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Abstract. In this article, we will consider the Dirichlet problem for special Lagrangian
equation on Ω⊂ M, where (M, J) is a compact almost complex manifold. Under the
existence of C2-smooth strictly J–plurisubharmonic subsolution u, in the supercritical
phase case, we obtain a uniform global gradient estimate.
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1 Introduction

In this paper, we consider the Dirichlet problem for the special Lagrangian operator, in
the real setting which can be written as the the form

∑
i

arctanλi(D2u)=Θ. (1.1)

Here Θ is a topological constant called the phase angle, D2u is the real Hessian of u.

Under the coordinate system {x1,··· ,xn}, D2u can be regarded as the matrix { ∂2u
∂xi∂xj

}.

After an elementary orthogonal transformation,

( ∂2u

∂xi∂xj

)

=diag(λ1,··· ,λn), λi :=λi(D2u).

If Θ∈
(

(n−2)π
2 ,n π

2

)

(respectively Θ∈
(

(n−1)π
2 ,n π

2

)

), then we called Equation (1.1) as the
special Lagrangian equation with supercritical (respectively hypercritical) phase.
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Eq. (1.1) was introduced by Harvey–Lawson [10] when they studied the Calibrated
geometry. In this case, the gradient graph x 7→ (x,Du(x)) defines a calibration and also
determines a Lagrangian graph, which is a minimal submanifold of Rn×Rn. In fact, any
C2 Lagrangian submanifold M2n is locally represented by a gradient graph (x,Du(x))
over its tangent plane. The interested reader can also refer to the Warren’s PhD thesis
[25] for more details of this topic. The investigation of Lagrangian manifolds also has
many important applications in both geometry and physics, especially the works done
by Strominger et al. [24] about mirror symmetry , which gave a very geometric picture of
how mirror manifolds are connected.

In the real setting, the Dirichlet problem for Eq. (1.1) on smooth domain with strictly
pseudoconvex boundary was also considered by Cafferalli–Nirenberg–Spruck [1] when
Θ ∈ ((n−1)π

2 ,n π
2 )). Moreover, they also showed that the special Lagrangian operator

is concave in this setting. After that, the special Lagrangian equation with supercritical
phase has also been studied extensively in the past few years. For instance, Warren-Yuan
[26] considered the interior gradient estimates, and the interior second order estimates
were obtained by Wang–Yuan [27]. For special Lagrangian equations with more general
phases, one can refer a serious works of Harvey-Lawson [11, 12, 14] et al. and references
therein.

At the same time, in the complex setting, there were also many excellent works. For
instance, Collins–Picard–Wu [4] obtained the existence and regularity theorems under
the existence of subsolution for the Dirichlet problem, in both of real and complex cases.
Dinew–Do–Tô [8] also obtained a continuous viscosity solution by using the classical
Perron’s envelope method. The complex special Lagrangian equation has an intimate
connection with the deformed Hermitian-Yang-Mills equation. The interested reader can
refer to [17–19] et al. for more profound understanding.

It is remarkable that the almost complex manifold has been studied extensively dur-
ing past few years, which is motivated by differential geometry and mathematical physics
([6, 13] and references therein). In the current note, we wish to investigate the Dirichlet
problem for special Lagrangian equation on the almost complex manifold.

Let (M, J) be a compact almost complex manifold of real dimension 2n, and Ω⊂M be
a smooth domain with smooth boundary ∂Ω. Fix a Hermitian metric ω on M. We wish
to consider the Dirichlet problem for the almost complex special Lagrangian operator
which can be written in the following form







∑
i

arctanλi(∂∂u)=h in Ω,

u= ϕ on ∂Ω.
(1.2)

Here ϕ,h are given functions on Ω, λ1,··· ,λn are the eigenvalues of
√
−1∂∂u with respect

to ω.
We now state our main result. Assume n π

2 > h> (n−2)π
2 , i.e., the supercritical phase

case, we have the following global gradient estimates, under the existence of C2 subsolu-
tion.
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Theorem 1.1. Let (M, J) be a compact almost complex manifold of real dimension 2n, and Ω⊂M
be a smooth domain and ϕ,h∈C2(Ω) with h∈

(

(n−2)π
2 ,n π

2

)

. Assume u is the solution for the

Dirichlet problem (1.2). If there exists a strictly J-plurisubharmonic function u∈C2(Ω) such
that

{

∑i arctanλi(∂∂u)≥h in Ω,

u= ϕ on ∂Ω.
(1.3)

Then
max

Ω

‖u‖C1(Ω)≤C, (1.4)

where C is a constant depending on ‖h‖C2(Ω), infΩ h, ‖ϕ‖C2(Ω) and ‖u‖C1(Ω).

When we assume Ω ⊂ M has smooth strictly pseudoconvex boundary ∂Ω (see the
terminology in the next section), we can also obtain a C2 subsolution for (1.2) as in Lemma
2.4 below. Then we can prove the following corollary.

Corollary 1.2. Let (M, J) be a compact almost complex manifold of real dimension 2n, and Ω⊂M
be a smooth domain with smooth strictly pseudoconvex boundary ∂Ω. Suppose u is the solution
for the Dirichlet problem (1.2) and ϕ,h∈C2(Ω) with h∈

(

(n−2)π
2 ,n π

2

)

. Then

max
Ω

‖u‖C1(Ω)≤C, (1.5)

where C is a constant depending on ‖h‖C2(Ω), infΩ h and ‖ϕ‖C2(Ω) and ∂Ω.

Generally, the gradient estimates (1.4) or (1.5) play a crucial role in the existence theo-
rem. About the study of fully nonlinear elliptic equations on (almost) complex manifolds,
it is still a rather challenging question to derive the gradient estimates. A remarkable
development was done by Dinew–Kolodziej [7]. They were able to give the gradient es-
timates for complex Hessian equation on Kähler manifolds by the blow up techniques
and Liouville type theorems. As a consequence, they can solve it by the earlier work
of Hou–Ma–Wu [15]. Very recently, Collins–Picard [3] were able to consider the Dirich-
let problem for complex Hessian equations on Hermitian manifolds by making use of
Dinew–Kolodziej’s method. It is remarkable that Collins–Yau [5] also obtained a gradi-
ent estimate for the defomed Hermitian Yang-Mills equation in the case of base manifolds
are product manifolds, by using the Phong–Sturm’s trick [21].

When we further assume n π
2 > h> (n−1)π

2 , i.e., the hypercritical phase case, we can
obtain the following interior second order estimates, which were proved by Huang, the
author and Zhang very recently.

Theorem 1.3. ([16, Theorem 1.1]) Let (M, J) be a compact almost complex manifold of real di-
mension 2n, and Ω⊂M be a smooth domain and ϕ,h∈C2(Ω) with h∈

(

(n−1)π
2 ,n π

2

)

. Assume
u is the solution for the Dirichlet problem (1.2). If there exists a strictly J-plurisubharmonic sub-
solution u∈C2(Ω) such that







∑
i

arctanλi(∂∂u)≥h in Ω,

u= ϕ on ∂Ω.
(1.6)
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Then
max

Ω

‖u‖C2(Ω)≤C(1+max
∂Ω

|∂∂u|), (1.7)

where C is a constant depending on ‖h‖C2 (Ω), infΩ h, ϕ and ‖u‖C2(Ω).

Remark 1.1. The boundary C2 estimates, especially the double normal estimate, are still
open for us. It might be of interest to consider the boundary C2 estimates under the
conditions in Theorem 1.3.

Furthermore, the hypercritical phase condition in Theorem 1.3 is seemed extremely
important to us. We hope the arguments in [16] can be applied to derive the interior
second order estimates in the supercritical phase setting.

2 Preliminaries

Assume (M, J) is an almost complex manifold of complex dimension 2n, where J is the
almost complex structure on M. Let Ap,q be the set of smooth sections of (p,q) form on
M and

Ak=
⊕

p+q=k

Ap,q.

We consider the exterior derivative d :Ak→Ak+1 which satisfies d2=0. Set Πp+1,q,Πp,q+1,

Πp+2,q−1, Πp−1,q+2 be the projection Ak+1 to Ap+1,q, Ap,q+1, Ap+2,q−1,Ap−1,q+2 respective-
ly. Then d can be divided as the following four parts:

d=∂+ ∂̄+T+T.

Here
∂=Πp+1,q◦d, ∂̄=Πp,q+1◦d, T=Πp+2,q−1◦d, T=Πp−1,q+2◦d.

In particular, for u∈C2(M,R), then ∂̄u∈A0,1 and

d∂̄u=∂∂̄u+ ∂̄2u+T∂̄u.

Taking complex conjugate and add together, then this gives

T∂̄u=−∂2u, ∂∂̄u=−∂̄∂u.

As a consequence,
√
−1∂∂u∈∧1,1

R
M.

Using the same notation as [20, 22], let e1,··· ,en be a local g-orthonormal frame of
T1,0M, for each v∈C2(M,R), we can (locally) define

vkl̄ =
√
−1∂∂v(ek, ēl)= ek ēlv−[ek, ēl]

0,1v.

Then we have √
−1∂∂v=

√
−1∑vkl̄e

∗
k ∧ ē∗l ,
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where e∗1 ,··· ,e∗n; ē∗1 ,··· , ē∗n is a local g-orthonormal frame of T∗
C

M dual to the base e1,··· ,en; ē1,
··· , ēn of TC M.

Fix a Hermitian matrix ω on M. Define Uk
j =∑

l
gkl̄ujl̄. Based on this fact, we can rewrite

Eq. in (1.2) as

F(u)= f (λ1,··· ,λn)=∑
i

arctanλi(U
k
j )=h. (2.1)

Let

Γ={λ∈R
n :∑

i

arctanλi > (n−2)
π

2
}.

And for each σ∈ ((n−2)π
2 ,n π

2 ), define

Γσ ={λ∈Γ :∑
i

arctanλi >σ}.

Then Γσ is an open convex set, and ∂Γσ= f−1(σ) is a smooth convex hypersurface, see [4,
Lemma 2.1]. We have following important observation.

Lemma 2.1 ([2, 4]). Suppose h∈
[

(n−2)π
2 +δ,n π

2

)

for some 0< δ< π
2 and λ1≥···≥λn. Then

there exists a constant Cδ>0 depending only on δ such that we have the following properties

1. λ1≥···≥λn−1>0, |λn|≤λn−1 and λn ≥−Cδ,

2. ∑i λi≥0,

3. fi(λ)=
∂ f (λ)

∂λi
>0 for each i, −e−L f (λ) is concave for L≥Cδ,

4. λn ≥C−1
δ if we further assume h∈

[

(n−1)π
2 +δ,n π

2

)

.

We define

G=−e−LF, h̃=−e−Lh.

And we also let

Fij̄(u)=
∂F(u)

∂uij̄

, Fik̄,jl̄(u)=
∂2F(u)

∂uik̄∂ujl̄

.

For each point x0 ∈Ω, let {ei}n
i=1 be a local unitary frame (with respect to ω) such that

uij(x0)=δijuii(x0). We denote uii(x0) by λi for simplicity. It is useful to order (λ1,λ2,··· ,λn)

such that

λ1≥λ2≥···≥λn.

Then at x0, we have

Fij =Fiiδij=
1

1+λ2
i

δij (2.2)
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and

Fik,jl =











− 2λi

(1+λ2
i )

2 , if i= j= k= l;

− λi+λk

(1+λ2
i )(1+λ2

k)
, if i= l, k= j, i 6= k;

0, otherwise.

(2.3)

We can also easily compute on ∂Γh,

Gij̄ = Le−LhFij̄, Gik̄,jl̄ = Le−LhFik̄,jl̄−L2e−LhFik̄Fjl̄ .

Let us define the operator

L=∑
i,j

Gij̄(ei ēj−[ei, ēj]
0,1), G=∑

i,j

Gij̄gij̄.

Definition 2.1. For v∈C2(M,R),

1. we say v is J–plurisubharmonic on an open set O⊂M if the matrix {vij̄} is a nonnegative
matrix at each point of O,

2. we say v is strictly J–plurisubharmonic on an open set O if for each ϕ∈C2(O), there exists
ε0>0 such that u+εϕ is J–plurisubharmonic on O for all 0< ε< ε0.

For other upper semi-continuous functions, we can also define the terminology of
J-plurisubharmonic as in [13]. We denote the set of J–plurisubharmonic functions by
PSH(Ω).

Since u is strictly J-plurisubharmonic, then there exists a uniform constant τ>0 such
that

τ−1ω≥
√
−1∂∂u≥τω.

2.1 Basic technique

The following lemma is due to Collins-Picard-Wu [4, Lemma 3.1 and Corollary 3.2],
which is inspired from Székelyhidi [23]. One can also refer Guan [9, Theorem 2.16]
for more general fully nonlinear elliptic PDEs.

Lemma 2.2. Suppose that h∈
(

(n−2)π
2 , nπ

2

)

. Let u∈C2(Ω) be a strictly J-plurisubharmonic func-
tion which is also the subsolution to (1.2). There exist positive constants N,θ > 0 such that if

∑i uiī≥N at a point p∈Ω such that gij̄ =δij and the matrix {uij̄} is diagonal, then we have

L(u−u)≥ θ(
n

∑
i=1

Giī+1) (2.4)

and
n

∑
i=1

Giī≥ θ.
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2.2 Comparison principle

Lemma 2.3. Let Ω⊂M be a bounded domain. If u,v∈C2(Ω)∩PSH(Ω) such that u is strictly
J–plurisubharmonic and

G(u)≥G(v).

Then u−v attains its maximum on ∂Ω.

Proof. By direct calculating,

0≤G(u)−G(v)

=
∫ 1

0

d

dt
G(tu+(1−t)v)dt

=∑
∫ 1

0
G̃ij̄(t)dt

(

uij̄−vij̄

)

=L0(u−v),

for some second order operator L0, where G̃ij̄(t) are cofactor of Gij̄(tu+(1−t)v). Note that

the matrix
{∫ 1

0 G̃ij̄(t)dt
}

is positive definite since u is strictly J–plurisubharmonic. Hence,
L0 is elliptic. With the aid of standard elliptic PDE theory, u−v attains its maximum on
∂Ω.

2.3 Existence of subsolution

Definition 2.2. We say ∂Ω is strictly pseudonconvex if there is a smooth defining function ρ,
i.e., ρ<0 in Ω, ρ=0, ∇ρ 6=0 on ∂Ω and ρ is strictly J–plurisubharmonic.

It is remarkable that Harvey and Lawson [13] had proved that on any point of a com-
plex manifolds, there exist a neighborhood systems with strictly pseudoconvex smooth
boundaries.

In this case, there exists a constant m(ρ)> 0 defined as the smallest constant m such
that m

√
−1∂∂ρ>ω, i.e.,

m(ρ)=min{m>0 : m
√
−1∂∂ρ>ω}.

Let ϕ̃∈C2(Ω) solve the following Dirichlet problem:

{

L(ϕ̃)=0 in Ω,

ϕ̃= ϕ on ∂Ω.
(2.5)

That is, ϕ̃ can be regarded as the L-harmonic extension of ϕ|∂Ω.

We have the following lemma:
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Lemma 2.4. There exists a constant R(ρ) depending on m(ρ) such that

uR := ϕ̃+Rρ (2.6)

satisfies

∑
i

arctanλi(∂∂uR)>h for all R≥R(ρ).

Therefore, uR in (2.6) is our desired subsolution for Eq. (1.2) since uR= ϕ on ∂Ω.

3 C0 and C1 estimates

3.1 Uniform estimates

Lemma 3.1. Let u (respectively u) be the solution (respectively subsolution) for (1.2). We have

u≤u≤ ϕ̃. (3.1)

Therefore, there exists a constat C depending on ‖u‖L∞(Ω), ‖h‖L∞(Ω),‖ϕ‖L∞(Ω), such that

‖u‖L∞(Ω)≤C. (3.2)

Proof. On the one hand, since u is a subsolution for (1.2), the first inequality is easily
from Lemma 2.3. On the other hand, we can show that u is a subsolution for (2.5) since
L(u)=h, then by the classical maximum principle we also have the second inequality.

3.2 Boundary gradient estimates

Lemma 3.2. Let u (respectively u) be the solution (respectively subsolution) for (1.2). We have

|u|C0,1(∂Ω)≤C. (3.3)

where C is a constant depending on the ‖u‖C1(Ω) and ϕ.

Proof. From the previous lemma, u,u and ϕ̃ have the same boundary value ϕ|∂Ω, then it
is easy to verify |∇u|(z)≤sup{|∇u|(z),|∇ϕ̃|(z)} for each z∈∂Ω.

3.3 Interior gradient estimates

Proposition 3.1. Let u (respectively u) be the solution (respectively subsolution) for (1.2). Then

|u|C0,1(Ω)≤C. (3.4)

for some positive constant C depending on the allowed data and ‖u‖C1(Ω), ‖u‖C0(Ω), ‖u‖C0,1(∂Ω).
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Proof. Let

H(η)=AeBη , η=u−u.

Here A,B>0 are certain constants to be picked up later. In this proof, the C below denotes
the constants those may change from line to line, and it depends on A,B that we yet to
choose. Consider the test function

V= eH|∇u|2.

Suppose V achieves maximum at the x0 in the interior of Ω, otherwise we are done. Then
at x0, we can choose a proper local frame still denoted by e1,··· ,en such that gij̄ = δij and

the matrix
{

uij̄

}

is diagonal.

Using the maximum principle, it follows that

0≥ L(V)(x0)

BHeH|∇u|2

=
L(eH)

BHeH
+
L(|∇u|2)
BH|∇u|2 +2∑

i

GiīRe
{

ei(H)
ēi(|∇u|2)
BH|∇u|2

}

=L(η)+B(1+H)∑
i

Giī|ei(η)|2+
L(|∇u|2)
BH|∇u|2

+
2

|∇u|2 ∑
i,j

GiīRe
{

ei(η)ēiej(u)ēj(u)+ei(η)ēi ēj(u)ej(u)
}

. (3.5)

By direct calculations,

L(|∇u|2)=∑
i

Giī
(

eieī(|∇u|2)−[ei, ēi]
0,1(|∇u|2)

)

= I+ I I+ I I I, (3.6)

where

I=∑
i,j

Giī(ei ēieju−[ei, ēi]
0,1eju)ēju;

I I=∑
i,j

Giī(ei ēi ēju−[ei, ēi]
0,1ēju)eju;

I I I=∑
i,j

Giī(|eieju|2+|ei ēju|2).

Differentiating Eq. (2.1) with respect to each ej, then

∑
i

Giī(ejei ēiu−ej[ei, ēi]
0,1u)= h̃j. (3.7)
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Recall the definition of Lie bracket eiej−ejei =[ei,ej], we can calculate

I+ I I=2∑
i,j

GiīRe
{

(ei ēieju−[ei, ēi]
0,1eju)ēj(u)

}

=2∑
i,j

GiīRe
{

(ejei ēiu+ei[ēi,ej]u+[ei,ej]ēiu−[ei, ēi]
0,1eju)ēj(u)

}

(3.7)
= 2∑

j

Re{ej(h̃)ēj(u)}+2∑
i,j

GiīRe{ej[ei, ēi]
0,1uēj(u)}

+2∑
i,j

GiīRe
{(

ei[ēi,ej]u+[ei,ej]ēiu−[ei, ēi]
0,1eju

)

ēj(u)
}

=2∑
j

Re{ej(h̃)ēj(u)}+2∑
i,j

GiīRe{
[

ej,[ei, ēi]
0,1
]

(u)ēj(u)}

+2∑
i,j

GiīRe
{

(

ei[ēi,ej]u+[ei,ej]ēiu
)

ēj(u)
}

.

We may and do assume |∇u|≫1. Therefore, C-S denotes the Cauchy-Schwarz inequality
from now on.

I+ I I≥2∑
j

Re{h̃ju j̄}−C|∇u|∑
i,j

Giī(|eieju|+|ei ēju|)−C|∇u|2G

≥2∑
j

Re{h̃ju j̄}−
C

ε
|∇u|2G−ε∑

i,j

Giī(|eieju|2+|ei ēju|2),
(3.8)

for each 0< ε≤1/2, where is the last step we have used the Cauchy-Schwarz inequality.
Plug (3.8) into (3.6), hence

L(|∇u|2)
BH|∇u|2 ≥

−C

BH|∇u|+(1−ε)∑
i,j

Giī |eieju|2+|ei ēju|2
BH|∇u|2 − CG

BHε
. (3.9)

Now we estimate the last term of (3.5). For 0< ε≤ 1
2 , then 1≤ (1−ε)(1+2ε). Using the

definition of Lie bracket again, we achieve

2∑
i,j

GiīRe{ei(η)ēiej(u)ēj(u)}

=2∑
i,j

GiīRe
{

ei(η)ēj(u)
{

ej ēi(u)−[ej, ēi]
0,1(u)−[ej, ēi]

1,0(u)
}

}

=2∑
i

GiīλiRe
{

ei(η)ēi(u)
}

−2∑
i,j

GiīRe
{

ei(η)ēj(u)[ej, ēi]
1,0(u)

}

C−S
≥ 2∑

i

GiīλiRe{ei(η)ēi(u)}−εBH|∇u|2∑
i

Giī|ei(η)|2−
C

BHε
|∇u|2G

(3.10)
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and

2∑
i,j

GiīRe
{

ei(η)ēi ēj(u)ej(u)
}

C−S

≥− (1−ε)

BH ∑
i,j

Giī|ēi ēj(u)|2−(1+2ε)BH|∇u|2 ∑
i

Giī|ei(η)|2. (3.11)

It follows (3.10)-(3.11) that

2∑
i

GiīRe
{

ei(H)
ēi(|∇u|2)
BH|∇u|2

}

≥ 2

|∇u|2 ∑
i

GiīλiRe{ei(η)ēi(u)}−
CG
BHε

−(1+3ε)BH∑
i

Giī|ei(η)|2−(1−ε)∑
i,j

Giī |ēi ēj(u)|2
BH|∇u|2 . (3.12)

Coupled with the inequalities (3.5), (3.9) and (3.12), we obtain

0≥L(η)+B(1−3εH)∑
i

Giī|ei(η)|2−
CG
BHε

− C

BH|∇u|

+
2

|∇u|2 ∑
i

GiīλiRe{ei(η)ēi(u)}.

Hence, we can choose ε= 1
6H(x0)

. Note that ε≤ 1
2 if we let A≥ 1

3 eBsupΩ̄(u−u) be large enough.

Then

L(η)+ 2

|∇u|2 ∑
i

GiīλiRe{ei(η)ēi(u)}+
B

2 ∑
i

Giī|ei(η)|2

≤ C

BH|∇u|+
CG
B

. (3.13)

Case 1. If ∑i uiī ≥ N for some positive constant N large as in Lemma 2.2. Using the
assumption |∇u|≥max{1,|∇u|} we obtain

2

|∇u|2 ∑
i

GiīλiRe{ei(u)ēi(η)}
C−S
≥ − B

4 ∑
i

Giī|ei(η)|2−
C

B|∇u|2 ∑
i

λ2
i

1+λ2
i

≥− B

4 ∑
i

Giī|ei(η)|2−
C

B|∇u|2 .

It follows (3.13) that

θ+θG≤ C

BH|∇u|+
CG
B

+
C

B|∇u|2 .
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Note that the terms involving G can be discarded for the choice of B as before. Then we
have

θ≤ C

BH|∇u|+
C

B|∇u|2 . (3.14)

This proves |∇u|≤C.

Case 2: If ∑i uiī ≤ N. By Lemma 2.1 we can show that |ujj̄| ≤ 2N for each j, if N is very

large. Indeed, |ujj̄| ≤ ∑i uiī+|unn̄| ≤ N+Cδ ≤ 2N if we let N ≥ Cδ, since only unn̄ might

negative and others are positive. Then we have Gjj̄≥ 1
C(1+4N2)

for each j. Therefore,

∑
i

Giī|ei(η)|2≥
1

C(1+4N2)
|∇η|2.

Plugging into (3.13) it follows

(τ−C

B
)G+ B

C(1+4N2)
|∇η|2 ≤ C

BH|∇η|+C,

since |∇u|≥max{1,|∇u|}. By the choice of B as before we have

B|∇η|2
C(1+4N2)

≤ C

BH|∇η|+C.

As a consequence, |∇η|≤C and thus we deduce |∇u|≤ |∇η|+|∇u|≤C. Then the proof
is complete.

Acknowledgments

The author would like to thank his advisor professor Xi Zhang for his constant encour-
agements. He would also like to thank the referees for many useful suggestions and
comments. The author was partially supported by National Natural Science Foundation
of China (Grants Nos. 11625106, 11571332 and 11721101). The research was partially
supported by the project “Analysis and Geometry on Bundle” of Ministry of Science and
Technology of the People’s Republic of China.

References

[1] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second order elliptic
equations, III: functions of the eigenvalues of the Hessian. Acta Math., 1985, 155: 261–301.

[2] Chen C, Ma X, Wei W. The Newmann problem of complex special Lagrangian equations
with supercritical phase. Anal. Theory Appl., 2019, 35(2): 144–162.

[3] Collins T C, Picard S. The Dirichlet problem for the k-Hessian equation on a complex mani-
fold. ArXiv:1909.00447.



Zhang J / J. Math. Study, 55 (2022), pp. 71-83 83

[4] Collins T C, Picard S, Wu X. Concavity of the Lagrangian phase operator and applications.
Calc. Var., 2017, 56(4) 89.

[5] Collins T C, Yau S T. Moment maps, nonlinear PDE, and stability in mirror symmetry,
preprint. ArXiv:1811.04824.

[6] Chu J, Tosatti V, Weinkove B. The Monge-Ampère equation for non-integrable almost com-
plex structures. J. Eur. Math. Soc., 2019, 21(7): 1949–1984.

[7] Dinew S, Kołodziej S. Liouville and Calabi-Yau type theorems for complex Hessian equa-
tions. Amer. J. Math., 2017, 137(2): 403–415.
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