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Abstract. In this paper, we consider parabolic distributed control problems with
cost functional of pointwise observation type either in space or in time. First, we

show the well-posedness of the optimization problems and derive the first order op-
timality systems, where the adjoint state can be expressed as the linear combination

of solutions to two backward parabolic equations that involve the Dirac delta dis-

tribution as source either in space or in time. Second, we use a space-time finite
element method to discretize the control problems, where the state variable is ap-

proximated by piecewise constant functions in time and continuous piecewise linear

polynomials in space, and the control variable is discretized by following the varia-
tional discretization concept. We obtain a priori error estimates for the control and

state variables with order O(k
1

2 + h) up to a logarithmic factor under the L2-norm.
Finally, we perform several numerical experiments to support our theoretical results.
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1. Introduction

Let Ω ⊂ R
n (n = 2, 3) be a convex polygonal or polyhedron domain, and let T > 0

be a constant. We consider an optimal control problem of parabolic type where the cost

functional involves pointwise values of the state variable either in space or in time. The

model of controlled system is characterized by the parabolic equation
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∂ty −∆y = Bu in (0, T )× Ω,

y = 0 on (0, T ) × ∂Ω,

y(0) = 0 in Ω,

(1.1)

where y and u are the state and control variables, respectively. For convenience, we

denotes by I = (0, T ) the time interval and by U = L2(I × ω) the control space, where

the subdomain ω ⊆ Ω with positive measure is called the control domain. We impose

additional pointwise constraints on the control variable u and define the admissible

control set as follows:

Uad :=
{

u ∈ U : ua ≤ u(t, x) ≤ ub, a.e., (t, x) ∈ I × ω
}

with −∞ < ua < ub < +∞. The control operator B maps U to L2(I×Ω) and is a linear

bounded operator. For example, if ω = Ω, then we can take B as the identity operator;

otherwise, B can be defined as a zero extension operator.

The cost functional of pointwise tracking type can be defined as

Jβ(y, u) := (2− β)J1(y, u) + (β − 1)J2(y, u) +
α

2

∫ T

0

∫

ω
|u(t, x)|2dxdt. (1.2)

Here J1 and J2 denote respectively the spatial and time observations of state, defined

by

J1(y, u) =
1

2

N1
∑

i=1

∫ T

0

∣

∣y(xi, t)− yidS(t)
∣

∣

2
dt,

J2(y, u) =
1

2

N2
∑

i=1

∫

Ω

∣

∣y(ti)− yidT

∣

∣

2
dx+

1

2

∫

Ω

(

y(T )− yT
)2
dx,

where N1, N2 ∈ N+, yT ∈ L2(Ω), α > 0 is a regularization parameter and N+ de-

notes the set of positive integers. The sets {xi, i = 1, . . . , N1} ⊂ Int(Ω) and {ti, i =
1, . . . , N2} ⊂ (0, T ) are respectively called the set of spatial observation points and

the set of time observation points, and {yidS ∈ L2(Ω), i = 1, . . . , N1} and {yidT ∈

L2(0, T ), i = 1, . . . , N2} are respectively called the spatial observations and the time

observations. The parameter β ∈ [1, 2] is the weight between the pointwise spatial

observations and pointwise time observations. Specifically, β = 1 refers to the case of

pure spatial observation and β = 2 refers to the case of pure time observation, while

β ∈ (1, 2) refers to the case with both observations and weights the importance of two

observations.

With the above defined cost functional, our parameter-dependent optimal control

problem reads: Find (ȳ, ū) ∈ X × Uad such that

Jβ(ȳ, ū) ≤ Jβ(y, u), ∀(y, u) ∈ X × Uad subject to (1.1), (1.3)

where X is the state space given in Section 3.
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The optimization problem (1.3) with cost functional of pointwise type serves as

a model problem for several applications, such as the parameter identification or in-

verse problems with finitely many pointwise measurements (cf. [35]), and optimal

control problems where the target states on some spatial or time points are of particu-

lar interest or can be measured by sensors [2,4,9]. We also refer the reader to [29] for

the derivation of the necessary optimality conditions, and to [2,4,5,7,9,15,35,39] for

the numerical analysis of this kind of problems.

There are a lot of publications concerning the analysis and approximation to opti-

mal control of parabolic equations; see, e.g., the references [8,12,25,31,33,34], where

the cost functionals are of distributed type, so that the state and adjoint equations are

all regular. As for parabolic control problems with pointwise observations, the adjoint

equations involve Dirac distributions and thus exhibit low regularity (cf. [8]). Note that

such problems are closely related to parabolic control problems with pointwise control

(cf. [18,19,26–28]), where instead the state equations involve the Dirac distributions.

In this paper, we consider a space-time finite element approximation to the parabolic

control problems with cost functional of pointwise observation type either in space or

in time. Although there are already some works on the error estimates of elliptic or

Stokes control problems with pointwise tracking (cf. [2, 4, 5, 7, 9, 15]), to the authors’

best knowledge, there are no such results for the parabolic control problems with point-

wise tracking. For the discretization of the state and adjoint equations, we use a piece-

wise constant discontinuous Galerkin scheme (the DG(0) method) for the temporal dis-

cretization, and the standard linear finite element method (the CG(1) method) for the

spatial discretization. This is a special case of the so-called DG(r)-CG(s) method; see,

e.g., [33] for the error estimation of such kinds of discretization schemes for parabolic

equations. For the discretization of the control variable, we apply the variational dis-

cretization concept proposed in [22].

Our numerical analysis for the considered parabolic control problems is strongly re-

lated to the error estimation of finite element approximation to the parabolic equations

with rough right-hand side terms. We are faced with two types of backward parabolic

equations with Dirac distributions, i.e., the one with spatial Dirac measure and the

other with temporal Dirac measure. For the first type, the error estimate of order

O(k
1

2 + h2−
n
2 ) was derived in [17,18] for n-dimensions under the norm ‖ · ‖L2(I,L2(Ω))

and a mesh condition k = O(hn), where h and k denote the spatial mesh size and the

time step size, respectively. We mention that the order O(k + h2) for two-dimensions

was obtained in [26] under the norm ‖ · ‖L2(I,L1(Ω)), and the order O(k
1

2 + h) for

three-dimensions was obtained in [27] under the norm ‖·‖
L2(I,L

3
2 (Ω))

, both up to a log-

arithmic term. For the second type, the error estimate of order O(k
1

2 + h) was derived

in [17] under the norm ‖ · ‖L2(I,L2(Ω)) and a mesh condition k = O(hn).

The goal of this paper is to provide a finite element analysis of the optimal control

problem (1.3). To this end, we introduce two adjoint equations, one is with Dirac mea-

sure in space as the external force term and the other is with Dirac measure in time as

the force term, to study respectively the pointwise observations in space and in time
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so as to obtain the first order necessary conditions (cf. [23]); see Section 3 for details.

We also need a priori error estimates for the finite element discretizations of the two

adjoint equations under the norms ‖ · ‖L2(I,L1(Ω)) and ‖ · ‖L2(Ω,L1(I)), respectively. The

former estimate in ‖ · ‖L2(I,L1(Ω))-norm can be found in [26] for two dimensions, and

will be extended to three dimensions in Section 3; see Lemma 2.1. The latter estimate

in ‖ · ‖L2(Ω,L1(I))-norm will be derived by using an estimate due to [32] under the norm

‖ · ‖L∞(I,L2(Ω)) for parabolic equations with low regularity of solutions. In conclusion,

the main result of this paper is the following error estimate between the optimal solu-

tion ū of the continuous problem and the optimal solution ūkh of the discrete problem:

‖ū− ūkh‖L2(I,L2(ω)) ≤ C|lnh|

(

ln
T

k

)
3

4
(

k
1

2 + h
)

. (1.4)

The rest of this paper is organized as follows. In Section 2 we discuss the regular-

ity of the state equation, the local regularity of the parabolic equation and the well-

posedness of two types of backward parabolic equations with rough right-hand sides.

In Section 3, we give the optimal control problem and derive its first order necessary

condition. In Section 4, we describe the finite element discretization of the optimal

control problem, and give the discrete first order necessary condition. Section 5 mainly

focuses on the error analysis for the optimal control and optimal state. And the last

section is devoted to numerical experiments.

2. Preliminaries

Let the control space U be a Hilbert space with the inner product (·, ·)U . Intro-

duce the following notations for inner products and norms on L2(I, L2(Ω)) and L2(Ω),
respectively:

(u, v) := (u, v)L2(Ω), ‖v‖ := ‖v‖L2(Ω), ∀u, v ∈ L2(Ω),

(u, v)I := (u, v)L2(I, L2(Ω)), ‖v‖I := ‖v‖L2(I,L2(Ω)), ∀u, v ∈ L2(I, L2(Ω)).

In order to define the weak solution to the state equation (1.1), for given ϕ ∈
L2(I,H−1(Ω)) we introduce an auxiliary problem

∂tψ −∆ψ = ϕ in I × Ω,

ψ = 0 on I × ∂Ω,

ψ(0) = 0 in Ω.

(2.1)

In order to find the weak solution of (2.1) we reformulate it as follows: Find a function

ψ ∈ L2(I,H1
0 (Ω)) ∩H

1(I,H−1(Ω)) such that

(∂tψ, φ)H−1,H1
0
+ (∇ψ,∇φ)I = (ϕ, φ)I , ∀φ ∈ L2

(

I,H1
0 (Ω)

)

,

ψ(0) = 0,
(2.2)
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where (·, ·)H−1,H1
0

denotes the duality pairing betweenL2(I,H−1(Ω)) and L2(I,H1
0 (Ω)).

We have the following results on the existence, uniqueness and regularity of solu-

tion to Eq. (2.1).

Proposition 2.1. For given ϕ ∈ L2(I,H−1(Ω)), there exists a unique solution, ψ ∈
L2(I,H1

0 (Ω)) ∩H
1(I,H−1(Ω)), to problem (2.1). Moreover, if ϕ ∈ L2(I, L2(Ω)), then ψ

has the improved regularity

ψ ∈ L2
(

I,H2(Ω) ∩H1
0 (Ω)

)

∩H1
(

I, L2(Ω)
)

∩ C
(

Ī , H1
0 (Ω)

)

(2.3)

and there holds the stability estimate

‖ψ‖C(Ī ,H1
0
(Ω)) + ‖∂tψ‖I + ‖∇2ψ‖I ≤ C‖ϕ‖I , (2.4)

where ‖ · ‖C(Ī ,H1
0
(Ω)) denotes the norm of the space C(Ī , H1

0 (Ω)).

Proof. The proof of the existence and uniqueness of solution has been given in [29].

The improved regularity and the stability estimate are classical; see, e.g., [14]. The

regularity ψ ∈ C(Ī , H1
0 (Ω)) can be obtained from the fact that L2(I,H2(Ω) ∩H1

0 (Ω)) ∩
H1(I, L2(Ω)) →֒ C(Ī , H1

0 (Ω)).

In addition, we have the following improved local regularity of the solution to (2.1).

Lemma 2.1. Assume that Ω̃ ⊂ Ω is an open subdomain such that dist(Ω̃, ∂Ω) > 0 and

that there exists a smooth open subdomain Ω0 such that Ω̃ ⊂⊂ Ω0 ⊂⊂ Ω, and assume

that ϕ ∈ Lr(I, L2(Ω)) and ϕ|Ω0
∈ Lr(I, Ls(Ω0)) for some 1 < r < ∞ and 2 ≤ s < ∞.

Then the solution ψ to (2.1) belongs to W 1,r(I, Ls(Ω̃))∩Lr(I,W 2,s(Ω̃)) and the following

estimate holds:

‖ψ‖Lr(I,W 2,s(Ω̃)) + ‖∂tψ‖Lr(I,Ls(Ω̃)) ≤ C4
rC

2
s

(

‖ϕ‖Lr(I,Ls(Ω0)) + ‖ϕ‖Lr(I,L2(Ω))

)

, (2.5)

where Cr, Cs are positive constants depending only on r and s, and satisfying Cr ≤ Cr2

r−1
for some C > 0 and Cs ≈ s for s→ +∞.

Proof. The idea of proof for this lemma follows from [27, Lemma 2.4], [26, Lem-

ma 2.2] and [4, Lemma 4.2]. Let Ω̃1 ⊂ Ω be an open smooth subdomain such that

Ω̃ ⊂⊂ Ω̃1 ⊂⊂ Ω0. We consider a smooth cut-off function ω̃ with the following proper-

ties:

ω̃(x) ∈ [0, 1], ∀x ∈ Ω,

ω̃(x) = 1, ∀x ∈ Ω̃1,

ω̃(x) = 0, ∀x ∈ Ω \ Ω0,

and set ψ̃ = ψω̃. Therefore, ψ̃ satisfies the following equation:

∂tψ̃ −∆ψ̃ = ϕ̃ in I × Ω0,

ψ̃ = 0 on I × ∂Ω0,

ψ̃(0) = 0 in Ω0,

(2.6)
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where ϕ̃ = ω̃ϕ − ∆ω̃ψ − 2∇ω̃ · ∇ψ. By using the continuous embedding H2(Ω) →֒
W 1,s(Ω) for 2 ≤ s ≤ 6 and [27, Lemma 2.1], there exist positive constants C and Cr,

with Cr ≤
Cr2

r−1 , such that the following estimate holds:

‖ϕ̃‖Lr(I, Ls(Ω0)) ≤ C
(

‖ϕ‖Lr(I, Ls(Ω0)) + ‖ψ‖Lr(I, Ls(Ω0)) + ‖∇ψ‖Lr(I, Ls(Ω0))

)

≤ Cr

(

‖ϕ‖Lr(I, Ls(Ω0)) + ‖ϕ‖Lr(I, L2(Ω))

)

.

The maximum parabolic regularity yields that for any ϕ̃ ∈ Lr(I, Ls(Ω0)), Eq. (2.6)

admits a unique solution ψ̃ satisfying ∂tψ̃, ∆ψ̃ ∈ Lr(I, Ls(Ω0)). Moreover, there holds

‖∂tψ̃‖Lr(I,Ls(Ω0)) + ‖∆ψ̃‖Lr(I,Ls(Ω0)) ≤ Cr‖ϕ̃‖Lr(I,Ls(Ω0))

for 2 ≤ s < ∞ and 1 < r < ∞ (cf. [3,13]). Noting that Ω0 has a smooth boundary, we

also have

‖ψ̃‖Lr(I,W 2,s(Ω0)) ≤ Cs‖∆ψ̃‖Lr(I,Ls(Ω0))

for 2 ≤ s < ∞ and Cs ≈ s for s → +∞ (cf. [16]). Observing that ψ̃ = ψ in Ω̃1, we

obtain the desired estimate for ψ as follows:

‖ψ‖Lr(I,W 2,s(Ω̃1))
+ ‖∂tψ‖Lr(I,Ls(Ω̃1))

≤ C2
rCs

(

‖ϕ‖Lr(I,Ls(Ω0)) + ‖ϕ‖Lr(I,L2(Ω0))

)

for 2 ≤ s ≤ 6 and 1 < r <∞.

For s > 6, we repeat the previous steps with another smooth cut-off function

ω(x) = 1, ∀x ∈ Ω̃2,

ω(x) = 0, ∀x ∈ Ω\Ω̃1,

and use the continuous embedding W 2,6(Ω̃1) →֒ W 1,s(Ω̃1) for any 2 ≤ s < ∞, where

Ω̃2 ⊂ Ω is a smooth open subdomain such that Ω̃ ⊂⊂ Ω̃2 ⊂⊂ Ω̃1. By repeating the

above procedure with Ω̃1 replaced by Ω̃2, we can obtain the desired conclusion.

We denote by C0(Ω) the space of continuous functions defined in Ω̄ that vanish on

∂Ω. C0(Ω) endowed with the supremum-norm ‖ ·‖∞ is a Banach space. The dual space

of C0(Ω) is identified with the space M(Ω) of real and regular Borel measures in Ω
(cf. [36]). The norm in M(Ω) can be defined as

‖µ‖M(Ω) := sup

{
∫

Ω
vdµ : v ∈ C0(Ω), ‖v‖∞ ≤ 1

}

for each µ ∈ M(Ω). Therefore, ‖µ‖M(Ω) is the total variation of measure µ and the

space M(Ω) is a Banach space under the norm ‖ · ‖M(Ω).

The space M(Ω) is not separable, so we need to distinguish weakly and strongly

measurability of functions u : I →M(Ω). Hereafter, we use L2(I,M(Ω)) to denote the

space of weakly measurable functions u defined in I and valued in M(Ω) such that the

norm

‖u‖L2(I,M(Ω)) :=

(
∫

I
‖u(t)‖2M(Ω)dt

)
1

2
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is finite. Then L2(I,M(Ω)) is a Banach space under the norm ‖ · ‖L2(I,M(Ω)) and can be

identified with the dual space of L2(I, C0(Ω)). The space L2(I, C0(Ω)) consists of all

measurable functions defined in I and valued in C0(Ω), and the definition of the norm

of L2(I, C0(Ω)) is similar to that of L2(I,M(Ω)) with ‖ · ‖M(Ω) replaced by ‖ · ‖∞. The

duality pairing between L2(I,M(Ω)) and L2(I, C0(Ω)) can be given by

〈u, y〉L2(I,M(Ω)),L2(I,C0(Ω)) =

∫

I

〈

u(t), y(t)
〉

M(Ω),C0(Ω)
dt

for any u ∈ L2(I,M(Ω)) and y ∈ L2(I, C0(Ω)), where 〈·, ·〉M(Ω),C0(Ω) denotes the dual-

ity pairing between M(Ω) and C0(Ω).

For any given µ ∈ L2(I,M(Ω)), let us introduce the following backward heat equa-

tion:
−∂tp−∆p = µ in (0, T ) × Ω,

p = 0 on (0, T )× ∂Ω,

p(T ) = 0 in Ω.

(2.7)

To define the weak solution of this equation, we use the method of transposition (cf.

[30]).

Definition 2.1. For any µ ∈ L2(I,M(Ω)), we call a function p ∈ L2(I, L2(Ω)) the very

weak solution of Eq. (2.7), if p satisfies

(p, ϕ)I =

∫

I

〈

µ(t), ψ(t)
〉

M(Ω),C0(Ω)
dt, ∀ϕ ∈ L2

(

I, L2(Ω)
)

, (2.8)

where ψ ∈ L2(I,H2(Ω) ∩H1
0 (Ω)) ∩H

1(I, L2(Ω)) is the solution to Eq. (2.1) with right-

hand side ϕ.

Remark 2.1. It is well known that H2(Ω) ∩H1
0 (Ω) ⊂ C0(Ω) (n ≤ 3) and the inclusion

is continuous (cf. [1]). Therefore, L2(I,H2(Ω) ∩ H1
0 (Ω)) →֒ L2(I, C0(Ω)) and Defi-

nition 2.1 is meaningful. For 1 < s < n
n−1 , we have W

1,s′

0 (Ω) →֒ C0(Ω), and thus

µ ∈ L2(I,W−1,s(Ω)). For 2n
2+n ≤ s < n

n−1 , we have H2(Ω) ∩ H1
0 (Ω) →֒ W

1,s′

0 (Ω)
so that the right-hand side of (2.8) can be viewed as the duality pairing between

L2(I,W−1,s(Ω)) and L2(I,W 1,s′

0 (Ω)) for s, s′ satisfying 1
s + 1

s′ = 1. This fact will be

used in the proof of Theorem 2.1.

The existence, uniqueness and regularity of the very weak solution of Eq. (2.7) are

given by the following theorem.

Theorem 2.1. For any given µ ∈ L2(I,M(Ω)), there exists a unique solution p ∈
L2(I, L2(Ω)) of Eq. (2.7) in the very weak sense, and p ∈ L2(I,W 1,s

0 (Ω)) (1 < s < n
n−1)

with

‖p‖L2(I,W 1,s
0

(Ω)) ≤ C ‖µ‖L2(I,M(Ω)) ,
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whereC > 0 is a constant independent of p. In addition, there exists a constant 1 < s0 <
3
2

such that ∂tp ∈ L2(I,W−1,s(Ω)) for s0 < s < n
n−1 , and the identity

−

∫

I
〈∂tp, ψ〉W−1,s,W 1,s′

0

dt+

∫

I
(∇p,∇ψ)Ls,Ls′dt =

∫

I

〈

µ(t), ψ(t)
〉

M(Ω),C0(Ω)
dt

holds for any ψ ∈ L2(I,W 1,s′

0 (Ω)). Here 〈·, ·〉
W−1,s,W 1,s′

0

denotes the duality pairing be-

tween W−1,s(Ω) and W
1,s′

0 (Ω), (·, ·)Ls ,Ls′ denotes the duality pairing between Ls(Ω)n and

Ls′(Ω)n, and s and s′ satisfy 1
s +

1
s′ = 1.

Proof. The idea of proof follows from [8,17,27,28], and we sketch it for complete-

ness. Let {µk}
∞
k=1 ⊂ C(Ī×Ω̄) be such that µk

⋆
⇀ µ in L2(I,M(Ω)) and ‖µk‖L2(I,L1(Ω)) ≤

‖µ‖L2(I,M(Ω)), ∀k ∈ N+. Let pk ∈ L2(I,H2(Ω) ∩H1
0 (Ω)) ∩H

1(I, L2(Ω)) be the solution

of the following equation:

−∂tpk −∆pk = µk in (0, T )× Ω,

pk = 0 on (0, T ) × ∂Ω,

pk(T ) = 0 in Ω.

For any ϕ ∈ D(I × Ω), let ψ ∈ L2(I, C0(Ω)) be the solution of (2.1), where D(I × Ω)
denotes the set of all infinitely differentiable functions on I ×Ω with compact support.

For 1 < s < n
n−1 , we have

∫

I

∫

Ω
pkϕdxdt =

∫

I

∫

Ω
pk(∂tψ −∆ψ)dxdt

=

∫

I

∫

Ω
(−∂tpk −∆pk)ψdxdt =

∫

I

∫

Ω
µkψdxdt

≤ ‖µk‖L2(I,M(Ω)) · ‖ψ‖L2(I,C(Ω̄))

≤ C‖µk‖L2(I,L1(Ω)) · ‖ψ‖L2(I,W 1,s′ (Ω)).

Now we use the maximal regularity of the heat equation for further estimate. Since

Ω is convex with a Lipschitz boundary, there exists a constant ŝ with ŝ > 4 if n = 2,

and ŝ > 3 if n = 3, such that ∆ : W 1,s
0 (Ω) → W−1,s(Ω) is an isomorphism for each

ŝ′ < s < ŝ, where 1
ŝ′ +

1
ŝ = 1 (cf. [24]). Furthermore, using [13, Theorem 5.4] we

obtain that, for every ŝ′ < s′ < ŝ, there exists a constant C > 0 such that

∫

I

∫

Ω
pkϕdxdt ≤ C‖µk‖L2(I,L1(Ω)) · ‖ψ‖L2(I,W 1,s′ (Ω))

≤ C‖µk‖L2(I,L1(Ω)) · ‖ϕ‖L2(I,W−1,s′(Ω)).

Since D(I × Ω) is dense in L2(I,W−1,s′(Ω)) and

(

L2(I,W 1,s
0 (Ω))

)∗
= L2

(

I,W−1,s′(Ω)
)

,
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one obtains

‖pk‖L2(I,W 1,s
0

(Ω)) ≤ C‖µ‖L2(I,M(Ω)), ∀k ∈ N+. (2.9)

Therefore, {pk}k∈N+
⊂ L2(I,W 1,s

0 (Ω)) is bounded. By the reflexivity of L2(I,W 1,s
0 (Ω))

we extract a subsequence, still denoted by {pk}k∈N+
such that pk ⇀ p in L2(I,W 1,s

0 (Ω))

for some p ∈ L2(I,W 1,s
0 (Ω)). Now we check that p is a solution to (2.7). Note that

µk
⋆
⇀ µ, and pk satisfies

∫

I

∫

Ω
pkϕdxdt =

∫

I

∫

Ω
µkψdxdt, ∀ϕ ∈ D(I × Ω), (2.10)

where (ψ,ϕ) ∈ L2(I,H2(Ω)∩H1
0 (Ω))∩H

1(I, L2(Ω))×L2(I, L2(Ω)) satisfies Eq. (2.1).

Passing to the limit in (2.10), we then obtain the identity (2.8) for any ϕ ∈ D(I ×
Ω). Because D(I × Ω) is dense in L2(I, L2(Ω)) and (∂t − ∆) is an isomorphism from

L2(I,H2(Ω) ∩ H1
0 (Ω)) ∩ H

1(I, L2(Ω)) to L2(I, L2(Ω)), we arrive at (2.8). Therefore,

p is a solution to (2.7), and the estimate for p can be obtained by Eq. (2.9) for any

ŝ′ < s < n
n−1 .

When
2n

n+ 2
≤ s <

n

n− 1
,

W
1,s
0 (Ω) →֒ L2(Ω) is dense and continuous. For any ŝ′ < s < n

n−1 , the solution of

(2.7) belongs to L2(I,W 1,s
0 (Ω)) and ∆ : W 1,s

0 (Ω) → W−1,s(Ω) is an isomorphism and

µ ∈ L2(I,W−1,s(Ω)), therefore, ∂tp ∈ L2(I,W−1,s(Ω)). Let s0 = max{ŝ′, 2n
n+2}, then

p ∈ L2(I,W 1,s
0 (Ω)) ∩ L2(I, L2(Ω)) and ∂tp ∈ L

2(I,W−1,s(Ω)) for s0 < s < n
n−1 .

When

s0 < s <
n

n− 1
,

set

W :=
{

ψ ∈ L2
(

I,H2(Ω) ∩H1
0 (Ω)

)

∩H1
(

I, L2(Ω)
)

:

ψ satisfies (2.1) for some ϕ ∈ L2
(

I, L2(Ω)
)

}

.

Taking ϕ = ∂tψ − ∆ψ in (2.8) for any ψ ∈ W and integrating by parts (cf. [37]), we

obtain

−

∫

I
〈∂tp, ψ〉W−1,s,W 1,s′

0

dt+

∫

I
(∇p,∇ψ)Ls,Ls′dt

=

∫

I

〈

µ(t), ψ(t)
〉

M(Ω),C0(Ω)
dt, ∀ψ ∈W, (2.11)

which, together with the fact that W is dense in L2(I,W 1,s′

0 (Ω)) and L2(I,M(Ω)) ⊂
L2(I,W−1,s(Ω)), implies the desired identity of this theorem.
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Remark 2.2. Using integration by parts (cf. [37]) for the first term in identity (2.11),

we obtain the following identity for any ψ ∈ W̃ :

∫

I
〈p, ∂tψ〉W 1,s

0
,W−1,s′dt+

∫

I
(∇p,∇ψ)Ls,Ls′dt =

∫

I

〈

µ(t), ψ(t)
〉

M(Ω),C0(Ω)
dt, (2.12)

where

W̃ =
{

v ∈ L2
(

I,W
1,s′

0 (Ω)
)

: ∂tv ∈ L2
(

I,W−1,s′(Ω)
)

, v(0) = 0
}

.

Replacing (2.8) in Definition 2.1 by the identity (2.11) or (2.12), we obtain the equiv-

alent definition of solution to (2.7) with higher regularity.

For any given g ∈ C(Ī , L2(Ω)) and t̂ ∈ I, we consider the following backward in

time heat equation:

−∂tp−∆p = g(t)⊗ δ(t− t̂) in (0, T )× Ω,

p = 0 on (0, T ) × ∂Ω,

p(T ) = 0 in Ω,

(2.13)

where δ(t − t̂) is the Dirac delta distribution concentrated on t̂, and g(t) ⊗ δ(t − ti) is

a distribution defined by

ψ →

∫

Ω
g(x, t̂)ψ(x, t̂)dx, ∀ψ ∈ D(I × Ω).

Similarly, we can define the solution of (2.13) by the transposition method.

Definition 2.2. We call a function p ∈ L2(I, L2(Ω)) the very weak solution of Eq. (2.13),

if it satisfies the following identity:

(p, ϕ)I =

∫

Ω
g(t̂)ψ(t̂)dx, ∀ϕ ∈ L2

(

I, L2(Ω)
)

, (2.14)

where ψ ∈ C(Ī , L2(Ω)) satisfies (2.1) for given right-hand side ϕ.

The following proposition concerning the well-posedness of (2.13) is taken from

[17], which is very useful in the finite element error estimation for the adjoint equation.

Proposition 2.2. System (2.13) has a unique solution p ∈ L2(I,H1
0 (Ω))∩L

∞(I, L2(Ω)).
Moreover,

(p, ∂tv)H1
0
,H−1 + (∇p,∇v)I =

∫

Ω
g(t̂)v(t̂)dx, ∀v ∈W (I)

and

‖p‖L2(I,H1
0
(Ω)) + ‖p‖L∞(I,L2(Ω)) ≤ C‖g‖L∞(I,L2(Ω))

for some constant C > 0 independent of p, where

W (I) :=
{

L2
(

I,H1
0 (Ω)

)

∩H1
(

I,H−1(Ω)
)

, v(0) = 0
}

.
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3. Optimal control problems

In this section we study the optimal control problem. We denote the state space by

X = L2(I, C(Ω̄))∩C(Ī , L2(Ω)), where C(Ω̄) denotes the space of continuous functions

in Ω̄. By using Proposition 2.1 we can see that the state equation (1.1) admits a unique

solution y(u) ∈ X for any given control u ∈ U . Therefore, we can define two mappings

Si : L
2(I, L2(ω)) → Ai such that Siu = y(u) for i = 1, 2, where A1 = L2(I, C(Ω̄)) and

A2 = C(Ī , L2(Ω)).
Using the mappings S1, S2 we introduce the reduced cost functional Ĵβ : U → R as

Ĵβ(u) := (2− β)J1(S1u, u) + (β − 1)J2(S2u, u) +
α

2
‖u‖2U .

The optimal control problem (1.3) can be equivalently written as

min
u∈Uad

Ĵβ(u). (3.1)

By using standard arguments (cf. [29]) we can prove that the optimization problem

(3.1) admits a unique solution ū ∈ Uad for any β ∈ [1, 2]. The first order necessary

(also sufficient) optimality condition of the optimization problem (3.1) at ū reads as

follows:

Ĵ ′
β(ū)(v − ū) ≥ 0, ∀v ∈ Uad, (3.2)

where Ĵ ′
β(ū) denotes the Fréchet derivative of Ĵβ at ū that takes the form

Ĵ ′
β(u)(v) = (2− β)Ĵ ′

1(u)(v) + (β − 1)Ĵ ′
2(u)(v) + α(u, v)U , ∀v ∈ U

for given u ∈ U . Here Ĵ ′
1(u) and Ĵ ′

2(u) are given by

Ĵ ′
1(u)(v) =

N1
∑

i=1

∫ T

0

(

y(u)(xi, t)− yidS(t)
)

ỹ1(v)(x
i, t)dt, ∀v ∈ U,

Ĵ ′
2(u)(v) =

N2+1
∑

i=1

∫

Ω

(

y(u)(x, ti)− yidT (x)
)

ỹ2(v)(x, t
i)dx, ∀v ∈ U

with tN2+1 = T and yN2+1
dT

= yT . Moreover, ỹi(v) = S′
i(u)v ∈ Ai is the solution to

(1.1) with right-hand side Bv, and is independent of u. In other words, the necessary

optimality condition (3.2) is equivalent to the following variational inequality:

(2− β)Ĵ ′
1(ū)(v − ū) + (β − 1)Ĵ ′

2(ū)(v − ū) + α(ū, v − ū)U ≥ 0, ∀v ∈ Uad. (3.3)

Particularly, the above variational inequalities for the cases of β = 1 and β = 2 have

the following expressions: For any v ∈ Uad there holds

N1
∑

i=1

∫ T

0

(

y(ū)(xi, t)− yidS (t)
)

ỹ(v − ū)(xi, t)dt

+ α

∫ T

0

∫

ω
ū(t, x)

(

v(t, x)− ū(t, x)
)

dxdt ≥ 0 (3.4)
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for β = 1, and

N2+1
∑

i=1

∫

Ω

(

y(ū)(x, ti)− yidT (x)
)

ỹ(v − ū)(x, ti)dx

+ α

∫ T

0

∫

ω
ū(t, x)(v − ū)(t, x)dxdt ≥ 0 (3.5)

for β = 2.

Remark 3.1. Multiply the variational inequalities (3.4) and (3.5) by 2 − β and β − 1,

respectively, and add them up, then we obtain the variational inequality (3.3). In other

words, we can obtain the first order optimality condition for the case of β ∈ (1, 2)
by using the linear combination of the cases for β = 1 and β = 2, which implies the

relationship between the adjoint state variable of the case β ∈ (1, 2) and that of the

case β = 1 or β = 2.

However, the above form of first order optimality condition is not friendly for nu-

merical approximation. In order to better characterize the optimal solution ū to the

optimal control problem (3.1) and its first order necessary optimality condition (3.2),

we will introduce two backward in time heat equations, the so-called adjoint state

equations. The first one reads

− ∂tp
1(x, t)−∆p1(x, t)

=

N1
∑

i=1

(

y(u)(xi, t)− yidS (t)
)

⊗ δ(x− xi) in (0, T ) × Ω,

p1(x, t) = 0 on (0, T )× ∂Ω,

p1(x, T ) = 0 in Ω,

(3.6)

where δ(x−xi) is the Dirac delta distribution concentrated on xi, and
∑N1

i=1(y(u)(x
i, t)−

yidS(t))⊗ δ(x − xi) is a distribution defined by

ψ →

N1
∑

i=1

∫ T

0

(

y(u)(xi, t)− yidS (t)
)

ψ(xi, t)dt, ∀ψ ∈ D(I × Ω),

corresponding to the case β = 1. The above equation involves singular right-hand

side and does not admit a classical variational solution, therefore, we should use the

method of transposition to define the solution to (3.6) (cf. [30]), see Definition 2.1. By

Theorem 2.1 we can infer the existence of a unique solution.

The second adjoint state equation reads

− ∂tp
2(x, t)−∆p2(x, t)

=

N2
∑

i=1

(

y(u)(x, ti)− yidT (x)
)

⊗ δ(t− ti) in (0, T )× Ω, (3.7a)
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p2(x, t) = 0 on (0, T )× ∂Ω, (3.7b)

p2(T ) = y(u)(T )− yT in Ω, (3.7c)

where δ(t − ti) is the Dirac delta function concentrated on ti, and
∑N2

i=1(y(u)(x, t
i) −

yidT (x))⊗ δ(t− ti) is a distribution defined by

ψ →

N2
∑

i=1

∫

Ω

(

y(u)(x, ti)− yid(x)
)

ψ(x, ti)dx, ∀ψ ∈ D(I × Ω), (3.8)

corresponding to the case β = 2.

The existence and uniqueness of the very weak solution to (3.7) can be obtained by

Definition 2.2 and Proposition 2.2. In fact, for given y(u)(T ) − yT ∈ L2(Ω) (cf. [30]),

let p0 ∈ L2(I,H1
0 (Ω)) ∩ L

∞(I, L2(Ω)) satisfy the following equation:

−∂tp
0(x, t)−∆p0(x, t) = 0 in (0, T )× Ω,

p0 = 0 on (0, T ) × ∂Ω,

p0(T ) = y(u)(T )− yT in Ω.

Let p̃i be the solution of (2.13) with the right-hand side replaced by (y(u)(x, ti) −
yidT (x))⊗δ(t− t

i). By Proposition 2.2, we know that p̃i, i = 1, . . . , N2, are well-defined.

Now let p2 = p0 +
∑N2

i=1 p̃
i. From the superposition principle, it follows that p2 is

the unique solution to (3.7). To emphasize the dependence of p1, p2 on u, we denote

by p1(u) and p2(u) the solutions to (3.6) and (3.7), respectively. From the optimality

condition (3.2) we see that the directional derivative of Ĵβ(ū) along v − ū is non-

negative for all v ∈ Uad. By using the solutions to adjoint equations (3.6) and (3.7) we

can give an explicit expression for Ĵ ′
β(u).

Let us introduce the adjoint variable p(u) ∈ L2(I, L2(Ω)), with

p(u) := (2− β)p1(u) + (β − 1)p2(u). (3.9)

Then we can obtain an explicit expression for Ĵ ′
β(u), viz.

Ĵ ′
β(u)(v) =

∫ T

0

∫

ω
χω(x)p(u)(t, x)v(t, x)dxdt

+ α

∫ T

0

∫

ω
u(t, x)v(t, x)dxdt, ∀v ∈ U. (3.10)

In fact, taking ϕ = Bv in Eq. (2.8), and letting ψ be the solution of (2.1), we have

ψ = ỹ(v). Taking µ =
∑N1

i=1(y(u)(x
i, t) − yidS(t)) ⊗ δ(x − xi) in (2.7) and using (2.8),

we get

∫

I

∫

ω
χωp

1(u)vdxdt =

N1
∑

i=1

∫

Ω

(

y(u)(xi, t)− yidS (t)
)

ỹ(v)(xi)dt = Ĵ ′
1(u)(v).
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Similarly, by using Definition 2.2 and (2.14) we can derive

∫

I

∫

ω
χωp

2(u)vdxdt =

N2
∑

i=1

∫

Ω

(

y(u)(x, ti)− yidT (x)
)

ỹ(v)(ti)dx

+

∫

Ω

(

y(u)(x, T ) − yT (x)
)

ỹ(v)(T )dx

= Ĵ ′
2(u)(v).

Multiplying the first identity by 2 − β and the second one by β − 1, then adding them

up, we obtain (3.10).

By using (3.10), a more convenient expression for (3.2) is given as follows:
∫

I

∫

ω

(

χωp(ū)(t, x) + αū(t, x)
)(

v(t, x) − ū(t, x)
)

dxdt ≥ 0, ∀v ∈ Uad. (3.11)

The necessary optimality condition (3.11) can be equivalently formulated via the point-

wise projection

PUad
: U → Uad, PUad

(z)(t, x) = max
(

ua,min(ub, z(t, x))
)

a.e. (t, x) ∈ I × ω.

That is,

ū = PUad

(

−
1

α
χωp(ū)

)

. (3.12)

Now we collect the results on the first order optimality system for the optimization

problem.

Theorem 3.1. A control ū ∈ Uad with associated state ȳ ∈ X is an optimal pair of

the optimal control problem (1.3) if and only if there exist p̄1 ∈ L2(I,W 1,s
0 (Ω)), p̄2 ∈

L2(I,H1
0 (Ω)) and an adjoint state p̄ ∈ L2(I, L2(Ω)) such that

(∂tȳ, v)H−1,H1 + (∇ȳ,∇v)I = (Bū, v)I , ∀v ∈ L2
(

I,H1
0 (Ω)

)

, ȳ(0) = 0,

−
(

∂tp̄
1, ψ
)

W−1,s,W 1,s′ +

∫

I

(

∇p̄1,∇ψ
)

Ls,Ls′dt

=

N1
∑

i=1

∫ T

0

(

ȳ(xi)− yidS , ψ(x
i)
)

dt, ∀ψ ∈ L2
(

I,W
1,s′

0 (Ω)
)

, p̄1(T ) = 0,

(

p̄2, ∂tψ
)

H1,H−1 +
(

∇p̄2,∇ψ
)

I

=

N2
∑

i=1

∫

Ω

(

ȳ(ti)− yidT

)

ψ(ti)dx+

∫

Ω

(

ȳ(T )− yT
)

ψ(T )dx, ∀ψ ∈W (I),

(χωp̄+ αū, v − ū)U ≥ 0, ∀v ∈ Uad, p̄ = (2− β)p̄1 + (β − 1)p̄2.

Here, (·, ·)H−1,H1 is the dual relation between L2(I,H−1(Ω)) and L2(I,H1
0 (Ω)), and

(·, ·)W−1,s,W 1,s′ is the dual relation between L2(I,W−1,s′(Ω)) and L2(I,W 1,s
0 (Ω)), and

s0 < s < n
n−1 for some 1 < s0 <

3
2 .
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Remark 3.2. Due to the linearity of the governing state equation, we can incorporate

an additional nonzero right-hand side f ∈ L2(I, L2(Ω)) and an initial data y0 in the

state equation (1.1), by requiring y0 ∈ H1
0 (Ω) when β < 2 and y0 ∈ L2(Ω) when β = 2,

and modifying the desired observations. Moreover, the above setup is a model problem,

where, for simplicity, we choose the heat equation as the state equation. However, all

our results can be extended directly to more general self-adjoint elliptic operator of

second order with smooth coefficients (instead of −∆) on the left-hand side of (1.1).

4. Finite element discretization for the control problem

In this section we consider the finite element discretization of the control problem.

To begin with, we divide Ī = [0, T ] into subintervals Im = (tm−1, tm] of length km =
tm − tm−1, where 0 = t0 < t1 < · · · < tM = T . The maximal time step is denoted by

k = max1≤m≤M km. We impose the following conditions (cf. [27]) which are valid for

a large class of time grids:

(i) There exist constants c, γ > 0, independent of k, such that

min
1≤m≤M

km ≥ ckγ .

(ii) There exists a constant κ > 0, independent of k, such that for m = 1, . . . ,M − 1,

κ−1 ≤
km

km+1
≤ κ.

(iii) The maximal time step size satisfies k ≤ 1
4 min{T, 1}.

Now we define the time semi-discrete space consisting of all piecewise constant

functions as

X0
k =

{

zk ∈ L2
(

I,H1
0 (Ω)

)

: zk|Im ∈ P0

(

Im,H
1
0 (Ω)

)

, m = 1, . . . ,M
}

,

where P0(Im,H
1
0 (Ω)) denotes the function space of constants on Im valued in H1

0 (Ω),
m = 1, . . . ,M . We will need the following notations for functions in space X0

k :

vm = v−m := lim
t→0+

v(tm − t), vm+1 = v+m := lim
t→0+

v(tm + t), [v]m := v+m − v−m.

Let Th = {τ} be a family of quasi-uniform and shape regular partitions of Ω into

n-simplex τ with diameter hτ , and denote the mesh size of Th by h = maxτ∈Th
hτ . We

assume further that there exists a constant c > 0, independent of h and τ , such that

diam(τ) ≤ h ≤ c|τ |
1

n . Let

Vh :=
{

vh ∈ C(Ω̄) : vh|τ ∈ P1(τ),∀τ ∈ Th

}
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be the usual continuous piecewise linear finite element space, where P1(τ) denotes the

linear polynomials on τ . We set V 0
h = Vh ∩H

1
0 (Ω).

Let πh be the usual nodal Lagrange interpolation (cf. [6]) from C0(Ω) to Vh or the

Clément-type interpolation (cf. [11]) from L1(Ω) to Vh. Let Ph : L2(Ω) → Vh be the

L2-projection operator defined by

(Phy, vh) = (y, vh), ∀vh ∈ Vh,

and let Rh : H1
0 (Ω) → V 0

h be the Ritz projection operator defined by

(∇Rhϕ,∇vh) = (∇ϕ,∇vh), ∀vh ∈ V 0
h .

Then, the following error estimates for the Ritz projection and the inverse estimates

are classical (cf. [6,10]).

Lemma 4.1. Let Rh be the Ritz projection operator defined above. Then there hold

‖vh‖L∞(Ω) ≤ Ch−
n
2 ‖vh‖, ∀vh ∈ Vh,

‖v −Rhv‖L∞(Ω) ≤ Ch2−
n
2 ‖∇2v‖, ∀v ∈ H1

0 (Ω) ∩H
2(Ω),

‖v −Rhv‖H1(Ω) ≤ Ch‖∇2v‖, ∀v ∈ H1
0 (Ω) ∩H

2(Ω),

‖v −Rhv‖ ≤ Ch‖∇(v −Rhv)‖, ∀v ∈ H1
0 (Ω).

Proof. The first estimate is the standard inverse estimate for finite element func-

tions (cf. [6]), the second one is the uniform estimate for Ritz projection operator and

we refer to [6, 10]. The third and the last ones are standard error estimates for Ritz

projection in H1 and L2 norms which can also be found in [6,10].

Remark 4.1. The application of the operators Rh, Ph and πh to time-dependent ar-

guments has to be understood pointwisely in time, and Lemma 4.1 holds for time-

dependent case with the corresponding estimates under the space-time norms.

In order to define the fully discrete approximation, we need to introduce the space-

time finite element space

X
0,1
k,h :=

{

vkh ∈ X0
k : vkh|Im ∈ P0

(

Im, V
0
h

)

, m = 1, . . . ,M
}

and the bilinear form (cf. [33])

B(v,w) :=
M
∑

m=1

〈∂tv,w〉Im×Ω + (∇v,∇w)I +
M
∑

m=2

(

[v]m−1, w
+
m−1

)

+ (v+0 , w
+
0 ) (4.1)

for v,w ∈ X0
k or v,w ∈ X

0,1
k,h. Here 〈·, ·〉Im×Ω denotes the duality pairing between

L2(Im,H
−1(Ω)) and L2(Im,H

1
0 (Ω)). By integration by parts we obtain an equivalent

dual expression of B as follows (cf. [33]):

B(v,w) = −
M
∑

m=1

〈v, ∂tw〉Im×Ω +
(

∇v,∇w
)

I
−

M−1
∑

m=1

(

v−m, [w]m
)

+
(

v−M , w
−
M

)

. (4.2)
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For given control u ∈ U , the DG(0)-CG(1) approximation ykh ∈ X
0,1
k,h of the state

equation (1.1) is defined by (cf. [38])

B(ykh, vkh) = (Bu, vkh)I , ∀vkh ∈ X
0,1
k,h. (4.3)

It is not difficult to verify the following Galerkin orthogonality relation

B(y − ykh, vkh) = 0, ∀vkh ∈ X
0,1
k,h. (4.4)

Now we give the discretized optimal control problem

minJβ(ykh, u) : (ykh, u) ∈ X
0,1
k,h × Uad subject to (4.3). (4.5)

By standard arguments, it is easy to prove that the discrete optimal control problem

(4.5) has a unique solution. Note that by following the variational discretization con-

cept (cf. [22]) the admissible control set is not discretized explicitly in (4.5). It can

be checked that the discrete control is constant on each Im but may not belong to the

finite element space Vh.

Similar to the continuous case, the discrete state equation (4.3) defines a mapping

u ∈ Uad → ykh ∈ X
0,1
k,h from the control space to the discrete state space. To emphasize

the dependence of the mapping on u, we write ykh = ykh(u). Define the reduced

discrete cost functional Ĵβ,kh : U → R as

Ĵβ,kh(u) := Jβ

(

ykh(u), u
)

.

Then the optimal control problem (4.5) is reduced to the following optimization prob-

lem:

minĴβ,kh(u), u ∈ Uad. (4.6)

We denote by ūkh the solution to (4.6) and we have the following first order necessary

condition:

Ĵ ′
β,kh(ūkh)(v − ūkh) ≥ 0, ∀v ∈ Uad, (4.7)

where Ĵ ′
β,kh denotes the Fréchet derivative of Ĵβ,kh at ūkh. Due to the convexity of the

optimization problem (4.6), it is easy to verify that the condition (4.7) is also sufficient

for (4.6).

Given u, v ∈ U , let ỹkh(v) = y′kh(u)v be the directional derivative of ykh(u) at v,

then it is easy to check that ỹkh(v) satisfies

B(ỹkh(v), ϕkh) = (Bv, ϕkh)I , ∀ϕkh ∈ X
0,1
k,h, (4.8)

and that Ĵ ′
β,kh(u) has the following form:

Ĵ ′
β,kh(u)v = (2− β)Ĵ ′

1,kh(u)v + (β − 1)Ĵ ′
2,kh(u)v + α(u, v)U , (4.9)

where

Ĵ ′
1,kh(u)v =

N1
∑

i=1

∫ T

0

(

ykh(u)(x
i)− yidS

)

ỹkh(v)(x
i)dt,
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Ĵ ′
2,kh(u)v =

N2
∑

i=1

∫

Ω

(

ykh(u)(t
i)− yidT

)

ỹkh(v)(t
i)dx

+

∫

Ω

(

ykh(u)(T ) − yT
)

ỹkh,M(v)dx.

We denote by ȳkh the optimal discrete state of the optimal control problem (4.5),

i.e., ȳkh is the solution of (4.3) with the right-hand side u replaced by ūkh. Similar to

the continuous level, in what follows we use the adjoint argument for Ĵ ′
β,kh to derive

an explicit expression for (4.7). We firstly introduce the discrete variables pikh(u) ∈

X
0,1
k,h, i = 1, 2, defined respectively by

B
(

ϕkh, p
1
kh(u)

)

=

N1
∑

i=1

∫ T

0

(

ykh(u)(x
i)− yidS

)

ϕkh(x
i)dt, (4.10)

B
(

ϕkh, p
2
kh(u)

)

=

N2
∑

i=1

(

ykh(u)(t
i)− yidT , ϕkh(t

i)
)

+
(

ykh(u)(T ) − yT , ϕkh,M

)

(4.11)

for any ϕkh ∈ X
0,1
k,h. We note that pikh(u) are well-defined by the standard theory

(cf. [38]). Then we define the discrete adjoint state pkh(u) ∈ X
0,1
k,h as follows:

pkh(u) := (2− β)p1kh(u) + (β − 1)p2kh(u). (4.12)

Taking ϕkh = ỹkh(v) in (4.10) and (4.11), multiplying (4.10) and (4.11) by 2 − β and

β − 1, respectively, and adding them up, we get

B
(

ỹkh(v), pkh(u)
)

= (2− β)Ĵ ′
1,kh(u)v + (β − 1)Ĵ ′

2,kh(u)v.

Once again, by taking ϕkh = pkh(u) in (4.8) we arrive at

B
(

ỹkh(v), pkh(u)
)

=
(

Bv, pkh(u)
)

.

Eventually, we obtain the expression of Ĵ ′
β,kh, i.e.,

Ĵ ′
β,kh(v) =

∫ T

0

∫

ω

(

χω(x)pkh(u)(t, x) + αu(t, x)
)

v(t, x)dxdt, ∀v ∈ U. (4.13)

Using this form, we also obtain the explicit expression of (4.7), i.e.,

∫ T

0

∫

ω

(

χω(x)p̄kh(t, x) + αūkh(t, x)
)(

v(t, x) − ūkh
)

dxdt ≥ 0, ∀v ∈ Uad, (4.14)

where p̄kh = pkh(ūkh) is the so-called discrete adjoint state. In the following we write

p̄1kh = p1kh(ūkh) and p̄2kh = p2kh(ūkh).
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Once again, we use the projection operator PUad
to write ūkh as the projection of

the adjoint

ūkh = PUad

(

−
1

α
χωp̄kh

)

,

or equivalently,

ūkh(t, x) = max

(

ua,min

(

ub,−
1

α
p̄kh(t, x)

))

a.e. (t, x) ∈ (0, T ) × ω. (4.15)

From the above discussions it follows the following conclusion on the first order

optimality system for the discretized optimal control problem (4.5).

Theorem 4.1. The pair of approximate state and control, (ȳkh, ūkh) ∈ X
0,1
k,h × Uad, is the

optimal pair of problem (4.5) if and only if there exist two discrete variables p̄1kh, p̄
2
kh ∈

X
0,1
k,h and a discrete adjoint state p̄kh ∈ X

0,1
k,h such that

B(ȳkh, vkh) = (Būkh, vkh)I , ∀vkh ∈ X0,1
k,h,

B(ϕkh, p̄
1
kh) =

N1
∑

i=1

∫ T

0

(

ȳkh(x
i)− yidS

)

ϕkh(x
i)dt, ∀ϕkh ∈ X

0,1
k,h,

B
(

ϕkh, p̄
2
kh

)

=

N2
∑

i=1

∫

Ω

(

ȳkh(t
i)− yidT

)

ϕkh(t
i)dx

+

∫

Ω
(ȳkh(T )− yT )ϕkh,Mdx, ∀ϕkh ∈ X

0,1
k,h,

p̄kh = (2 − β)p̄1kh + (β − 1)p̄2kh,
∫ T

0

∫

ω

(

χωp̄kh(t, x) + αūkh(t, x)
)(

v(t, x)− ūkh(t, x)
)

dxdt ≥ 0, ∀v ∈ Uad.

Remark 4.2. In our time discretization scheme we shall avoid the situation that the

time observation points ti (i = 1, . . . , N2) and the time grid points coincide, this is be-

cause we use discontinuous test functions in time for the adjoint equation. Therefore,

the Petrov-Galerkin scheme employing continuous piecewise linear states and piece-

wise constant test functions, proposed in [12,34], could be a better choice when using

a general time partition. We refer to [21] for the application of this scheme to space-

time sparse control problems. In case that some time grid points and time observation

points coincide, for example, at tm, we may define
∫

I vdδ(t − tm) := v(tm) for any

piecewise-constant-in-time function v.

In the following we study the stability of the semi-discrete and fully discrete so-

lutions. Let ψ be the solution of the auxiliary problem (2.1). Its time semi-discrete

approximation reads: Find ψk ∈ X0
k such that

B(ψk, φk) = (ϕ, φk)I , ∀φk ∈ X0
k . (4.16)
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This problem admits a unique solution ψk ∈ X0
k (cf. [38]) and the following conclusion

holds.

Lemma 4.2. Let ψk be the solution of (4.16). Then ψk ∈ X0
k ∩ L2(I,H2(Ω) ∩ H1

0 (Ω))
and

‖∇2ψk‖I ≤ C‖∆ψk‖I , (4.17)

‖∇ψk‖I + ‖∆ψk‖I + ‖ψk‖L2(I,L∞(Ω)) ≤ C‖ϕ‖L2(I,L2(Ω)), (4.18)

where C is a positive constant independent of k and ϕ.

Proof. Note that on each time interval Im, the solution ψk of problem (4.16) satisfies

(∇ψk,∇φk)Im +
(

[ψk]m−1, φ
+
k,m−1

)

= (ϕ, φk)Im , m = 1, . . . ,M, (4.19)

where ψk,0 = 0. The above formulation can be equivalently written as

(∇ψk,m,∇φk,m) +
1

km
(ψk,m, φk,m)

=

(

ϕ̄+
1

km
ψk,m−1, φk,m

)

, ∀φk,m ∈ H1
0 (Ω), (4.20)

where ϕ̄|Im is the mean value of ϕ on Im. Since Ω is a convex polygon or polyhedron

and ϕ̄ + 1
km
ψk,m−1 ∈ L2(Ω), by the theory of elliptic regularity (cf. [20]) the solution

of above equation satisfies ψk,m ∈ H2(Ω) ∩ H1
0 (Ω) for m = 1, . . . ,M , so that the first

estimate holds.

As for the second estimate, the result

‖∇ψk‖I + ‖∆ψk‖I ≤ C‖ϕ‖L2(I,L2(Ω))

can be found in [33, Theorems 4.1 and 4.3], which, together with the embedding

H2(Ω) →֒ C(Ω̄), also yields

‖ψk‖L2(I,L∞(Ω)) ≤ C‖ϕ‖L2(I,L2(Ω)).

This completes the proof.

Consider the following fully discrete finite element scheme for the auxiliary problem

(2.1): Find ψkh ∈ X
0,1
k,h such that

B(ψkh, φkh) = (ϕ, φkh)I , ∀φkh ∈ X
0,1
k,h. (4.21)

Let Ω̃ be an open subset of Ω and let Ω0 be a smooth open subdomain of Ω, such that

Ω̃ ⊂⊂ Ω0 ⊂⊂ Ω. Let {xi}N1

i=1 ⊂ Ω̃ and d = min1≤i≤N1
dist(xi, ∂Ω̃) > 0. The following

lemma concerning the interior estimation is taken from [27, 28]. This result is useful

for the a priori error estimation of the optimal control problems.
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Lemma 4.3. Let ψ and ψkh satisfy (2.1) and (4.21), respectively. There exists a constant

h0 > 0, independent of h, k and ψ, such that for any 2 ≤ s ≤ ∞, i = 1, . . . , N1, and

h ≤ h0, there hold

∫ T

0
|(ψ − ψkh)(t, x

i)|2dt

≤ C|lnh|2 inf
χ∈X0,1

k,h

{

‖ψ − χ‖2
L2(I,L∞(Ω̃))

+ h−
4

s ‖πkψ − χ‖2
L2(I,Ls(Ω̃))

+ ‖ψ − χ‖2L2(I,L2(Ω))

+ ‖πkψ − χ‖2L2(I,L2(Ω)) + h2‖∇(ψ − χ)‖2L2(I,L2(Ω))

}

for n = 2, and

∫ T

0
|(ψ − ψkh)(t, x

i)|2dt

≤ C

(

ln
T

k

)2

|lnh|2 inf
χ∈X0,1

k,h

{

‖ψ − χ‖2
L2(I,L∞(Ω̃))

+ h−
6

s ‖πkψ − χ‖2
L2(I,Ls(Ω̃))

+ ‖ψ − χ‖2L2(I,L2(Ω)) + ‖πkψ − χ‖2L2(I,L2(Ω))

+ h2‖∇(ψ − χ)‖2L2(I,L2(Ω))

}

for n = 3. Here the constant C > 0 depends only on d and h0.

From [32, Corollary 5.5 and 5.11] we have the following lemma.

Lemma 4.4. For given ϕ ∈ L∞(I, L2(Ω)), let ψ and ψkh be the solutions to (2.1) and

(4.21), respectively. Then there exists a constant C > 0, independent of h, k and ψ, such

that

‖ψ − ψkh‖L∞(I,L2(Ω)) ≤ C

(

ln
T

k

)
1

2

(

k + h2
(

ln
T

k

)
1

2

)

‖ϕ‖L∞(I,L2(Ω)). (4.22)

5. Error estimates for the control problem

For given u ∈ Uad, let y(u) be the solution of the state equation (1.1). We define

the auxiliary variables p̂ikh(y) ∈ X
0,1
k,h, i = 1, 2, by

B
(

ϕkh, p̂
1
kh(y)

)

=

N1
∑

i=1

(

y(u)(xi)− yidS , ϕkh(x
i)
)

L2(I)
, ∀ϕkh ∈ X

0,1
k,h, (5.1)

B
(

ϕkh, p̂
2
kh(y)

)

=

N2
∑

i=1

(

y(u)(ti)− yidT , ϕkh(t
i)
)

+
(

y(u)(T )− yT , ϕkh,M

)

, ∀ϕkh ∈ X
0,1
k,h, (5.2)
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respectively, and set

p̂kh(y) := (2− β)p̂1kh(y) + (β − 1)p̂2kh(y). (5.3)

In addition, we introduce another auxiliary variable ykh(u) ∈ X
0,1
k,h that solves

B
(

ykh(u), ϕkh

)

= (Bu, ϕkh)I , ∀ϕkh ∈ X
0,1
k,h. (5.4)

Lemma 5.1. The second order derivative of the cost functional Ĵβ,kh at any u ∈ Uad is

independent of u, i.e., Ĵ ′′
β,kh(u) is a constant operator for any u ∈ Uad. Moreover, it holds

Ĵ ′′
β,kh(u)(v, v) ≥ α‖v‖2L2(I,L2(ω)), ∀ u, v ∈ Uad. (5.5)

A straightforward calculation implies the above lemma. In the following we show

the stability of the fully discrete scheme (4.21).

Proposition 5.1. For ϕ ∈ L∞(I, L2(Ω)), let ψkh be the solution of (4.21). Then there

exist sufficiently small constants h0, k0 > 0 such that the stability estimates

‖ψkh‖L∞(I,L2(Ω)) ≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

‖ϕ‖L∞(I,L2(Ω)), (5.6)

‖ψkh‖L2(I,L2(Ω)) + ‖ψkh‖L2(I,L∞(Ω)) ≤ C‖ϕ‖L2(I,L2(Ω)) (5.7)

hold for h ≤ h0, k ≤ k0, where C > 0 is a constant independent of k and h.

Proof. Applying Proposition 2.1 and Lemma 4.4 under the conditions k ≤ k0 and

h ≤ h0 for some k0 > 0 and h0 > 0, we obtain

‖ψkh‖L∞(I,L2(Ω)) ≤ ‖ψkh − ψ‖L∞(I,L2(Ω)) + ‖ψ‖L∞(I,L2(Ω))

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

‖ϕ‖L∞(I,L2(Ω)),

i.e., the first estimate holds.

The estimate for ‖ψkh‖L2(I,L2(Ω)) follows similarly by using the results of [33]. The

thing left is to prove estimate ‖ψkh‖L2(I,L∞(Ω)). In fact, we have

‖ψkh‖L2(I,L∞(Ω))

≤ ‖ψkh −Rhψk‖L2(I,L∞(Ω)) + ‖Rhψk − ψk‖L2(I,L∞(Ω)) + ‖ψk‖L2(I,L∞(Ω))

≤ Ch−
n
2 ‖ψkh −Rhψk‖L2(I,L2(Ω)) + Ch2−

n
2 ‖∇2ψk‖L2(I,L2(Ω)) + ‖ψk‖L2(I,L∞(Ω))

≤ Ch−
n
2

(

‖ψkh − ψk‖L2(I,L2(Ω)) + ‖ψk −Rhψk‖L2(I,L2(Ω))

)

+ Ch2−
n
2 ‖∇2ψk‖L2(I,L2(Ω)) + ‖ψk‖L2(I,L∞(Ω))

≤ Ch−
n
2

(

‖ψkh − ψk‖L2(I,L2(Ω)) + Ch‖∇(ψk −Rhψk)‖L2(I,L2(Ω))

)

+ Ch2−
n
2 ‖∇2ψk‖L2(I,L2(Ω)) + ‖ψk‖L2(I,L∞(Ω))
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≤ Ch2−
n
2 ‖∇2ψk‖L2(I,L2(Ω)) + ‖ψk‖L2(I,L∞(Ω))

≤ Ch2−
n
2 ‖∆ψk‖L2(I,L2(Ω)) + ‖ψk‖L2(I,L∞(Ω))

≤ Ch2−
n
2 ‖ϕ‖L2(I,L2(Ω)) + C‖ϕ‖L2(I,L2(Ω))

≤ C‖ϕ‖L2(I,L2(Ω)),

where we used Lemmas 4.1 and 4.2 when h ≤ h0 for some h0 > 0.

We also need a stability result for the fully discrete solution of (5.2).

Proposition 5.2. Let p̂2kh(y) be the solution of problem (5.2). Then there holds

∥

∥p̂2kh(y)
∥

∥

L∞(I,L2(Ω))
≤

N2
∑

i=1

∥

∥y(u)(ti)− yid
∥

∥+ ‖y(u)(T ) − yT‖. (5.8)

Proof. It is easy to see that
∥

∥p̂2kh(y)
∥

∥

L∞(I,L2(Ω))
= max

1≤m≤M

∥

∥p̂2kh(y)
∥

∥

L∞(Im,L2(Ω))
= max

1≤m≤M

∥

∥p̂2kh,m(y)
∥

∥.

Therefore, we only need to estimate ‖p̂2kh,m(y)‖ for m = 1, . . . ,M in two steps.

Step 1. We firstly consider the casem =M . Introduce the following auxiliary problem:

∂tψ −∆ψ = 0 in IM × Ω,

ψ = 0 on IM × ∂Ω,

ψ(tM−1) = p̂2kh,M(y) in Ω,

where IM = (tM−1, tM ]. Its discrete approximation ψkh ∈ X0,1
k,h(IM ) is defined by

(∇ψkh,∇ϕkh)IM +
(

ψkh,M , ϕ
+
kh,M−1

)

=
(

p̂2kh,M(y), ϕ+
kh,M−1

)

, ∀ϕkh ∈ X
0,1
k,h(IM ), (5.9)

where

X
0,1
k,h(IM ) :=

{

vkh|IM : vkh ∈ X
0,1
k,h

}

.

Note that on the time interval IM the solution of problem (5.2) satisfies
(

∇ϕkh,∇p̂
2
kh(y)

)

IM
−
(

ϕkh,M , [p̂
2
kh(y)]M

)

=

N2
∑

i=1

(

(y(u)(ti)− yid)χIM (ti), ϕkh,M

)

(5.10)

for any ϕkh ∈ X
0,1
k,h(IM ), where χIM is the characteristic function of IM . With p̂2kh,M+1(y)

= y(u)(T )− yT , the above equation is equivalent to the following one:
(

∇ϕkh,∇p̂
2
kh(y)

)

IM
+
(

ϕkh,M , p̂
2
kh,M(y)

)

=

N2
∑

i=1

(

(y(u)(ti)− yid)χIM (ti), ϕkh,M

)

+
(

ϕkh,M , y(u)(T ) − yT
)

. (5.11)



188 D. Liang, W. Gong and X. Xie

We take ϕkh = p̂2kh(y)|IM = p̂2kh,M(y) in (5.9) and ϕkh = ψkh in (5.11) to obtain

∥

∥p̂2kh,M(y)
∥

∥

2
=
(

p̂2kh,M(y), p̂2+kh,M−1(y)
)

=
(

∇ψkh,∇p̂
2
kh(y)

)

IM
+
(

ψkh,M , p̂
2+
kh,M−1(y)

)

=
(

∇ψkh,∇p̂
2
kh(y)

)

IM
+
(

ψkh,M , p̂
2
kh,M(y)

)

=

N2
∑

i=1

((

y(u)(ti)− yid
)

χIM (ti), ψkh,M

)

+
(

ψkh,M , y(u)(T ) − yT
)

≤

(

N2
∑

i=1

∥

∥(y(u)(ti)− yid)χIM (ti)
∥

∥+ ‖y(u)(T ) − yT ‖

)

‖ψkh,M‖

≤

(

N2
∑

i=1

∥

∥(y(u)(ti)− yid)χIM (ti)
∥

∥+ ‖y(u)(T ) − yT ‖

)

∥

∥p̂2kh,M(y)
∥

∥,

where we have used ‖ψkh,M‖ ≤ ‖p̂2kh,M(y)‖, which is a direct consequence of (5.9) by

setting ϕkh = ψkh and using Schwarz’s inequality. Therefore, we obtain

∥

∥p̂2kh,M(y)
∥

∥ ≤

N2
∑

i=1

∥

∥(y(u)(ti)− yid)χIM (ti)
∥

∥+ ‖y(u)(T ) − yT ‖. (5.12)

Step 2. Now we consider the case m < M . Introduce the auxiliary problem

∂tψ −∆ψ = 0 in Im × Ω,

ψ = 0 on Im × ∂Ω,

ψ(tm−1) = p̂2kh,m(y) in Ω,

where Im = (tm−1, tm]. Similar to Step 1, the analog of Eq. (5.9) becomes

(∇ψkh,∇ϕkh)Im +
(

ψkh,m, ϕ
+
kh,m−1

)

=
(

p̂2kh,m(y), ϕ
+
kh,m−1

)

, ∀ϕkh ∈ X
0,1
k,h(Im),

and the analog of Eq. (5.11) becomes

(

∇ϕkh,∇p̂
2
kh(y)

)

Im
+ (ϕkh,m, p̂

2
kh,m(y))

=

N2
∑

i=1

(

(y(u)(ti)− yid)χIm(t
i), ϕkh,m

)

+
(

ϕkh,m, p̂
2
kh,m+1(y)

)

.

Similarly, we can obtain

∥

∥p̂2kh,m(y)
∥

∥ ≤

N2
∑

i=1

∥

∥(y(u)(ti)− yid)χIm(t
i)
∥

∥+
∥

∥p̂2kh,m+1(y)
∥

∥.

By induction for m and combining the result of Step 1, we obtain
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∥

∥p̂2kh,m(y)
∥

∥ ≤
M
∑

m=1

N2
∑

i=1

∥

∥

(

y(u)(ti)− yid
)

χIm(t
i)
∥

∥+ ‖y(u)(T ) − yT‖

≤

N2
∑

i=1

∥

∥y(u)(ti)− yid
∥

∥+ ‖y(u)(T ) − yT‖

for any 1 ≤ m ≤M . Then we complete the proof.

Now we are ready to give some finite element error estimates. The first estimate

is devoted to the backward parabolic equation with Dirac measure in space under the

norm ‖ · ‖L2(I;L1(Ω)).

Lemma 5.2. For given u ∈ Uad, let p1(u) be the solution of (3.6) and p̂1kh(y) be the

solution of (5.1). Then there exists a constant C > 0 independent of k and h, such that

the following estimates:
∥

∥p1(u)− p̂1kh(y)
∥

∥

L2(I,L1(Ω))

≤ C

(

N1
∑

i=1

∥

∥y(u)(xi)− yidS

∥

∥

L2(I)

)

| lnh|2
(

k + h2
)

(5.13)

hold for n = 2, and
∥

∥p1(u)− p̂1kh(y)
∥

∥

L2(I,L1(Ω))

≤ C

(

N1
∑

i=1

∥

∥y(u)(xi)− yidS

∥

∥

L2(I)

)

ln
T

k
| lnh|2

(

k + h2
)

(5.14)

hold for n = 3.

Proof. The proof of the first assertion follows from [26–28], and the second one

can be proved similarly. For the sake of completeness, we give the proof for the second

assertion.

Let e = p1(u) − p̂1kh(y), and ψ be the solution to problem (2.1) with right-hand

side ϕ(·, ·) = sgn(e(·, ·))‖e(·)‖L1 (Ω) where sgn(·) is the sign function. The fully discrete

solution ψkh ∈ X
0,1
k,h of (2.1) is defined as

B(ψkh, vkh) = (ϕ, vkh)I , ∀vkh ∈ X
0,1
k,h.

Then from the orthogonality we obtain

‖e‖2L2(I,L1(Ω)) = (e, ϕ)L2(I,L2(Ω)) = B
(

ψ, p1(u)− p̂1kh(y)
)

=

N1
∑

i=1

(

y(u)(xi)− yidS , ψ(x
i)− ψkh(x

i)
)

L2(I)

≤

(

N1
∑

i=1

∥

∥y(u)(xi)− yidS

∥

∥

L2(I)

)

N1
∑

i=1

∥

∥ψ(xi)− ψkh(x
i)
∥

∥

L2(I)
.
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Using the second inequality of Lemma 4.3 and taking χ = πhπkψ, we obtain
∫

I

∥

∥ψ(t, xi)− ψkh(t, x
i)
∥

∥

2
dt ≤ C

(

ln
T

k

)2

|lnh|2(I1 + I2 + I3), i = 1, . . . , N1.

Here πk is the semi-discrete L2 projection operator from L2(I,H1
0 (Ω)) to X0

k , and we

refer to [27] for its definition and properties. Using the fact that Clément interpolation

is stable with respect to Ls norm (cf. [11]), and from the interpolation estimate and

the inverse estimate we conclude

I1 = ‖ψ − πhπkψ‖
2
L2(I,L∞(Ω̃))

+ h−
6

s ‖πkψ − πhπkψ‖
2
L2(I,Ls(Ω̃))

≤ C
(

‖ψ − πhψ‖
2
L2(I,L∞(Ω̃))

+ h−
6

s ‖ψ − πkψ‖
2
L2(I,Ls(Ω̃))

)

+ Ch−
6

s

(

‖ψ − πhψ‖
2
L2(I,Ls(Ω̃))

+ ‖ψ − πkψ‖
2
L2(I,Ls(Ω̃))

)

≤ Ch−
6

s

(

k2 + h4
)

(

‖ψ‖2
L2(I,W 2,s(Ω̃))

+ ‖∂tψ‖
2
L2(I,Ls(Ω̃))

)

.

By Lemma 2.1 and taking s = |lnh|, we get

I1 ≤ C|lnh|2
(

k2 + h4
)

‖e‖2L2(I,L1(Ω)).

Applying the standard estimate and the estimate of [25, Lemma 3.13] for I3 yields

I3 = h2‖∇(ψ − πhπkψ)‖
2
L2(I,L2(Ω))

≤ C
(

h2‖∇(ψ − πhψ)‖
2
L2(I,L2(Ω)) + h2‖∇(ψ − πkψ)‖

2
L2(I,L2(Ω))

)

≤ C
(

h4 + kh2
)

(

‖∇2ψ‖2L2(I,L2(Ω)) + ‖∂tψ‖
2
L2(I,L2(Ω))

)

≤ C
(

h4 + k2
)

‖e‖2L2(I,L1(Ω)).

We apply the standard estimate for I2 to obtain

I2 ≤ C
(

h4 + k2
)

(

‖∇2ψ‖2L2(I,L2(Ω)) + ‖∂tψ‖
2
L2(I,L2(Ω))

)

≤ C
(

h4 + k2
)

‖e‖2L2(I,L1(Ω)).

Combining the estimates for I1, I2 and I3 completes the proof.

The second estimate is devoted to the backward parabolic equation with Dirac mea-

sure in space under the norm ‖ · ‖L2(I;L2(Ω)).

Lemma 5.3. Given a control u ∈Uad, let p1kh(u) be the solution of (4.10) and p̂1kh(y) be

the solution of (5.1). Then the following estimates:
∥

∥p1kh(u)− p̂1kh(y)
∥

∥

I
≤ C|lnh|2

(

k + h2
)

‖u‖L2(I,L∞(ω)) (5.15)

hold for n = 2, and

∥

∥p1kh(u)− p̂1kh(y)
∥

∥

I
≤ Cln

T

k
|lnh|2

(

k + h2
)

‖u‖L2(I,L∞(ω)) (5.16)

hold for n = 3, where C is a positive constant independent of k and h.
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Proof. Let ekh = p1kh(u) − p̂1kh(y) and ψ be the solution to problem (2.1) with right-

hand side ekh. Let ψkh ∈ X
0,1
k,h be the discretization of ψ satisfying

B(ψ − ψkh, vkh) = 0, ∀vkh ∈ X0,1
k,h.

Using the definitions of p1kh(u) and p̂1kh(y) we obtain

∥

∥p1kh(u)− p̂1kh(y)
∥

∥

2

I
= B

(

ψkh, p
1
kh(u)− p̂1kh(y)

)

=

N1
∑

i=1

(

ykh(u)(x
i)− y(u)(xi), ψkh(x

i)
)

L2(I)

≤

N1
∑

i=1

∥

∥ykh(u)(x
i)− y(u)(xi)

∥

∥

L2(I)
‖ψkh‖L2(I,L∞(Ω))

≤ C

N1
∑

i=1

∥

∥ykh(x
i)− y(xi)

∥

∥

L2(I)
‖ekh‖I ,

where we used Proposition 5.1. The rest of the proof is similar to that of the previous

lemma.

We also need the error estimates for the backward parabolic equation with Dirac

measure in time.

Lemma 5.4. For given u ∈ Uad, let p2(u) be the solution of (3.7), p2kh(u) be the solution

of (4.11) and p̂2kh(y) be the solution of (5.2). Then there exists a constant C > 0,

independent of k and h, such that

∥

∥p2(u)− p̂2kh(y)
∥

∥

L2(Ω,L1(I))

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

1

2

(

k + h2
(

ln
T

k

)
1

2

)(

N2
∑

i=1

∥

∥y(u)(ti)− yidT

∥

∥+ ‖y(u)(T ) − yT ‖

)

, (5.17)

∥

∥p̂2kh(y)− p2kh(u)
∥

∥

I
≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

(

k + h2
(

ln
T

k

)
1

2

)

‖u‖L∞(I,L2(ω)). (5.18)

Proof. In order to obtain the above two estimates, we need to introduce an auxiliary

problem. Given ϕ ∈ L2(I, L2(Ω)), let ψ be the solution to problem (2.1) with right-

hand side ϕ. Let ψkh be the discretization of ψ that is defined by

B(vkh, ψkh) = (ϕ, vkh), ∀vkh ∈ X
0,1
k,h.

By taking ϕ = sgn(e1(·, ·))‖e1‖L1(I) with e1 = p2(u)− p̂2kh(y), we obtain

∥

∥p2(u)− p̂2kh(y)
∥

∥

2

L2(Ω,L1(I))

=
(

ϕ, p2(u)− p̂2kh(y)
)

I
=
(

ϕ, p2(u)
)

I
−
(

ϕ, p̂2kh(y)
)

I



192 D. Liang, W. Gong and X. Xie

=
(

p2(u), ∂tψ −∆ψ
)

I
−B

(

p̂2kh(y), ψkh

)

=
(

p2(u), ∂tψ
)

I
+
(

∇p2(u),∇ψ
)

I
−

N2
∑

i=1

(

y(u)(ti)− yidT , ψkh(t
i)
)

−
(

y(u)(T ) − yT , ψkh(T )
)

=

N2
∑

i=1

(

y(u)(ti)− yidT , ψ(t
i)− ψkh(t

i)
)

+
(

y(u)(T )− yT , ψ(T ) − ψkh(T )
)

≤

(

N2
∑

i=1

∥

∥y(u)(ti)− yidT

∥

∥+ ‖y(u)(T )− yT ‖

)

‖ψ − ψkh‖L∞(I,L2(Ω))

≤ C

(

N2
∑

i=1

∥

∥y(u)(ti)− yidT

∥

∥+ ‖y(u)(T ) − yT‖

)

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

1

2

(

k + h2
(

ln
T

k

)
1

2

)

‖ϕ‖L∞(I,L2(Ω))

≤ C

(

N2
∑

i=1

∥

∥y(u)(ti)− yidT

∥

∥+ ‖y(u)(T ) − yT‖

)

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

1

2

(

k + h2
(

ln
T

k

)
1

2

)

‖e1‖L2(Ω,L1(I)).

In above estimates we used Propositions 2.1, 2.2 and Lemma 4.4.

Similarly, by taking ϕ = e2 with e2 = p̂2kh(y)− p2kh(u) we can also obtain

∥

∥p̂2kh(y)− p2kh(u)
∥

∥

2

I

=

N2
∑

i=1

(

y(u)(ti)− yidT , ψkh(t
i)
)

+
(

y(u)(T )− yT , ψkh(T )
)

−

N2
∑

i=1

(

ykh(u)(t
i)− yidT , ψkh(t

i)
)

−
(

ykh(u)(T ) − yT , ψkh(T )
)

=

N2
∑

i=1

(

y(u)(ti)− ykh(u)(t
i), ψkh(t

i)
)

+
(

y(u)(T ) − ykh(u)(T ), ψkh(T )
)

≤ C‖y(u)− ykh(u)‖L∞(I,L2(Ω))‖ψkh‖L∞(I,L2(Ω))

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

‖y(u)− ykh(u)‖L∞(I,L2(Ω))

∥

∥p̂2kh(u)− p2kh(u)
∥

∥

L∞(I, L2(Ω))

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

‖y(u)− ykh(u)‖
2
L∞(I,L2(Ω))

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

2
(

k + h2
(

ln
T

k

)
1

2

)2

‖u‖2L∞(I,L2(ω)),

where we have used Propositions 2.2, 5.2, 5.1, Lemma 4.4, and the pointwise con-

straints for the optimal control. Eventually, we obtain the second estimate.

Some simple calculations lead to the following stability result for the state equation.
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Lemma 5.5. Let ū ∈ Uad be the solution of the optimal control problem (1.3), and let

ȳ = y(ū) be the corresponding optimal state. Then there exists a constant C > 0 such that

N1
∑

i=1

∥

∥ȳ(xi)− yidS

∥

∥

L2(I)
+

N2
∑

i=1

∥

∥ȳ(ti)− yidT

∥

∥+ ‖ȳ(T )− yT ‖+ ‖ū‖L2(I,L2(ω))

≤ C

(

N1
∑

i=1

∥

∥yidS

∥

∥

L2(I)
+

N2
∑

i=1

∥

∥yidT

∥

∥+ ‖yT ‖

)

. (5.19)

Now we are ready to give our main result.

Theorem 5.1. Let ū ∈ Uad and ȳ be the solution of the optimal control problem (1.3) and

the corresponding optimal state, respectively, and let ūkh and ȳkh be the solution of discrete

optimal control problem (4.5) and the corresponding discrete optimal state, respectively.

Then there exists a constant C > 0, independent of k and h, such that

‖ū− ūkh‖L2(I,L2(ω)) + ‖ȳ − ȳkh‖L2(I,L2(Ω)) ≤ C |lnh|

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

3

4
(

k
1

2 + h
)

. (5.20)

Proof. Let p̄ and p̄kh be the optimal adjoint state of (1.3) and the optimal adjoint

state of the discretized problem (4.5), respectively, and let p̂kh(ū) be defined in (5.3).

Then we obtain

α‖ū− ūkh‖
2
L2(I,L2(ω)) ≤ Ĵ ′′

β,kh(ūkh)(ū− ūkh, ū− ūkh)

= Ĵ ′
β,kh(ū)(ū− ūkh)− Ĵ ′

β,kh(ūkh)(ū− ūkh)

≤ Ĵ ′
β,kh(ū)(ū− ūkh)− Ĵ ′

β(ū)(ū− ūkh)

= (χωpkh(ū), ū− ūkh)L2(I,L2(ω)) − (χω p̄, ū− ūkh)L2(I,L2(ω))

=
(

χω[pkh(ū)− p̂kh(ȳ)], ū− ūkh
)

L2(I,L2(ω))
+
(

χω[p̂kh(ȳ)− p̄], ū− ūkh
)

L2(I,L2(ω))

= (2− β)
(

χω[p
1
kh(ū)− p̂1kh(ȳ)], ū − ūkh

)

L2(I,L2(ω))

+ (β − 1)
(

χω

[

p2kh(ū)− p̂2kh(ȳ)
]

, ū− ūkh
)

L2(I,L2(ω))

+ (2− β)
(

χω

[

p̂1kh(ȳ)− p̄1
]

, ū− ūkh
)

L2(I,L2(ω))

+ (β − 1)
(

χω

[

p̂2kh(ȳ)− p̄2
]

, ū− ūkh
)

L2(I,L2(ω))

≤
(

(2− β)
∥

∥p1kh(ū)− p̂1kh(ȳ)
∥

∥

I
+ (β − 1)

∥

∥p2kh(ū)− p̂2kh(ȳ)
∥

∥

I

)

‖ū− ūkh‖L2(I,L2(ω))

+
(

(2− β)
∥

∥p̂1kh(ȳ)− p̄1
∥

∥

L2(I,L1(Ω))
+ (β − 1)

∥

∥p̂2kh(ȳ)− p̄2
∥

∥

L2(Ω,L1(I))

)

× ‖ū− ūkh‖L∞(I×ω),

where we have used the fact that

−Ĵ ′
β,kh(ūkh)(ū− ūkh) ≤ 0 ≤ −Ĵ ′

β(ū)(ū− ūkh)

and the estimates (5.3) and (4.12).
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Due to the box constraints for the control we have ū, ūkh ∈ L∞(I × ω), and then

from Lemmas 5.2-5.5 it follows

‖ū− ūkh‖L2(I,L2(ω)) ≤ C
(

‖p1kh(ū)− p̂1kh(ȳ)‖I + ‖p2kh(ū)− p̂2kh(ȳ)‖I

+ ‖p̂1kh(ȳ)− p̄1‖L2(I,L1(Ω)) + ‖p̂2kh(ȳ)− p̄2‖L2(Ω,L1(I))

)
1

2

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

3

4

|lnh|
(

k
1

2 + h
)

.

In the following, we need to estimate the error between the discretized optimal state

ȳkh and the continuous one. Let ykh(ū) be the solution of (5.4), we conclude from

Proposition 5.1 that

‖ȳ − ȳkh‖I ≤ ‖ȳ − ykh(ū)‖I + ‖ykh(ū)− ȳkh‖I

≤ C
(

‖ȳ − ykh(ū)‖L2(I,L2(Ω)) + ‖ū− ūkh‖L2(I,L2(ω))

)

≤ C

∣

∣

∣

∣

ln
T

k

∣

∣

∣

∣

3

4

|lnh|
(

k
1

2 + h
)

,

where we have used Proposition 5.1 as well as an L2-error estimate of finite element

approximation to parabolic equations in [33].

6. Numerical results

In this section we provide two numerical examples for the parabolic optimal control

problem (1.3) in two dimensions to verify the theoretical result in Theorem 5.1. The

first example (with β = 1) corresponds to the problem with only spatial observations,

while the second example (with β = 2) corresponds to the problem with only temporal

observations.

For the sake of simplicity, we set Ω = (−1, 1)2 and I = (0, 1). We choose the

regularization parameter α = 0.8, the control domain ω = Ω and the control bounds

ua = −0.4, ub = 0.4 in our numerical experiments, and use N ×N uniform triangular

spatial meshes (cf. Fig. 1) and M uniform temporal grids. We compute the errors of the

Figure 1: The spatial domain: 2× 2 mesh (left) and 16× 16 mesh (right).
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state and control approximations, i.e. ‖ȳ− ȳkh‖L2(I,L2(Ω)) and ‖ū− ūkh‖L2(I,L2(Ω)). Here

we take the approximate solutions on the spatial and temporal meshes with N = 64
and M = 128 as our referential solutions for (ȳ, ū).

Example 6.1. We take β = 1 to investigate the order of convergence for the control

and state variables corresponding to the case of spatial observations. Let N1 = 4 and

choose the spatial observation points x1 = (−1
3 ,−

5
7), x

2 = (12 ,
1
2), x

3 = (12 ,
1
3 ) and

x4 = (−1
2 ,

1
2). The target spatial observations are chosen as y1dS (t) = et, y2dS(t) = sin t,

y3dS(t) = cos t and y4dS(t) = 2t.

We illustrate in Fig. 2 the profiles of the referential optimal state ȳ, adjoint state p̄

and control ū at time point t = 0.5, and can see that the optimal adjoint state variable

is very singular, while the optimal state is smooth. This observation is consistent with

our regularity results in Theorem 3.1.

Figure 2: The profiles of ȳ, p̄ and ū at t = 0.5 for Example 6.1.

Tables 1 and 2 list error results of the state and control approximations to investi-

gate the spatial accuracy with k = O(h2) and the temporal accuracy with h = O(k),
respectively. From Table 1 we can observe almost second order convergence for the

state, and three halves convergence rate for the control which are better than our pre-

dicted result O(h| ln h|). From Table 2 we can see first order convergence for the state

and control variables, which is again better than our predicted result O(k1/2| ln T
k |

3/4
).

This observation is consistent with the convergence behaviors of parabolic equations

with right-hand side involving spatial Dirac measure (cf. [17,18]).

Table 1: Convergence history of spatial discretization for Example 6.1: M = N2.

N ‖ȳ − ȳkh‖L2(I,L2(Ω)) Rate ‖ū− ūkh‖L2(I,L2(Ω)) Rate

2 0.0491 - 0.2054 -

4 0.0120 2.0327 0.1070 0.9408

8 0.0035 1.7776 0.0374 1.5165

16 0.0010 1.8074 0.0125 1.5811

32 2.9415e-04 1.7654 0.0033 1.9214
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Table 2: Convergence history of temporal discretization for Example 6.1: N = M .

M ‖ȳ − ȳkh‖L2(I,L2(Ω)) Rate ‖ū− ūkh‖L2(I,L2(Ω)) Rate

2 0.0306 - 0.1986 -

4 0.0172 0.8311 0.1429 0.4749

8 0.0086 1.0000 0.0764 0.9034

16 0.0043 1.0000 0.0423 0.8529

32 0.0018 1.2563 0.0189 1.1623

Example 6.2. We take β = 2 to examine the convergence behaviors of the control and

state variables corresponding to the case of temporal observations. Let N2 = 3 and

choose the temporal observation points t1 = 0.3, t2 = 0.4 and t3 = 0.7. The target

temporal observations are chosen as

y1dT (x1, x2) = −x1(1− x2), y2dT (x1, x2) = −(x21 + x22)
1

2x1,

y3dT (x1, x2) = 2 cos x1, yT (x1, x2) = ex1+x2 .

From Fig. 3 we find that the adjoint state p̄ is smoother than the one for the case

β = 1, as is consistent with the regularity result in Theorem 3.1.

Figure 3: The profiles of ȳ, p̄ and ū at t = 0.5 for Example 6.2.

From Table 3 we find that the spatial accuracy is of second order for the state

variable and is of first order for the control variable. The better convergence behaviour

of the state than the predicted result is a common phenomenon for PDE-constrained

Table 3: Convergence history of spatial discretization for Example 6.2: M = N2.

N ‖ȳ − ȳkh‖L2(I,L2(Ω)) Rate ‖ū− ūkh‖L2(I,L2(Ω)) Rate

2 0.0746 - 0.4418 -

4 0.0199 1.9064 0.2701 0.7099

8 0.0052 1.9362 0.1360 0.9899

16 0.0013 2.0000 0.0640 1.0875

32 3.5966e-04 1.8538 0.0276 1.2134
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Table 4: Convergence history of temporal discretization for Example 6.2: N = M .

M ‖ȳ − ȳkh‖L2(I,L2(Ω)) Rate ‖ū− ūkh‖L2(I,L2(Ω)) Rate

2 0.0723 - 0.4831 -

4 0.0336 1.1055 0.3846 0.3290

8 0.0198 0.7630 0.2675 0.5238

16 0.0088 1.1699 0.1870 0.5165

32 0.0032 1.4594 0.1020 0.8745

optimal control problems (cf. [32, 33]), while the convergence order of the control is

almost consistent with our theoretical result (cf. Theorem 5.1). From Table 4 we can

also observe the first order convergence for the state variable and half an order for the

control variable. The results in Tables 3 and 4 confirm the orders of convergence for

the control variable for the control problems with pointwise observations in time.
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[11] P. CLÉMENT, Approximation by finite element functions using local regularization, RAIRO

Anal. Numer. 9 (1975), 77–84.
[12] N. VON DANIELS, M. HINZE AND M. VIERLING, Crank-Nicolson time stepping and vari-

ational discretization of control-constrained parabolic optimal control problems, SIAM J.
Control Optim. 53(3) (2015), 1182–1198.

[13] J. ELSCHNER, J. REHBERG AND G. SCHMIDT, Optimal regularity for elliptic transmission

problems including C1 interfaces, Interfaces Free Bound. 9(2) (2007), 233–252.
[14] L. C. EVANS, Partial Differential Equations, Vol. 19, AMS, 2002.
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