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Abstract. It has been a fascinating topic in the study of boundary layer theory
about the well-posedness of Prandtl equation that was derived in 1904. Re-
cently, new ideas about cancellation to overcome the loss of tangential deriva-
tives were obtained so that Prandtl equation can be shown to be well-posed
in Sobolev spaces to avoid the use of Crocco transformation as in the classical
work of Oleinik. This short note aims to show that the cancellation mechanism
is in fact related to some intrinsic directional derivative that can be used to re-
cover the tangential derivative under some structural assumption on the fluid
near the boundary.
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1 Introduction

In 1904, Prandtl derived the famous equation to describe the fluid behaviour near
a boundary by resolving the difference between the viscous and the inviscid ef-
fects with no-slip boundary condition. This revolutionary result has vast appli-
cations in aerodynamics and other areas of engineering. It also provides a typical
mathematical model that attracts attention even now because a lot of mathemat-
ical problems remain unsolved. The key observation by Prandtl is that outside
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a layer of thickness of
√

1/Re, convection dominates so that the flow is gov-
erned by the Euler equations; while inside a layer (boundary layer) of thickness
of

√
1/Re, convection and viscosity balance so that the flow is governed by the

Prandtl equations. Here Re is the Reynolds number.
Let us briefly recall the derivation of the Prandtl equation. Consider the in-

compressible Navier-Stokes equations over a flat boundary {(x,y)∈D,z=0} with
no-slip boundary condition,











∂tu
ǫ+(uǫ ·∇)uǫ+∇pǫ−ǫµ∆uǫ =0,

∇·uǫ=0,

uǫ|z=0=0,

where uǫ is the velocity field, pǫ represents the pressure and ǫµ is the viscosity
coefficient with ǫ being a small parameter. According to the Prandtl ansatz, set
uǫ=(uǫ,vǫ,wǫ)T with the following scaling:































uǫ(t,x,y,z)=u

(

t,x,y,
z√
ǫ

)

+o(1),

vǫ(t,x,y,z)=v

(

t,x,y,
z√
ǫ

)

+o(1),

wǫ(t,x,y,z)=
√

ǫw

(

t,x,y,
z√
ǫ

)

+o(
√

ǫ).

The leading order gives the following classical Prandtl equations:






















∂tu+(u∂x+v∂y+w∂z)u+∂x pE(t,x,y,0)=µ∂2
zu,

∂tv+(u∂x+v∂y+w∂z)v+∂y pE(t,x,y,0)=µ∂2
zv,

∂xu+∂yv+∂zw=0,

(u,v,w)|z=0=0, lim
z→+∞

(u,v)=
(

uE,vE
)

(t,x,y,0),

where the fast variable z/
√

ǫ is still denoted by z for simplicity of notation. And
the pressure and velocity of the outer flow denoted by pE(t,x,y) and uE=(uE,vE,0)
×(t,x,y) satisfy the Bernoulli’s law

∂tu
E+

(

uE ·∇
)

uE+∇pE =0.

For later presentation, we denote the Prandtl operator by

Pµ=∂t+u∂x+v∂y+w∂z−µ∂2
z

with a parameter µ in front of the dissipation in the normal direction.
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Note that from the no-slip boundary condition and the incompressibility, we
have

w=−
∫ z

0
(ux+vy)dz,

so that the Prandtl equations can be written as















(

∂t+u∂x+v∂y−
∫ z

0
(ux+vy)dz∂z−µ∂2

z

)

u=−∂x pE(t,x,y,0),
(

∂t+u∂x+v∂y−
∫ z

0
(ux+vy)dz∂z−µ∂2

z

)

v=−∂y pE(t,x,y,0).

From the above two time evolution equations on (u,v), the loss of tangential
derivative is obvious because of the convection term on the left hand side has
a non-local term that contains tangential derivatives of (u,v). In fact, whether
there is a general well-posedness theory in three space dimensions with finite
order differential regularity remains unsolved in contrast to the classical work
by Oleinik in 1963 in two space dimensions under the monotonicity condition,
cf. [7] and the references therein. Precisely, under the monotonicity condition,
the Crocco transformation is used in the classical work by Oleinik in which the
normal coordinate z is replaced by u so that the reduced equation for u2 becomes
degenerate parabolic. And then the maximum principle argument can be applied
with subtle analysis.

On the other hand, with infinite order of differential regularity, the well-posed-
ness of the Prandtl equations was proved in the seminal work by Sammartino-
Caflisch [8, 9] in analytic framework, and in recent work [3, 4] in Gevrey function
space with optimal index 2 in two and three space dimensions.

The well-posedness in analytic framework can be illustrated as follows. Con-
sider a time evolution equation

Pµu= f .

Let ∂mu be the m-th order tangential derivatives of u so that it satisfies

Pµ∂mu=F(∂m+1u,···)

with the source term depending on ∂m+1u up to one order power. In order to
obtain an estimate on the analytic norm on u, we only need to have a local in time

bound on
ρm‖∂mu‖

m! , where ρ = ρ(t) is the radius of analyticity. Based on a basic
inequality

m

(

ρ̃

ρ

)m

.
1

ρ− ρ̃
, ρ̃<ρ,
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one can estimate the source term with one extra order of derivative by
∫ t

0

ρm(t)‖∂m+1u‖(s)
m!

ds.‖u‖
∫ t

0

(

ρ(t)

ρ(s)

)m

(m+1)ds.
∫ t

0

‖u‖
ρ(s)−ρ(t)

ds.

Then by choosing a suitable radius function of analyticity in time to make the final
integral bounded in finite time, the a priori bound can be closed by an argument
using the abstract Cauchy-Kowalewski theory. Please refer to [2, 8, 9] for details.

With the above understanding on the Prandtl operator, we will investigate
the cancellation mechanisms of this operator through directional derivatives in
the next section.

2 Cancellation mechanisms

In this section, we will first recall the main observations in the papers [1,6] about
the cancellations by using either the convection term or the vorticity equation
in two space dimensions. And then we will present a new observation about
directional derivatives through some suitably chosen vector fields of cancellation.
The vector fields of cancellation are shown to be consistent with the recent work
on both the classical Prandtl operator and the Prandtl operator derived from the
MHD system in the fully nonlinear regime.

Recall the Prandtl operator in two space dimensions (x,z) given by

∂tu+u∂xu+w∂zu+∂xPE=µ∂2
zu.

Consider its linearization around a divergence free vector field (ũ,w̃)

∂tu+ ũ∂xu+w̃∂zu+u∂x ũ+w∂zũ=µ∂2
zu+S,

where S represents the source term. To treat the loss of derivative term of the un-
known function u, that is w∂zũ, we can divide both sides by ∂zũ under Oleinik’s
monotonicity condition on the velocity field (ũ,w̃), i.e., ω̃ = ∂zũ 6= 0. When we
consider the time evolution of ux by differentiating the above equation in x, the
differentiation in z again yields a cancellation by the divergence free condition on
the velocity field (u,w) for the two terms involving tangential derivative of the
second order

(

ũ∂xxu+wx∂zũ

∂zũ

)

z

=uxx+wxz+ R̃= R̃,

where R̃ contains terms with tangential derivative of u at most one order. This
implies that one can use the good unknown function

g1=
(ux

ω̃

)

z
=

wxw̃−w̃zux

w̃2
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with w=∂zu to avoid the loss of tangential derivative in the time evaluation equa-
tion. And this idea is used in [1] through the Nash-Moser iteration to yield the
local in time well-posedness.

Another cancellation function observed in [6] is by noticing the vorticity equa-
tion for ω has the same form as u, that is

Pµ(ω)=0, Pµ(u)=−∂x PE.

Hence
Pµ(ωx)=−uxωx−wxωz, Pµ(u)=−u2

x−wxω−∂2
xPE,

where the non-local term wx containing extra one order of tangential derivative
can be cancelled by using the good unknown function

f1=ωx−
ωz

ω
ux ,

cf. [6] for details. Since f1∼ωg1, under the Oleinik monotonicity condition ω 6=0,
the two good unknown functions g1 and f1 are basically similar up to a weight
function.

We now introduce the concept of the field of cancellation so that the above
cancellation becomes clear and more physical.

Definition 2.1. A vector field Θ is called a field of cancellation for loss of tangential

derivative with respect to the Prandtl operator Pµ if the commutator of Pµ and Θ·∇ does

not have the loss of tangential derivative property. That is, for any differential function f ,

[Pµ,Θ·∇] f =R,

where R contains tangential derivative of u and f up to the first order.

Remark 2.1. Note that (1,0)·∇u can not be estimated directly in the Prandtl equa-

tion. However, if there exists a field of cancellation Θ, then Θ·∇u can be esti-

mated. Hence, the remained question is whether one can recover (1,0)·∇u from

Θ·∇u. For this, some structural assumption is needed.

For the existence of field of cancellation for Prandtl operator, we have the
following lemma.

Lemma 2.1. Assume u = (u,w) is a divergence free vector field in 2D and Pµ is the

Prandtl operator. If there exists a vector function Θ that contains no tangential deriva-

tives of u satisfying

Pµ
Θ=(Θ·∇)u,

then Θ is a field of cancellation.
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Proof. Note that

Pµ(Θ·∇ f )=(Pµ
Θ)·∇ f +Θ·[Pµ,∇] f +(Θ·∇)Pµ f

=(Θ·∇)u·∇ f −Θ·
(

ux∂x+wx∂z

uz∂x+wz∂z

)

f +(Θ·∇)Pµ f

= θ1wx fz−θ1wx fz+(Θ·∇)Pµ f +R

=(Θ·∇)Pµ f +R,

where Θ=(θ1,θ2), that is

[Pµ,Θ·∇] f =R,

where R contains tangential derivatives of u and f up to the first order. Here, note

that wx that is related to the second order derivative of u in x is cancelled.

The above lemma provides a strategy of finding a vector field for recovering
the loss of tangential derivatives. That is, if we estimate the directional derivative
Θ·∇ f using the Prandtl operator, there is no loss of tangential derivative. On the
other hand, it is crucial that one can recover the tangential derivative (1,0)·∇ f .
For this, one needs some structural assumption such as the Oleinik’s monotonic-
ity condition. In addition, for higher order tangential derivative, we can use the
terms in the ∂m

x (Θ·∇ f ) that involve highest order tangential derivatives.
In the following two subsections, we will present the existence of the vector

field Θ for two physical models, that is, the classical Prandtl operator and the
Prandtl operator derived from the MHD system in two space dimensions. Note
that it is a very interesting and unsolved problem about whether such vector field
exists in three space dimension.

2.1 2D Prandtl equation

If we consider the classical Prandtl equation, a field of cancellation can be con-
structed as follows. First of all, by Pµ(uz)=0, we have

Pµ(uzz)=−uzuzx−wzuzz =uxuzz+wzzuz =uzz ·∇u.

On the other hand

Pµ(wz)=−Pµ(ux)=PE
xx+u2

x+wxuz

gives

Pµ(wzz)=
(

u2
x+wxuz

)

z
−uzwxz−wzwzz

=wxuzz+wzzwz =uzz ·∇w.
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Hence,
Pµ(uzz)=(uzz ·∇)u.

According to Lemma 2.1, we can set

Θ=uzz,

so that
Pµ(uzz ·∇u)=R,

where the source term R contains tangential derivative of u at most one order.
Therefore, standard analytic techniques can be applied to the above equation for
desired estimates on uzz ·∇u. Note that (1,0)·∇u = ux can be recovered from
uzz ·∇u if uz 6=0 because

uzz ·∇u=uzzux−uxzuz =−ω f1∼−ω2g1,

where g1 and f1 are the two good unknown functions used in [1, 6] mentioned
above. This shows that under the Oleinik’s monotonicity condition ω 6= 0, the
directional derivative uzz ·∇u can be used to recover the tangential derivative
(1,0)·∇u=ux as in [1, 6].

2.2 2D MHD

In this subsection, we will present another model to illustrate the existence of
vector field of cancellation. For this, consider the MHD model in two space di-
mensions



























∂tu+u·∇u+∇p− 1

Re
△u=Sh·∇h,

∂th−curl(u×h)+
1

Rm
curl curlh=0,

divu=0, divh=0, (x,y)∈Ω=T×R+,

where u=(u,w) and h=( f ,h) represent the velocity and magnetic fields respec-
tively, and p is the total pressure. Here, there are some physical parameters,
Re representing the Reynolds number, Rm the magnetic Reynolds number, and
S=Ha2/ReRm the coupling parameter, and Ha the Hartmann number.

It is known that in the nonlinear regime when Re∼Rm∼Ha being sufficiently
large, one can derive a Prandtl type boundary layer system of equations with no-
slip boundary condition on the velocity field and perfect conducting condition
on the magnetic field. Precisely, by taking

Rm=
1

κǫ
, Re=

1

µǫ
, S=1
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with ǫ being a small parameter, the MHD system becomes































∂tu
ǫ+(uǫ ·∇)uǫ−(hǫ ·∇)hǫ+∇pǫ=µǫ△uǫ , (x,y)∈Ω,

∂th
ǫ+(uǫ ·∇)hǫ−(hǫ ·∇)uǫ =κǫ△hǫ ,

∇·uǫ=0, ∇·hǫ=0,

uǫ|y=0=0, ∂y f ǫ|y=0=0, hǫ|y=0=0,

(uǫ,hǫ)|t=0=(u0,h0)(x,y).

If one applies the Prandtl ansatz to the above system















uǫ(t,x,z)=u

(

t,x,
z√
ǫ

)

,

wǫ(t,x,z)=ǫ
1
2 w

(

t,x,
z√
ǫ

)

,















f ǫ(t,x,z)= f

(

t,x,
z√
ǫ

)

,

hǫ(t,x,z)=ǫ
1
2 h

(

t,x,
z√
ǫ

)

,

and

pǫ(t,x,z)= p

(

t,x,
z√
ǫ

)

,

the following Prandtl equations for MHD can be derived:











































∂tu+u∂xu+w∂zu−µ∂2
zu= f ∂x f +h∂z f −Px ,

∂t f +u∂x f +w∂z f −κ∂2
z f = f ∂xu+h∂zu,

∂xu+∂zw=0, ∂x f +∂zh=0,

u|t=0=u0(x,y), f |t=0= f0(x,y),

(u,w,∂z f ,h)|z=0=0,

lim
z→+∞

(u, f )=(uE , f E)(t,x,0),

where again the fast variable z√
ǫ

is still denoted by z, the outer flow (uE, f E,P)

×(t,x,0) is the trace of a solution to the ideal MHD system on the boundary. For
this system, note that the stream function ψ of the magnetic field ( f ,h) satisfies

Pκψ=0,

that is in analogue to the vorticity ω for the 2D Prandtl equation. The following
two good unknown functions are used in [5] to take care of the m-th tangential
derivatives of u and f :

um :=∂m
x u− ∂zu

f
∂m

x ψ, f m :=∂m
x f − ∂z f

f
∂m

x ψ. (2.1)
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With these unknown functions, the equations for um and f m are in the following
symmetric form so that the loss of derivatives can be treated:

{

∂tu
m+(u∂x+w∂z)um−( f ∂x+h∂z) f m =µ∂2

zum+R1,

∂t f m+(u∂x+w∂z) f m−( f ∂x+h∂z)u
m =κ∂2

z f m+R2,

where Ri, i= 1,2, contain tangential derivatives of at most m-th order. Here, the
non-degeneracy of the tangential magnetic field f 6=0 is needed for both the def-
inition of the unknown functions and also for recovering the tangential deriva-
tives of u and f from them. Note that the coordinate transformation (x,z,t)→
(x,ψ,t) can play a role as the Crocco transformation so that the reduced system is
quasilinear and symmetric and the standard analysis can then be applied.

Let us follow the Lemma 2.1 to find out whether there is appropriate vector
field for cancellation to avoid the lost of tangential derivative difficulty. In fact,
for the Prandtl system of MHD, this vector field is already built in as it is the
direction of the magnetic field. In fact, note that

Pκ(h)=(h·∇)u.

The Θ in Lemma 2.1 is simply h that is intrinsic in the system. Since the Prandtl
system for MHD is

(

Pµu
Pκ f

)

=

(

0 h·∇
h·∇ 0

)(

u
f

)

.

By applying the lemma, we have
(

Pµ(h·∇u)
Pκ(h·∇ f )

)

=

(

0 h·∇
h·∇ 0

)(

h·∇u
h·∇ f

)

+R,

where R contains tangential derivatives of u and f up to the first order. Hence, h·
∇ gives the direction of the cancellation that is the direction of the magnetic field.
And the structural assumption of the non-degenerate tangential magnetic field
component, f 6= 0 is used to recover the tangential derivative

(

1 0
)

·(∇u,∇ f ).
Note that

(h·∇u,h·∇ f )= f
(

u1, f 1
)

,

where (u1, f 1) is the good function of the first order defined in (2.1) so that it is
consistent with the observation in [5].
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