficiently
obtain an accurate estimation, in the L2 sense, of a target function lying in the unit ball
of the RKHS, and Theorem 4.1 tells that once the RL problem can be solved efficiently,
∆M(ǫ) must decay fast with respect to ǫ. Therefore, we conclude that if the RL problem
can be solved efficiently, for any h ∈ [H], one can always obtain an estimation ĝ of a target
function g in the unit ball of the RKHS which is accurate with respect to ‖ · ‖Π(h,P0,µ).

5.2 The case of unknown transition

Similar to the case of known transition in the previous subsection, we consider

ξ̂ = arg min
ξ̄∈Ξ̄n

sup
θ∈Θ

R(Π(Pθ , µ),Hk , n− 1
2 , νθ,ξ̄),

an intrinsic property of the MDP family M in the case of unknown transition. Again,

similar argument also holds if ξ̂ is not the minimizer but

sup
θ∈Θ

R(Π(Pθ , µ),Hk, n− 1
2 , νθ,ξ̂)

is small. Given ξ̂, we sample

(ẑθ
1,1, · · · , ẑθ

1,n), · · · , (ẑθ
n,1, · · · , ẑθ

n,n)

as i.i.d. copies of ((sθ,ξ̂
1 , a

θ,ξ̂
1 ), · · · , (sθ,ξ̂

n , a
θ,ξ̂
n )) defined in (4.2). We then use {ẑi,j}1≤i≤n,1≤j≤n

to perform the following variant of fitted Q-iteration algorithm (see, e.g., [17, 21, 24]), as
summarized in Algorithm 3. To understand the idea of Algorithm 3/fitted Q-iteration,
we define the optimal action-value function (Q-value function) Q∗

h : S × A 7→ R as the
optimal expected cumulative reward of the MDP starting from step h:

Qθ,∗
h (s, a) = sup

π∈P(A | S ,H)

EPθ ,π

[ H

∑
h′=h

rθ(h
′, Sh′ , Ah′) | Sh = s, Ah = a

]

. (5.8)

Here the expectation is taken among the MDP paths generated by transition proba-

bility Pθ and policy π. Let πθ,∗ = (πθ,∗
h )h∈[H] be the greedy policy with respect to

Qθ,∗ = (Qθ,∗
h )h∈[H]:

supp(πθ,∗
h ( · | s)) ⊂

{

a ∈ A : Qθ
h(s, a) = max

a′∈A
Qθ

h(s, a′)
}

,
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for any s ∈ S and h ∈ [H]. Here supp(πθ,∗
h ( · | s)) denotes the support of πθ,∗

h ( · | s). We

can then conclude that πθ,∗ is the optimal policy of Mθ (see, e.g. [37, Theorem 4.5.1]):

J(Mθ , πθ,∗) = sup
π∈P(A | S ,H)

J(Mθ , π).

We define the Bellman optimal operator T θ
h : Hk 7→ Hk as follows:

(T θ
h g)(s, a) = rθ(h, s, a) + Es′∼Pθ( · | h,s,a)[max

a′∈A
g(s′, a′)]. (5.9)

Then the famous Bellman equations gives

Qθ,∗
h = T θ

h Qθ,∗
h+1, ∀h ∈ [H], Qθ,∗

H+1 = 0. (5.10)

We assume that for any g ∈ Hk and θ ∈ Θ,

‖T θ
h g‖k ≤ ‖g‖k + 1, (5.11)

which implies that

‖Qθ,∗
h ‖k ≤ H − h + 1. (5.12)

Finally Eqs. (5.10), (5.12) motivate us to solve the optimization problem (5.13) in Algo-
rithm 3. Note that (5.13) can be solved as a finite-dimensional convex optimization prob-
lem in the same way as (5.1); see the comment before Algorithm 2.

Algorithm 3 Fitted Q-Iteration Algorithm

Input: n2 samples (ẑθ
1,1, · · · , ẑθ

1,n), · · · , (ẑθ
n,1, · · · , ẑθ

n,n) as i.i.d. copies of

((sθ,ξ̂
1 , a

θ,ξ̂
1 ), · · · , (sθ,ξ̂

n , a
θ,ξ̂
n )) defined in (4.2).

Initialize: Qθ
H+1(s, a) = 0 for any (s, a) ∈ S ×A.

for h = H, H − 1, · · · , 1 do
for i = 1, · · · , n and j = 1, · · · , n do

Sample rθ
i,j ∼ N (rθ(h, ẑθ

i,j), 1) and sθ,′
i,j ∼ Pθ( · | h, ẑθ

i,j)

Compute yθ
i,j = rθ

i,j + maxa′∈A Qh+1(s
θ,′
i,j , a′)

end

Compute Qθ
h as the minimizer of the optimization problem

min
‖g‖k≤H−h+1

n

∑
i=1

n

∑
j=1

[g(ẑθ
i,j)− yθ

i,j]
2 (5.13)

end

Output: π̂θ as the greedy policies with respect to (Qθ
h)h∈[H].

We have the following convergence result regarding Algorithm 3.
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Theorem 5.2. Assume that (5.11) holds and

sup
z∈S×A

k(z, z) ≤ 1.

Then, for any θ ∈ Θ, with probability at least 1 − p,

|J(Mθ , π̂θ)− J∗(Mθ)| ≤ CH3∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

Remark 5.4. Assumption (5.11) is used to control the approximation error in fitted Q-
iteration. Similar assumptions are made in [15–17, 21, 24, 38]. By choosing g = 0 in (5.11),
we can see that (5.11) is stronger than the setting in Theorem 4.2, which only requires
‖rθ(h, ·)‖k ≤ 1 for any θ ∈ Θ and h ∈ [H]. How to fill out this gap is left for future work.

Proof. For each time step h ∈ [H], by Eq. (5.13), we have ‖Qθ
h‖k ≤ H − h + 1. With the

optimal Bellman operator (5.9), we have

yθ
i,j = rθ(h, ẑθ

i,j) + ǫi,j + max
a′∈A

Qθ
h+1(s

θ,′
i,j , a′)

= (T θ
h Qθ

h+1)(ẑ
θ
i,j) + (max

a′∈A
Qθ

h+1(s
θ,′
i,j , a′)− Es′∼Pθ( · | h,ẑθ

i,j)
[max
a′∈A

Qθ
h+1(s

θ,′
i,j , a′)]) + ǫi,j,

where ǫi,j are standard normal random variables. With the boundedness of Q

sup
z∈S×A

|Qθ
h+1(z)| = sup

z∈S×A
|〈Qθ

h+1, k(·, z)〉k |

≤ (H − h) sup
z∈S×A

‖k(·, z)‖k = (H − h) sup
z∈S×A

√

k(z, z) ≤ H − h,

we know that yθ
i,j − (T θ

h Qθ
h+1)(ẑ

θ
i,j) is CH-subgaussian; see, e.g., [36, Example 2.5.8]. With

the assumption (5.11), we know ‖T θ
h Qθ

h+1‖k ≤ H − h + 1. Hence, we can use Lemma 5.1

and the union bound to obtain that with probability at least 1 − p, for any h ∈ [H],

‖Qθ
h − T θ

h Qθ
h+1‖L2(νθ,ξ̂)

≤ CH

√

1

n

[

1 + log
(nH

p

)

]

.

Noticing that ‖Qθ
h −T θ

h Qθ
h+1‖k ≤ 2H and the definition of ∆M(n− 1

2 ) in (4.3), we have that,

with probability at least 1 − p, for any h ∈ [H],

sup
π∈P(A | S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h(s, a)− (T θ
h Qθ

h+1)(s, a)]dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤ CH∆M(n− 1
2 )

√

1 + log
(nH

p

)

. (5.14)
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Using the optimal Bellman equation (5.10), we have:

∣

∣

∣

∣

∫

S×A
[Qθ

h − Qθ,∗
h ](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

S×A
[Qθ

h − (T θ
h Qθ

h+1)](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S×A
[(T θ

h Qθ,∗
h+1)− (T θ

h Qθ
h+1)](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

. (5.15)

Notice that
∣

∣

∣

∣

∫

S×A
[(T θ

h Qθ,∗
h+1)− (T θ

h Qθ
h+1)](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

S×A
Es′∼Pθ( · | h,s,a)[max

a′∈A
Qθ,∗

h+1 − max
a′∈A

Qθ
h+1](s

′, a′)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤ max

{∣

∣

∣

∣

∫

S×A
Es′∼Pθ( · | h,s,a) max

a′∈A
[Qθ,∗

h+1 − Qθ
h+1](s

′, a′)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

,

∣

∣

∣

∣

∫

S×A
Es′∼Pθ( · | h,s,a) max

a′∈A
[Qθ

h+1 − Qθ,∗
h+1](s

′, a′)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

}

≤ sup
π∈P(A | S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h+1 − Qθ,∗
h+1](s, a)dρh+1,Pθ ,π,µ(s, a)

∣

∣

∣

∣

,

where the last inequality holds because we can choose policies π1 and π2 such that π1
h′ =

π2
h′ = π for h′ 6= h + 1 and π1

h+1 and π2
h+1 are the greedy policies of [Qθ,∗

h+1 − Qθ
h+1](s, a)

and [Qθ
h+1 − Qθ,∗

h+1](s, a), respectively. Combining the last inequality, inequalities (5.14)

and (5.15), we have that with probability 1 − p, ∀h ∈ [H]

sup
π∈P(A|S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h − Qθ,∗
h ](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤CH∆M(n− 1
2 )

√

1 + log
(nH

p

)

+ sup
π∈P(A | S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h+1 − Qθ,∗
h+1](s, a)dρh+1,Pθ ,π,µ(s, a)

∣

∣

∣

∣

.

With the recursive relationship above, we have that, with probability at least 1 − p,

sup
h∈[H]

sup
π∈P(A | S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h − Qθ,∗
h ](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤CH2∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

We can then use the famous performance difference lemma (see, e.g., [39, Lemma 3.2]
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or [22, Lemma 6.1]) to obtain that

0 ≤ J∗(Mθ)− J(Mθ , π̂θ)

=
H

∑
h=1

∫

S×A ∑
a′∈A

Qθ,∗
h (s, a′)[πθ,∗

h (a′ | s)− π̂θ
h(a

′ | s)]dρh,Pθ ,π̂θ ,µ(s, a)

=
H

∑
h=1

∫

S×A ∑
a′∈A

{[Qθ,∗
h − Qθ

h](s, a′)πθ,∗
h (a′ | s) + Qθ

h(s, a′)[πθ,∗
h − π̂θ

h](a
′ | s)

+ [Qθ
h − Qθ,∗

h ](s, a′)π̂θ
h(a

′ | s)}dρh,Pθ ,π̂θ ,µ(s, a). (5.16)

Noticing that ∑a′∈A Qθ
h(s, a′)[πθ,∗

h − π̂θ
h](a

′|s) ≤ 0 since π̂θ is the greedy policy with respect

to Qθ
h, we can conclude that, with probability at least 1 − p,

|J∗(Mθ)− J(Mθ , π̂θ)| ≤ CH sup
h∈[H]

sup
π∈P(A | S ,H)

∣

∣

∣

∣

∫

S×A
[Qθ

h − Qθ,∗
h ](s, a)dρh,Pθ ,π,µ(s, a)

∣

∣

∣

∣

≤ CH3∆M(n− 1
2 )

√

1 + log
(nH

p

)

.

This completes the proof.

6 Discussion on perturbational complexity by distribution

mismatch

In this section, we discuss in more details the perturbation response R(Π,B, ǫ, ν) and
the perturbational complexity ∆M(ǫ). We first give a more concrete expression of
R(Π,B, ǫ, ν).

Proposition 6.1. We have

R(Π,B, ǫ, ν) = sup
ρ∈Π

inf
g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖g‖L2(ν)],

where g ◦ ν is a signed measure such that

dg ◦ ν

dν
= g,

B∗ is the dual space of B and ‖ρ‖B∗ is the dual norm of linear functional

ρ(g) :=
∫

S×A
g(z)dρ(z), ∀g ∈ B,

for any signed measure ρ on S × A (we slightly abuse the notation that ρ are both the signed
measure and linear functional in B). If B is an RKHS with kernel k, then

R(Π,Hk, ǫ, ν) = sup
ρ∈Π

inf
g∈L2(ν)

[MMDk(ρ, g ◦ ν) + ǫ‖g‖L2(ν)]. (6.1)
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Proof. It is sufficient to prove that

sup
‖g‖B≤1,‖g‖

L2(ν)
≤ǫ

∫

S×A
g(z)dρ(z) = inf

g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖g‖L2(ν)]. (6.2)

Eq. (6.1) can be derived using the definition of maximum mean discrepancy.
Define F1, F2 : B 7→ (−∞,+∞]:

F1(g) =

{

∫

S×A g(z)dρ(z) if ‖g‖B ≤ 1,

+∞ if ‖g‖B > 1,
F2(g) =

{

0 if ‖g‖L2(ν) ≤ ǫ,

+∞ if ‖g‖L2(ν) > ǫ.

Then F1 and F2 are both convex functions in B. We can define the conjugate functions F∗
1

and F∗
2 : B∗ 7→ (−∞,+∞]:

F∗
1 (l) = sup

g∈B
[l(g)− F1(g)] = sup

‖g‖B≤1

[l(g)− ρ(g)] = ‖l − ρ‖B∗ ,

F∗
2 (l) = sup

g∈B
[l(g)− F2(g)] = sup

g∈B,‖g‖
L2(ν)

≤ǫ

l(g) = ǫ sup
g∈B,‖g‖

L2(ν)
≤1

l(g).

We then compute
sup

g∈B,‖g‖
L2(ν)

≤1

l(g).

Let l ∈ B∗ such that
Ml = sup

g∈B,‖g‖
L2(ν)

≤1

l(g) < +∞.

Notice that l is a linear mapping in B such that

|l(g)| ≤ Ml‖g‖L2(ν), ∀ g ∈ B.

Using Hahn-Banach theorem [40, Corollary 1.2] and Riesz representation theorem in L2(ν)
[40, Theorem 4.11], we know that there exists Rl ∈ L2(ν) such that

l(g) =
∫

S×A
Rl(z)g(z)dν(z), ∀ g ∈ B. (6.3)

Hence,
sup

g∈B,‖g‖
L2(ν)

≤1

l(g) = ‖PBRl‖L2(ν),

where PB is the orthogonal projection from L2(ν) to B. Consequently,

F∗
2 (l) =

{

ǫ‖PBRl‖L2(ν) if exists Rl ∈ L2(ν) s.t. Eq. (6.3) holds,

+∞ otherwise.

Noticing that F1 is continuous at 0, we can use Fenchel-Rockafellar Theorem [40, Theo-
rem 1.12] to obtain that

inf
r∈B

[F1(r) + F2(r)] = − inf
l∈B∗

[F∗
1 (l) + F∗

2 (−l)],



J. Mach. Learn., 1(1):1-37 27

which means that

sup
‖g‖B≤1,‖g‖

L2(ν)
≤ǫ

∫

S×A
g(z)dρ(z) = inf

g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖PBg‖L2(ν)].

Finally, noticing that ‖ρ − g ◦ ν‖B∗ = ‖ρ − (PBg) ◦ ν‖B∗ , we obtain

inf
g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖PBg‖L2(ν)] = inf
g∈L2(ν)

[‖ρ − (PBg) ◦ ν‖B∗ + ǫ‖PBg‖L2(ν)]

= inf
g∈L2(ν)

[‖ρ − g ◦ ν‖B∗ + ǫ‖g‖L2(ν)],

which completes the proof.

In the following, we again only consider the case that B is an RKHS with kernel k. We
first show that the finite concentration coefficients, considered in [13, 17, 21, 23–25, 41, 42],
implies that the perturbation response must decay fast. So our results generalize the previ-
ous works based on the assumption of concentratability. Note that the original assumption
on concentration coefficients is only stated for the case p = 2, and the corresponding M is
called concentration coefficients in previous works.

Proposition 6.2. Assume that there exists 1 < p ≤ 2 and a distribution ν such that

M = sup
ρ∈Π

∥

∥

∥

dρ

dν

∥

∥

∥

Lp(ν)
< +∞, (6.4)

and
sup

z∈S×A
k(z, z) ≤ 1.

Then,

R(Π,Hk, n− 1
2 , ν) ≤ 2Mn

1
p−1

.

Proof. For any ρ ∈ Π, define

gρ =
dρ

dν
,

and choose K > 0, then

inf
g∈L2(ν)

[

MMDk(ρ, g ◦ ν) +
‖g‖L2(ν)√

n

]

≤ MMDk(gρ ◦ ν, (gρ1|gρ|≤K) ◦ ν)) +
‖gρ1|gρ|≤K‖L2(ν)√

n

≤ ‖gρ1|gρ|>K‖L1(ν) +
‖gρ1|gρ|≤K‖L2(ν)√

n

= ‖g
p
ρ · g

1−p
ρ 1|gρ|>K‖L1(ν) +

√

‖g
p
ρ · g

2−p
ρ 1|gρ|≤K‖L1(ν)√

n
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≤ MpK1−p +
M

p
2 K1− p

2√
n

.

By choosing K = Mn
1
p , we know that

R(Π,Hk, n− 1
2 , ν) ≤ 2Mn

1
p−1

.

This completes the proof.

Next, we give a sufficient condition such that ∆M(n− 1
2 ) decays fast with respect to n in

the case of unknown transition. The original idea is from [17, Section 3.3]. The condition
is that there exists a distribution λ on [H] × S × A such that the induced state-action
distribution

ν̄θ(S × A) =
∫

[H]×S×A
Pθ( S | h, s, a)dλ(h, s, a) × UniformA(A),

∀measurable set S ⊂ S , A ⊂ A

satisfying that

sup
θ∈Θ

R(Π(Pθ , µ),B, n− 1
2 , ν̄θ)

decays fast with respect n. This condition holds when

sup
θ∈Θ

sup
ρ∈Π(Pθ ,µ)

∥

∥

∥

dρ

dν̄θ

∥

∥

∥

L2(ν̄θ)
< +∞,

or when the eigenvalue decay of the kernel is fast; see the discussion below. Given this
condition, we can choose a sampling algorithm ξ̄ = ( f̃1, · · · , f̃2n) in (4.2) satisfying that

f̃i(Dθ,ξ̄
i−1, ū) =

{

fi(ū) when 1 ≤ i ≤ n,

(1, x
θ,ξ̄
i−n, fi(ū)) when n + 1 ≤ i ≤ 2n,

where f1(ū), · · · fn(ū) are i.i.d. random variables with distribution λ and
fn+1(ū), · · · , f2n(ū) are i.i.d. random variables with distribution UniformA. By con-

struction, 1
n ∑

2n
i=n+1 L(z

θ,ξ̄
i ) = ν̄θ , and thus we know that

∆M((2n)−
1
2 ) ≤ sup

θ∈Θ

R(Π(Pθ , µ),Hk, (2n)−
1
2 , νθ,ξ̄)

≤ 2 sup
θ∈Θ

R(Π(Pθ , µ),Hk, n− 1
2 , ν̄θ)

must decay fast with respect to n.
In the following, we establish the connection between the kernel’s eigenvalues and

perturbation response. The following proposition is the core of this connection.
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Proposition 6.3. Assume that
sup

z∈S×A
k(z, z) ≤ 1.

For any ρ ∈ P(S ×A), define

n(ρ) = max{i ∈ N
+ : nΛ

ρ
i ≥ 1}. (6.5)

We have

R(P(S ×A),Hk, n− 1
2 , ν) ≥ 1

2

√

√

√

√ sup
ρ∈P(S×A)

+∞

∑
i=n(ν)+1

Λ
ρ
i , (6.6)

and, by n(ν) ≤ n,

inf
ν∈P(S×A)

R(P(S ×A),Hk, n− 1
2 , ν) ≥ 1

2

√

√

√

√ sup
ρ∈P(S×A)

+∞

∑
i=n+1

Λ
ρ
i .

Moreover, if there exists a distribution ν̂ ∈ P(S ×A) such that

sup
i∈N+

‖ψν̂
i ‖∞ < +∞, (6.7)

then

R(P(S ×A),Hk, n− 1
2 , ν̂) ≤ 2

√

√

√

√

n(ν̂)

n
+

∞

∑
i=n(ν̂)+1

Λν̂
i sup

i∈N+

‖ψν̂
i ‖∞. (6.8)

Remark 6.1. Assumption (6.7) is widely used in the literature; see, e.g., [16, 30, 43, 44].
However, note that even for C∞-kernel, (6.7) does not always hold; see, e.g., [45]. To see
a concrete example of lower bound (6.6) and upper bound (6.8), assume Λν̂

i = Θ(i−α) for
α > 1, and we have

R(P(S ×A),Hk, n− 1
2 , ν̂) = Θ(n− α−1

2α ).

Proof. We first prove that n(ρ) ≤ n for any ρ ∈ P(S × A). When i ≥ n + 1, using the
Mercer decomposition (2.1) and the fact that {ψν

i }i∈N+ is orthonormal in L2(ν), we have,

nΛν
i ≤

n

∑
j=1

Λν
j ≤

+∞

∑
j=1

Λν
j =

∫

S×A
k(z, z)dν(z) ≤ 1.

By the definition (6.5), we know that n(ρ) ≤ n.
We will use the expression (6.1)

R(P(S ×A),Hk, ǫ, ν) = sup
ρ∈P(S×A)

inf
g∈L2(ν)

[MMDk(ρ, g ◦ ν) + ǫ‖g‖L2(ν)]
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to prove our result. First, given ν ∈ P(S ×A) and ρ0 ∈ P(S ×A), we can use Mercer’s
decomposition (2.1) to obtain

inf
g∈L2(ν)

(

MMD(ρ0, g ◦ ν) +
‖g‖L2(ν)√

n

)2

≥ inf
g∈L2(ν)

[

MMD2(ρ0, g ◦ ν) +
‖g‖2

L2(ν)

n

]

= inf
g∈L2(ν)

[

∫

S×A

∫

S×A
k(z, z′)d(ρ0 − g ◦ ν)(z)d(ρ0 − g ◦ ν)(z′) +

‖g‖2
L2(ν)

n

]

= inf
g∈L2(ν)

+∞

∑
i=1

[

Λν
i

(

∫

S×A
ψν

i (z)dρ0(z)−
∫

S×A
ψν

i (z)g(z)dν(z)

)2

+
1

n

(

∫

S×A
ψν

i (z)g(z)dν(z)

)2]

= inf
{gi}i∈N+

+∞

∑
i=1

[

Λν
i

(

∫

S×A
ψν

i (z)dρ0(z)− gi

)2

+
1

n
|gi|2

]

=
+∞

∑
i=1

Λν
i

(

∫

S×A ψν
i (z)dρ0(z)

)2

nΛν
i + 1

.

Similarly, we have

inf
g∈L2(ν̂)

(

MMD(ρ0, g ◦ ν̂) +
‖g‖L2(ν̂)√

n

)2

≤ 2
+∞

∑
i=1

Λν̂
i (
∫

S×A ψν̂
i (z)dρ0(z))

2

nΛν̂
i + 1

≤ 2
+∞

∑
i=1

Λν̂
i

nΛν̂
i + 1

sup
i∈N+

‖ψν̂
i ‖2

∞.

Noticing that
+∞

∑
i=1

Λν̂
i

nΛν̂
i + 1

≤ 2

[

n(ν̂)

n
+

+∞

∑
i=n(ν̂)+1

Λν̂
i

]

,

we obtain inequality (6.8).
We then prove inequality (6.6). Given any z0 ∈ S ×A, picking ρ0 = δz0

, we have

inf
g∈L2(ν)

[

MMD(δz0
, g ◦ ν) +

‖g‖L2(ν)√
n

]2

≥
+∞

∑
i=1

Λν
i (ψ

ν
i (z0))

2

nΛν
i + 1

.

Therefore, for any ρ ∈ P(S ×A), by taking average with respect to z0, we have

sup
ν′∈P(S×A)

inf
g∈L2(ν)

[

MMD(ν′, g ◦ ν) +
‖g‖L2(ν)√

n

]2

≥
+∞

∑
i=1

Λν
i

∫

|ψν
i (z)|2 dρ(z)

nΛν
i + 1

.
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Noticing that nΛν
i ≤ 1 when i ≥ n(ν) + 1 by definition 6.5, we have

sup
ν′∈P(S×A)

inf
g∈L2(ν)

[

MMD(ν′, g ◦ ν) +
‖g‖L2(ν)√

n

]2

≥ 1

2

+∞

∑
i=n(ν)+1

Λν
i

∫

S×A
|ψν

i (z)|2 dρ(z).

(6.9)
Again, using Mercer decomposition (2.1) and the eigenvalues {Λ

ρ
i }i∈N+ corresponding to

the operator Kρ, we have

+∞

∑
i=1

Λν
i

∫

S×A
|ψν

i (z)|2 dρ(z) =
∫

S×A
k(z, z)dρ(z) =

+∞

∑
i=1

Λ
ρ
i . (6.10)

Checking (6.9), (6.10) together, we need to have an upper bound of

∑
n(ν)
i=1 Λν

i

∫

S×A |ψν
i (z)|2 dρ(z). Let

cj =
n(ν)

∑
i=1

Λν
i

(

∫

S×A
ψν

i (z)ψ
ρ
j (z)dρ(z)

)2

.

By the Parserval’s equality in L2(ρ), we have

n(ν)

∑
i=1

Λν
i

∫

S×A
|ψν

i (z)|2 dρ(z) =
n(ν)

∑
i=1

+∞

∑
j=1

Λν
i

(

∫

S×A
ψν

i (z)ψ
ρ
j (z)dρ(z)

)2

=
∞

∑
j=1

cj. (6.11)

Note that

cj =
n(ν)

∑
i=1

Λν
i

(

∫

S×A
ψν

i (z)ψ
ρ
j (z)dρ(z)

)2

≤
+∞

∑
i=1

Λν
i

(

∫

S×A
ψν

i (z)ψ
ρ
j (z)dρ(z)

)2

=
∫

S×A

∫

S×A
ψ

ρ
j (z)ψ

ρ
j (z

′)
+∞

∑
i=1

Λν
i ψν

i (z)ψ
ν
i (z

′)dρ(z)dρ(z′)

=
∫

S×A

∫

S×A
ψ

ρ
j (z)ψ

ρ
j (z

′)k(z, z′)dρ(z)dρ(z′) = Λ
ρ
j ,

and, by Eq. (2.2),

n(ν) =
n(ν)

∑
i=1

Λν
i ‖ψν

i ‖2
Hk

=
n(ν)

∑
i=1

+∞

∑
j=1

Λν
i (
∫

S×A ψν
i (z)ψ

ρ
j (z)dρ(z))2

Λ
ρ
j

=
+∞

∑
j=1

cj

Λ
ρ
j

.

Combining the last two inequality, we have

0 ≤ cj ≤ Λ
ρ
j ,

+∞

∑
j=1

cj

Λ
ρ
j

= n(ν). (6.12)
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Under the constraint (6.12) and the condition {Λ
ρ
j }j∈N+ being nonincreasing, we know

∑
+∞
j=1 cj achieves the maximum value when cj = Λ

ρ
j for j = 1, · · · , n(ν) and cj = 0 for

j ≥ n(ν) + 1. Therefore, by equation (6.11), we know that

n(ν)

∑
i=1

Λν
i

∫

S×A
|ψν

i (z)|2 dρ(z) =
+∞

∑
j=1

cj ≤
n(ν)

∑
j=1

Λ
ρ
j .

Combining the last inequality with (6.9), (6.10), we have

sup
ν′∈P(S×A)

inf
g∈L2(ν)

[

MMD(ν′, g ◦ ν) +
‖g‖L2(ν)√

n

]2

≥ 1

2

+∞

∑
i=n(ν)+1

Λ
ρ
j .

We finish our proof by noticing that both ν and ρ are arbitrary probability distributions.

The above proposition shows that the perturbation response R(P(S ×A),Hk, n− 1
2 , ν)

is bounded by the eigenvalue decay. On the one hand, if the eigenvalue decay of
Kν is fast, even when Π includes all probability distributions on S × A, the decay of

R(Π,Hk, n− 1
2 , ν) with respect to n is fast, which explains the positive results for RL algo-

rithms in RKHS established in [15,16]. On the other hand, we note that the kernel function
can be defined through Mercer decomposition, with the only requirement of {Λ

ρ
i }i∈N+ be-

ing ∑
+∞
i=1 Λ

ρ
i < +∞. Therefore, without further assumption on the kernel k, we only know

that the right-hand side of (6.6) converges to zero when n goes to infinity, but its speed
can be arbitrary slow. In fact, for many popular RKHSs like the RKHSs corresponding

to Laplace kernel and neural tangent kernel on sphere Sd−1, the right-hand side of (6.6)

can be bounded below by n− 1
d−1 ; see [17, Section 5] for discussion. For those RKHSs, the

knowledge of Π, such as condition (6.4), plays a vital role in designing efficient RL al-
gorithms. Without such knowledge of Π, there exist many RL problems whose sample
complexity suffers from the curse of dimensionality. Below we give two such examples.

Single state, high dimensional action space. We first consider a problem in which the

state space S consists of a single point s0 while the action space A is Sd−1 and H = 1.
In this setting, the RL problem is essentially to find the maximum value of the reward
function lying in the unit ball of Hk based on the values of n points. Based on Proposition
6.3, the convergence rate can be bounded below by the eigenvalue decay. Therefore, if we
consider the RKHS corresponding to the Laplacian kernel or neural tangent kernel, the
convergence rate suffers from the curse of dimensionality. We can then conclude that if
we want to solve RL problems with high dimensional action space, we need to assume the
decay of eigenvalue is fast enough to break the curse of dimensionality.

High dimensional state, finite action space. Even when the action space is finite, there
still exist MDPs that cannot be solved without the curse of dimensionality. For any di-
mension d ≥ 2, length of each episode H ∈ N+ and positive constant δ > 0, we define an
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MDP family Md,H,δ as follows:

S = S
d−1, A = {0, 1}, H = H, ΘP = {0}, µ = Uniform

Sd−1 ,

{rθr
: θr ∈ Θr} = {r : ‖r(h, ·)‖Hk

≤ 1, ∀h ∈ [H]},

k((s, a), (s′, a′)) = exp(−‖s − s′‖), P0( · | h, s, a) = δTa,hs(·),

Ta,hs =

{

(φ1, · · · , φhd
+ δ, · · · , φd), when a = 0,

(φ1, · · · , φhd
− δ, · · · , φd), when a = 1,

where hd = h mod d and we use the spherical coordinates (φ1, · · · , φd) to denote the points

on S
d−1. Notice that for every d, H, δ, the transition probability in the RL problem Md,H,δ

is known since ΘP is a single-point set. By construction, the transition probability P0

indicates that the agent can take an action at each step to move on the sphere surface
along one spherical coordinate (depending on h) with size δ. When δ is small and H

is large, we know that for any delta function on Sd−1, we can find a policy such that
the corresponding state distribution at step H is close to that delta function. In other
words, the set Π(H, P0, µ) is very large. Noticing that the kernel is a Laplacian kernel
whose eigenvalue decay is slow, we expect the RL problem to be difficult to solve. The

following theorem shows that there exists no dimension-free bound on ∆Md,H,δ
(n− 1

2 ) for

all n, d, H, and δ. Therefore, the above RL problem can not be solved without the curse of
dimensionality.

Proposition 6.4. There exist no universal constants α, β > 0 and constant Cd > 0 only depend-
ing on d such that

sup
δ>0

∆Md,H,δ
(n− 1

2 ) ≤ CdHα
( 1

n

)β

holds for all n, H ∈ N+ and d ≥ 2.

Proof. For any s ∈ S
d−1, we define the following policy πs

πs
h( · | s′) : choose the policy a such that Ta,hs′ is closest to s among all possible choices.

Then, in the above MDP with policy πs, when h ≥ C′
d

δ , we have

‖Sh − s‖ ≤ C′
dδ with probability 1. (6.13)

Here C′
d > 0 is a constant only depending on d, which may vary from line to line in the

following proof. Using Proposition 6.3 and the eigenvalue decay of the Laplacian kernel
(see, e.g., [17, Section 5]), we know that for any ν ∈ P(S ×A),

sup
z∈S×A

inf
g∈L2(ν)

[

MMDk(δz, g ◦ ν) +
‖g‖L2(ν)√

n

]

= sup
ρ∈P(S×A)

inf
g∈L2(ν)

[

MMDk(ρ, g ◦ ν) +
‖g‖L2(ν)√

n

]

≥C′
dn

− 1
2(d−1) .
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Therefore, there exists (s∗, a∗) ∈ S ×A such that

inf
g∈L2(ν)

[

MMDk(δ(s∗,a∗), g ◦ ν) +
‖g‖L2(ν)√

n

]

≥ C′
dn

− 1
2(d−1) .

Combining the last equation with Lemma 6.1, if H = [
C′

d
δ ], we have

R(Π(H, P0, µ),Hk , n− 1
2 , ν) ≥ inf

g∈L2(ν)

[

MMDk(ρH,P0,πs∗ ,µ, g ◦ ν) +
‖g‖L2(ν)√

n

]

≥ C′
dn

− 1
2(d−1) − MMDk(δ(s∗,a∗), ρH,P0,πs∗ ,µ).

By inequality (6.13), we have,

MMDk(δ(s∗,a∗), ρH,P0,πs∗ ,µ) ≤ C′
dδ.

Therefore, we can choose

δ = C′
dn

− 1
2(d−1) ,

such that

R(Π(H, P0, µ),Hk, n− 1
2 , ν) ≥ C′

dn
− 1

2(d−1)

and

H = [C′
dn

1
2(d−1) ].

Therefore, combining the last two equations and the definition of ∆Md,H,δ
(n− 1

2 ) in the case

of known transition (4.1), if the constants α, β and Cd exist, we must have

C′
dn

− 1
2(d−1) ≤ Cd(C

′
d)

αn
α

2(d−1)
−β

holds for all n ∈ N+ and d ≥ 2. Therefore,

α + 1

2(d − 1)
≥ β

holds for all d ≥ 2, which is a contradiction.

7 Conclusions and future works

In this paper, we define the perturbational complexity by distribution mismatch ∆M(ǫ)
when the reward functions lie in the unit ball of an RKHS and the transition probabilities
lie in a given arbitrary set. We show that ∆M(ǫ) is an informative indicator of whether
the RL problems can be solved efficiently or not. Some concrete properties of ∆M(ǫ) are
studied in several cases. There are still quite a few unsolved problems related to this topic.
First, the upper bound and lower bound in the current work are not matched. Second, in
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the case of unknown transition, we still need assumption (5.11) to prove the convergence
of fitted Q-iteration algorithms. How to relax this assumption or show the necessity of this
assumption remains unclear yet. Third, our lower bound mainly utilizes the uncertainty of
reward functions. If the reward function is known or the reward function is deterministic
such that there is no noise in reward, our lower bound can not be applied. It is of interest
to study the lower bound and corresponding upper bound in these situations. Fourth,
our setup of RL requires a generative simulator. In some RL problems, however, one can
only access an episodic simulator. How to establish similar results in this case is still open.
Finally, we wish to use information related to the perturbational complexity to guide the
design of efficient RL algorithms in practice.
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policy and value iteration. In Advances in Neural Information Processing Systems, 2010.

[24] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

[25] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient
methods: Optimality, approximation, and distribution shift. Journal of Machine Learning Research, 22(98):1–
76, 2021.

[26] Chengzhuo Ni, Lin F Yang, and Mengdi Wang. Learning to control in metric space with optimal regret. In
2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 726–733.
IEEE, 2019.

[27] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for
sample efficient reinforcement learning? In International Conference on Learning Representations, 2020.

[28] Yaqi Duan, Mengdi Wang, and Martin J Wainwright. Optimal policy evaluation using kernel-based
temporal difference methods. arXiv preprint arXiv:2109.12002, 2021.

[29] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,
68(3):337–404, 1950.

[30] Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions. The
Journal of Machine Learning Research, 18(1):714–751, 2017.

[31] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, and Alex J
Smola. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics,
22(14):e49–e57, 2006.



J. Mach. Learn., 1(1):1-37 37

[32] Paul R Halmos. Measure Theory, volume 18. Springer, 2013.

[33] Mark S Pinsker. Information and Information Stability of Random Variables and Processes. Holden-Day, 1964.

[34] Imre Csiszár. Information-type measures of difference of probability distributions and indirect observa-
tion. studia scientiarum Mathematicarum Hungarica, 2:229–318, 1967.

[35] Vern I Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces,
volume 152. Cambridge University Press, 2016.

[36] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, vol-
ume 47. Cambridge University Press, 2018.

[37] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, 2014.

[38] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Reinforcement learning with general value func-
tion approximation: Provably efficient approach via bounded eluder dimension. In Advances in Neural
Information Processing Systems, 2020.

[39] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization.
In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

[40] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science &
Business Media, 2010.
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