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Abstract. We study the ill-posedness degree of the reconstruction processes of miss-
ing boundary data or initial states in the transient heat conduction. Both problems are
severely ill-posed. This is a powerful indicator about the way the instabilities will af-
fect the computations in the numerical recovery methods. We provide rigorous proofs
of this result where the conductivites are space dependent. The theoretical work is
concerned with the unsteady heat equation in one dimension even though most of the
results obtained here are readily extended to higher dimensions.
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1 Introduction

Computational recovery processes of missing boundary data or initial states from Cauchy
measurements in transient heat transfer seem recurrent in many areas in sciences and en-
gineering (see [5, 6, 23]). They turn out to be among few pertinent ways to proceed, if
not the only one, when engineers are interested for example in quantifying front surface
heat inputs of a (thin) plate from back surface outputs. Mounting measurements set-
up along the front surface may not be feasible due to harsh environmental conditions.
Practitioners are therefore led to place sensors at the back surface; they are then left with
the evaluation, by means of affordable (analytical and/or numerical) tools, of the heat
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transfer up to the front surface. The particularity of the related mathematical problem is
the ill-posedness. Missing data to reconstruct suffer from high instabilities generated by
unavoidable perturbations affecting the available data because of the finite accuracy of
measuring instruments (see [2,3,14,17,18,22,31,32]). As a consequence, computing meth-
ods crudely employed for numerical handling of these inverse problems are most often
doomed to fail unless they are used with relevant regularization techniques combined to
suitable automatic selection rules of the regularization parameter(s). Readers are referred
to [4, 15, 19, 24, 25, 33] for a general exposition of these issues. We are exclusively focused
on the issue of ill-posedness degree for the reconstruction problem of either the initial or
the boundary data from Cauchy’s measurements. The purpose is then to perform a rig-
orous analysis on the severe ill-posed of the inverse problems under scope. We develop
in details methodologies for the transient heat equation set in a rod. This choice is made
only for seek of simplicity. We do not see why the central ideas discussed here cannot be
effective for higher dimensions.

The contents of the paper are as follows. Section 2 is dedicated to the study of the
initial state recovery from Cauchy’s conditions. After defining the linear operator to in-
vert, we study some of its marked features. Expanding this operator along Fourier basis
shows that the ill-posedness degree is connected with a Cauchy matrix. This matrix is
spectrally equivalent to a Pick matrix. Using the theory elaborated in [7], we exhibit the
asymptotics of its eigenvalues. They decay exponentially fast towards zero which is an
indication of the severe ill-posedness of the reconstruction process of the initial state. In
Section 3, we turn to the recovery of a missing boundary condition at one extremity of
the rod, where the initial state is known. We follow a similar approach, we define the
linear operator to analyze and underline its distinctive properties. The key point is to put
it under an integral form using a suitable Green kernel. The smoothness and the flatness
at the origin of that kernel is the clue to the analysis of the ill-posedness degree. It is
derived in the appendix thanks to the Laplace transform and some comparison results.
In Section 4, we provide two numerical illustrations by MATLAB of the technical results
stated in the previous sections.

Notation 1.1. Let X be a Banach space endowed with its norm ‖·‖X . We denote by
L2(0,T;X) the space of measurable functions v from (0,T) in X such that

‖v‖L2(0,T;X)=
(∫

(0,T)
‖v(s)‖2

X ds
)1/2

<+∞.

We also use the space C (0,T;X) of continuous functions v from [0,T] in X. Denote by I a
given interval in R, the Sobolev space H1(I) is the space all the functions that belong to
L2(I) together with their first derivatives.
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2 Initial condition reconstruction

Let a rod be geometrically represented by the segment I=(0,π) and T>0 be a fixed real-
number. We set Q= I×]0,T[. The generic point in I is denoted by x and the generic time
is t. Assume now be given ψ in L2(I) and denote by yψ the unique solution of the heat
problem

∂tyψ−(γy′ψ)
′=0, in Q,

yψ(0,t)=0, (γyψ)
′(π,t)=0, ∀t∈ (0,T),

yψ(x,0)=ψ, ∀x∈ I.

(2.1)

The symbol ′ is used for the space derivative ∂x. The conductivity parameter γ(·)∈L∞(I)
is piecewise continuously differentiable and is supposed to be positive and bounded
away from zero. This means that γm =minx∈I γ(x)> 0. We also set γ∞ =maxx∈I γ(x)=
‖γ‖L∞(I). The function yψ exists and lies in L2(0,T;V)∩C([0,T];L2(I)) (see [26, Chap. 4]),
where the space V is set to be

V=
{

z∈H1(I); z(0)=0
}

.

The inverse problem to deal with here is the reconstruction of the initial condition
ψ from an additional boundary data at x =π, related to abundant observations at that
extreme-point. Hence, for a given function h=h(t)∈L2(0,T), we intend to find ψ∈L2(I)
satisfying the following Dirichlet condition

yψ(π,t)=h(t), ∀t∈ (0,T). (2.2)

The point we focus on is the ill-posedness degree of this observation problem, an indi-
cation of how unstable it is. We refer to [36] for the general introduction of this notion
and to [34] (see also [24, 35]) for a definition specifically adapted to the problems under
investigation.

2.1 Uniqueness and admissible data

That problem (2.2) is ill-posed is widely known. No existence is guaranteed and the hy-
pothetical solution ψ(·) does not depend continuously on the data h(·). The identifiability
is the only result one may obtain. Indeed, we have

Lemma 2.1. The inverse problem (2.2) has at most one solution.

The methodology followed in the subsequent consists in the investigation of the linear
operator

B : ψ 7→yψ(π,·),
that is at the heart of the inverse problem (2.2). It is mapping L2(I) into L2(0,T) con-
tinuously. It is also a compact operator, has a non-closed range and its inverse cannot
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be bounded. The goal we pursue is to assess the ill-posedness degree. We follow the
methodology exposed in [8].

Tools from Fourier Series Theory enable us to know more about B. We construc-
t the orthonormal basis (ek(·))k≥1 in L2(I) of eigen-functions of the Laplace operator
ψ 7→−(γ(x)ψ′)′, defined on H2∩V. The eigenvalues (λk)k≥1 are all simple and positive.
Ordered increasingly, the sequence is positive and grows to infinity.

For any ψ∈L2(I), we consider Fourier’s expansion

ψ(x)= ∑
k≥1

ψkek(x), in I.

Inserting this series into the boundary value problem (2.1) yields the following expansion

(Bψ)(t)= ∑
k≥1

ψkek(π)e−λkt. (2.3)

Remark 2.1. Some results are needed in the sequel; they are linked to the spectral de-
composition of the differential operator introduced above. Following [12, Chapter VI],
we have the asymptotic formula

λk

(k+β)2
=τ+

ǫk

k2
, ∀k≥1.

The real-number τ > 0 depends on γ(·); β is a real-number and (ǫk)k≥1 is a bounded
sequence. Moreover, the uniform bound of the sequence (ek(π))k≥1 is found in [28]. The
proof given there is when the conductivity γ(·) is C1. Actually, in the very case we are
involved in, it can be extended to less smooth conductivities; for instance, to those that
are piecewise C1.

The family (e−λkt)k≥1 is linearly independent and total in R(B) (see [30]). Owing to
Müntz-Száz theory, we derive the following characterization of of the range subspace

R(B).

Proposition 2.1. The kernel of B is reduced to the null-subspace, i.e. N (B) = {0}. The co-

dimension of R(B) in L2(0,T) is infinite. Moreover, all the functions in the closure R(B) are
analytic in ]0,T] and we have

R(B)=
{

v=∑
k≥1

vke−λkt; ∑
k≥1

∑
m≥1

1−e−(λk+λm)T

λk+λm
vkvm <∞

}
. (2.4)

Proof. Notice that for any k, we have ek(π) 6= 0; otherwise ek(·) ≡ 0. The kernel of B
contains therefore only ψ = 0. Then, given that (1/λk)k≥1 is summable ; according to
the Müntz theorem, the sequence (e−λkt)k≥1 is not dense in L2(0,T). Another theorem
by Clarkson and Erdös [11] (see also [10, Theorem 6.4]) brings about more information

on the closure space R(B). In fact, any function v in R(B) is analytic in ]0,T] and the
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representation (2.4) holds true ; the bound is a consequence of the fact that v∈ L2(0,T).

Moreover, an infinite number of functions e−mt are necessarily outside R(B). Otherwise
it would coincide with L2(0,T). As a result, any finite dimensional subspace spanned
by any sub-family, taken among those functions, belongs to a supplementary subspace

of R(B). This yields that the co-dimension of R(B) in L2(0,T) is infinite. The proof is
complete.

Now, to step further on the path of the singular values analysis for the operator B, we
need the adjoint operator B∗ which maps L2(0,T) into L2(I) continuously and compactly.
It is easy to check out the formula

(B∗h)(x)= ∑
k≥1

(∫

(0,T)
h(t)e−λk t dt

)
ek(π)ek(x). (2.5)

In view of Proposition 2.1, the kernel of B∗ is an infinite dimensional subspace. Indeed,
its dimension is equal to the co-dimension of R(B).

2.2 Ill-posedness degree

The purpose is now to clarify the compactness degree of B. Investigating its singular
values can be undertaken after deriving a closed form of the B∗B and determine it as an
infinite dimensional matrix. We have that

(B∗Bψ)(x)= ∑
k≥1

(∫

(0,T)
(Bψ)(t)e−λkt dt

)
ek(π)ek(x)

= ∑
k≥1

(∫

(0,T)

(
∑

m≥1

ψmem(π)e−λmt

)
e−λkt dt

)
ek(x)

= ∑
k≥1

∑
m≥1

ψm

(∫

(0,T)
e−(λk+λm)t dt

)
em(π)ek(π)ek(x)

= ∑
k≥1

∑
m≥1

em(π)
1−e−(λk+λm)T

λk+λm
ek(π)ψm ek(x).

Then considering the eigenvalue problem: find (ψ,λ)∈L2(I)×]0,∞[ with ψ 6=0 such that

B∗Bψ=λψ, (2.6)

we come up with the (infinite) collection of (infinite dimensional) algebraic equations,

∑
m≥1

em(π)
1−e−(λk+λm)T

λk+λm
ek(π)ψm =λψk, ∀k≥1.
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Let us denote by ψ = (ψm) ∈ ℓ2(R), and let the symbol CT ∈ RN×RN be used for the
symmetric matrix whose entries are

(cT)km = em(π)
1−e−(λk+λm)T

λk+λm
ek(π), ∀k,m≥1.

These new notations allow for a condensed form of equation (2.6) and to derive formally
that

CT ψ=λψ. (2.7)

The target now is to exhibit asymptotics of the eigenvalues of the infinite-dimensional
matrix CT =((cT)km)k,m≥1. The infinite matrix CT should be seen as a linear operator on
ℓ2(R), that inherits the properties of the operator B∗B. It is symmetric and positive def-
inite, though not elliptic. As it is compact, the Hilbert-Schmidt theorem applies. This
matrix can be then put under a diagonal form. The countable sequence of its eigenvalues
is denoted ((νT)k)k≥1. It is positive and when ordered decreasingly, it decays toward-
s zero. The singular values ((σT)k)k≥1 of the operator B are therefore obtained as the
square-roots of ((νT)k)k≥1. Finding out how these sequences decrease toward zero can be
achieved after stating that CT is spectrally equivalent to the Pick matrix PT whose entries
are of the form

(pT)km =
tanh(λkT/2)+tanh(λmT/2)

λk+λm
, ∀k,m≥1.

This matrix has a finite Frobenius norm. Thus, it is a bounded operator on ℓ2(R). Next,
setting OT the diagonal matrix

OT =diag ((oT)kk)k≥1=
1√
2

diag (ek(π)(1+e−λkT))k≥1,

it is easily seen that CT=OTPTOT . The symmetry of PT and the non-negative definiteness
are the first consequences. The compactness is ensured if OT is an isomorphism on ℓ2(R).
The diagonal entries OT are doubly bounded. The uniform boundedness (away from
infinity) of it is discussed in Remark 2.1, see also [28, Theorem 1.2], while the uniform
boundedness away from zero is shown in [29, Theorem 2.4]. The positive eigenvalues of
PT are denoted ((µT)k)k≥1. We will also need

om = inf
k≥1

((oT)kk)
2, oM =sup

k≥1

((oT)kk)
2.

The following holds

Lemma 2.2. The matrices CT and PT are spectrally equivalent, that is

(µT)k

oM
≤ (νT)k ≤

(µT)k

om
, ∀k≥1.
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Proof. First setting ϕ=OTψ, for all ψ∈ ℓ2(R), we get that

1

oM

(PTϕ,ϕ)ℓ2

‖ϕ‖2
ℓ2

≤ (CTψ,ψ)ℓ2

‖ψ‖2
ℓ2

≤ 1

om

(PTϕ,ϕ)ℓ2

‖ϕ‖2
ℓ2

.

The result of the lemma is therefore derived by Courant-Fisher Min-max formula. The
proof is complete.

Now, recall that the objective we are assigned to is the derivation of asymptotic for-
mulas for the eigenvalues ((νT)k)k≥1 of CT. According to Lemma 2.2, it sufficient to exhib-
it the asymptotics for those ((µT)k)k≥1 of PT first and then extend them to CT. Actually,
we focus on PT. As it has a displacement rank equal to two (see [20]), exhibiting asymp-
totics of it is possible. In reality, this will be done for the principal sub-matrix of arbitrary
finite order N. Then, we use an error approximation result of PT, we state as a prelimi-
nary. To do so we denote by PN =((pT)km)1≤k,m≤N.

Lemma 2.3. We have that

‖PT−PN‖L(ℓ2,ℓ2)≤
C√
N

.

The constant C is independent upon N.

Proof. The convergence is proven with respect to the stronger Frobenius norm. It is s-
traightforward that

‖PT−PN‖2
L(ℓ2,ℓ2)= ∑

1≤m≤N
∑

k≥N

[(pT)km]
2+ ∑

m>N
∑
k≥1

[(pT)km]
2

≤ ∑
1≤m≤N

∑
k>N

1

λkλm
+ ∑

m>N
∑
k≥1

1

λkλm
≤ C′

N
.

The last bound comes from the fact that the function tanh(·) is lower than one, together
with the fact that λk grows like (k+β)2. The proof is complete.

Now, let us first introduce the new notation ((µN)k)1≤k≤N for the eigenvalues of the
truncated matrix PN ordered decreasingly. The following result holds

Lemma 2.4. The largest eigenvalue of PN is uniformly bounded, that is

(µN)1≤µ.

µ is positive real-number independent upon N.

Proof. The bound on (µN)1 of PN may be established owing to the Gershgorin-Hadamard
circle theorem (see [27, Chapter 8]),

(µN)1≤ max
1≤k≤N

∑
1≤m≤N

(pT)km.
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We have that (tanh(·) is bounded by one)

∑
1≤m≤N

(pT)km ≤ ∑
1≤m≤N

2

λk+λm
≤C

∫

(0,∞)

1

(k+β)2+(z+β)2
dz=

C

|k+β| .

The lemma is thus proved after switching to the max on k.

Lemma 2.5. Assume that N is large enough. The eigenvalues ((µN)k)1≤k≤N satisfy the following
bound

(µN)k≤µexp

(
− bk

log(N)

)
, 1≤ k≤N.

The constant b does not depend upon N.

Proof. Owing to [7, Corollary 4.1] we have that

(µN)k

(µN)1
≤4exp

(
− π2k

4log(4λN/λ1)

)
.

The result is derived after observing that λN =O(N2). The proof is complete.

Proposition 2.2. The eigenvalues ((µT)k)1≤k of the infinite Pick matrix PT satisfy the following
bound

(µT)k≤exp(−b′
√

k), ∀k≥1.

Proof. Starting from the expansion

PT =PN+(PT−PN),

and applying the Courant-Fisher Min-max formula we obtain the bound

(µT)k ≤ (µN)k+‖PT−PN‖L(ℓ2,ℓ2)≤µT exp

(
− bk

log(N)

)
+

C√
N

.

Being aware that b and C are not dependent on N is so important. Next, choose N= e
√

k,
we obtain that

(µT)k ≤µe−b
√

k+Ce−
1
2

√
k.

This achieves the proof.

Proposition 2.3. The singular values of the operator B are such that

(σT)k ≤exp(−b′′
√

k), ∀k≥1.

The data completion problem (2.2) is therefore severely ill-posed.

Remark 2.2. Proposition 2.3 is stated in [9], for the conductivity γ(·) = 1. The proof
proposed there is deeply different. It is based on the Jacobi Theta Functions and the
Jacobi Imaginary Transformation. All these tools are lost for varying conductivities. The
proof developed here is an alternative one with a higher degree of generality.
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3 Boundary data completion

We pursue an exploration of the inverse boundary data completion problem. This con-
sists in recovering the data at one extremity of I from redundant boundary data on the
other extremity accessible to measurements. Let h=h(t) be given in L2(0,T). The follow-
ing heat equation is the focus

∂ty−(γy′)′=0, in Q,

y(0,t)=h(t), (γy′)(0,t)=0, ∀t∈ (0,T),

y(x,0)=0, ∀x∈ I.

(3.1)

The Cauchy conditions are at x=0 and the aim is to recover the missing boundary condi-
tion at x=π. Here again the aimed issue has to do with the ill-posedness. We provide a
proof of the severe ill-posedness of the problem. A condensation argument is applied to
problem (3.1) : the incomplete boundary data η ∈ L2(0,T) is taken as the very unknown
of the problem. Would it be known, the full temperature field could be reconstructed at
least in different ’numerical’ ways. Therefore we consider the heat problem

∂tyη−(γy′η)
′=0 in Q,

(γy′η)(0,t)=0, (γyη)
′(π,t)=η(t) ∀t∈ (0,T),

yη(x,0)=0 ∀x∈ I.

The data completion problem reduces then to: find η∈L2(0,T) fulfilling

yη(0,t)=h(t), ∀t∈ (0,T). (3.2)

Before tackling the severe ill-posedness we conduct a brief discussion about the exact
data h(·), those for which a of the inverse problem is secured.

3.1 Identifiability

The unique continuation theorem allows us to state the identifiability. The proof comes
from, see, e.g., [21].

Lemma 3.1. The reduced data completion problem (3.2) has at most one solution.

The sequel is focussed on the study of the linear operator defining problem (3.2). It is
defined on L2(0,T) and is bounded

D : η 7→yη(0,·).

An interesting issue is related to the space of the exact data h∈L2(0,T) for (3.2), the range
R(D).
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Lemma 3.2. The range R(D) of exact data is dense in L2(0,T).

Proof. It is enough to show that the kernel of the adjoint operator D∗ is reduced to {0}. It
can be stated that D∗ is defined by

(D∗h)(t)=−zh(π,t), ∀t∈ (0,T).

The function zh(·,·) is the unique solution of the backward heat equation

−∂tzh−(γz′h)
′=0 in Q,

(γz′h)(0,t)=h(t), (γz′h)(π,t)=0 ∀t∈ (0,T),

zh(x,T)=0 ∀x∈ I.

Calling for the unique continuation theorem results in the fact that N (D∗) contains only
zero. The range R(D) is then dense in L2(0,T).

3.2 Ill-posedness degree

The compactness of the operator D is not hard to check out using a suitable compact
Sobolev embedding. Thus, Hilbert-Schmidt’s theorem, applied D, yields that the set of
its singular values is discrete with the origin as the only possible accumulative point.
Stating that the sequence of the singular values decreases rapidly towards zero passes by
writing the operator D as a convolution operator with a kernel flat at the origin.

To step forth, we use the orthonormal basis (ek(·))k≥0 in L2(I) of eigen-functions of
the Laplace operator operator −(γ(·)′)′ defined in Section 2. Carrying out the necessary
calculation to come up with yη (spanned on this particular basis) provides the following
form of the operator D,

(Dη)(t)=(η⋆g)(t)=
∫

(0,t)
η(s)g(t−s)ds

with

g(t)= ∑
k≥0

ek(0)ek(π)e−λkt=
1

π
+∑

k≥1

ek(0)ek(π)e−λkt, ∀t≥0. (3.3)

As a result equation (3.2) is a Volterra equation of the first kind with the kernel g(·).
Appropriate results picked up in the specialized literature link the ill-posedness of this
equation to the flatness of the kernel g(·) in the vicinity of the origin t = 0 (see [13, 24,
35]). We use an indirect approach to derive the result. First, let us notice that applying
d’Alembert rule, the series (3.3) is normally convergent in [ǫ,∞[, for ǫ arbitrary small.
This is a consequence of λk≈τ(k+β)2 together with the bound ‖ek‖∞≤C. Therefore, g(·)
is indefinitely smooth in ]0,∞[ and bounded at infinity. Its behavior at vicinity of t=0+ is
given in the following proposition. The proof is postponed to the appendix and is based
on the Laplace transform.
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Proposition 3.1. There holds that

lim
t→0+

g(m)(t)=0.

The singular values (σk)k≥0 of the operator D decay faster than k−m for all m ∈ N. The ill-
posedness degree of problem (3.2) is then infinity.

Proof. It is direct from (5.1) and the second formula in Lemma 5.2.

Remark 3.1. The series (3.3) converges for t= 0. Be aware that in view of [29, Theorem
2.4], the sequence (ek(0)ek(π))k≥1 fails to decrease toward zero, it however enjoys some
alterning sign property which explains the convergence of the series. See Section 4 when
γ is constant to get an insight.

4 Numerical discussion

To assess the severe ill-posedness of the Initial data recovery from Cauchy’s data, studied
in Section 2, we provide some numerical illustrations. Therefore, we run some MATLAB

computations to check out the estimates provided in Proposition 2.3. The singular values
((σN)k)1≤k≤N of the operator B are calculated as (

√
(νN)k)1≤k≤N, the eigenvalues of CN ,

the N-dimensional truncation of CT. They are represented in Fig. 1, for a range of N ∈
[5,25]. An important fraction of the singular values are concentrated at the origin for high
values of N. The smallest ones goe towards zero with at a high speed. Observe that the
singular values lower than 10−8 suffer from inaccuracy. In fact, MATLAB fails to provide
them and sends back incorrect values. Another feature to point out consists in the fact
that if the final instant T is short, then only few singular values are not numerically zero
(larger than 10−8).
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Figure 1: The singular values for T=0.01 (left), T=1 (right).
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Figure 2: The representative curves of the kernel and its first derivatives, g,g′ (left) and g′′,g′′′ (right).
They are all flat at the vicinity of zero.

The second illustration deals with the data completion problem adressed in Section 3.
We show the flat behavior for the kernal g, at the heart of the analysis of the ill-posedness
degree of our inverse problem. For constant conductivities, let us say when γ(·)=1, it is
expressed as follows

g(t)=
1

π
+

2

π ∑
k≥1

(−1)ke−k2t.

The behavior of g is depicted in Fig. 2. The representative curves of g, g′, g′′ and g′′′. The
kernel is hence strongly flat and problem (3.2) is severely ill-posed.

In this case of constant γ(·), Jacobi’s theta functions actually provides an elegant in-
sight on how g and its derivatives varies at the vicinity of the origin. The kernel takes the
following forms

g(t)=
1

π
+

2

π ∑
k≥1

(−1)ke−k2t=
1√
πt

e−
π2

4t

(
1+2 ∑

k≥1

e−
k2π2

t cosh(
kπ2

t
)

)
.

As a result, we have that for all m≥0

lim
t→0+

g(m)(t)=0,

in agreement with the curves depicted in Fig. 2.

5 Conclusion

The focus of the current work is the ill-posedness degree of the inverse problems (2.2),
of the recovery of the initial state and (3.2), of the missing boundary data reconstruc-
tion from one sided Cauchy boundary data. The difficulties to compute a good quality
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solution of these problems is well known. This is a reliable indication of their severe
ill-posedness. The novelty here is mainly echnical: the generality of the heat equation
we work with; the conductivity is space dependent. The case where this parameter is
constant has been already successfully studied (see [8,9]). Many issues related with both
problems are worth to be deeply investigated, especially those related to a safe numer-
ical approximation. Some have doubtless been treated in the specialized literature (see,
eg, [2, 3]) and some others remain to be studied. We think particularly about the regular-
ization strategies. What are the most efficient method to use and the best rule to fix the
related parameters?

Appendix: Technical Lemmas

We are inerested in the convolution kernel g(·), governing the Volterra equation exhibited
from the Boundary data completion adressed in Section 3. We focus on its behavior at
the origin t = 0. We follow an indirect argument, based on the Laplace transform. In
fact, the behavior of ĝ(·) at infinity reflects that of g(·) at the origin. Following the first
Heaviside’s rule, we have in particular that

(
lim

p→+∞
pm+1ĝ(p)=0

)
=⇒

(
lim

t→0+
g(k)(t)=0, ∀k≤m

)
. (5.1)

When η belongs to L2(0,∞), a-priori estimates show that at least yη ∈ L2((0,∞)× I). The
Laplace transform ŷη(·,x), with respect to t, of yη(·,x) is well defined, for alemmaost
every x. Transforming problem (3.1), we derive that ŷη(·,p) is solution of the elliptic
problem, for all p≥0,

pŷη(·,p)−(γŷ′η)
′(·,p)=0, in I,

(γŷ′η)(0,p)=0, (γŷ′η)(π,p)= η̂(p).
(5.2)

The convolution theorem of the Laplace transform provides

D̂η(p)= ŷη(0,p)= ĝ(p)η̂(p).

It comes out that ĝ(p)= z(0,p) where z is solution of problem (5.2), where η̂ is changed
into 1, that is

pz(·,p)−(γz′)′(·,p)=0, in I,

(γz′)(0,p)=0, (γz′)(π,p)=1.
(5.3)

Owing to the maximum principle, we have that z(·,p)≥0. The rod is heated by injecting
a heat flux at the right extremity x=π ; then the temperature remains above zero. This is
already an indication that ĝ(p)≥0. The aim to recall is to investigate the behavior of ĝ(p)
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for large p. We will use a comparison argument. Recall that γ∞=‖γ‖L∞ , we consider the
problem

pζ(·,p)−γ∞ζ′′(·,p)=0 in I,

(γ∞ζ′)(0,p)=0, (γ∞ζ′)(π,p)=1.
(5.4)

The preliminary comparison result is given in

Lemma 5.1. There holds that

0≤γ(x)z′(p,x)≤γ∞ζ′(p,x), ∀(x,p)∈ I×(0,∞[.

Proof. Set w=γz′(p,·)∈H1(I). It is easily seen that

p

γ
w(·,p)−w′′(·,p)=0 in I,

w(0,p)=0, w(π,p)=1.

Analogously, if ω=γ∞ζ′(p,·)∈H1(I), we obtain the new boundary value equation

p

γ∞

ω(·,p)−ω′′(·,p)=0 in I,

ω(0,p)=0, ω(π,p)=1.

The maximum principle applied to both equations results in w(·,p)≥ 0 and ω(·,p)≥ 0.
Now considering the difference function ǫ=(ω−w); it is solution to problem

p

γ∞

ǫ(·,p)−ǫ′′(·,p)= p(
1

γ
− 1

γ∞

)w(·,p) in I,

ǫ(0,p)=0, ǫ(π,p)=0.

The right hand side in the equation is non-negative. Another use of the maximum prin-
ciple yields that ǫ(·,p)≥0 and 0≤w(·,p)≤ω(·,p). The proof is complete.

Lemma 5.2. We have for all m≥0,

lim
p→+∞

pm ĝ(p)=0.

Proof. Integrate equations (5.3) and (5.4), we find that for all x∈ I

p
∫ x

0
z(u,p)du=γz′(p,x), p

∫ x

0
ζ(u,p)du=γ∞ζ′(p,x).

Using Lemma 5.1, we come out with the bound

0≤
∫ x

0
z(u,p)du≤

∫ x

0
ζ(u,p)du,

valid for all x∈ I. Dividing by x, using the Mean Value Theorem and passing to the limit
x=0, yields that ĝ(p)=z(0,p)≤ζ(0,p). Noticing that ζ(·,p) has a closed form by explicitly
solving (5.4), this provides the desired result. The proof is complete.
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Remark 5.1. The bound of ĝ(·) given in Lemma 5.2 cannot be improved. Indeed, denot-
ing γm=minx∈I γ(x). Following the same lines, one derives that

ĝ(p)≥ 1

γm
√

qsinh(π
√

q)
,

where p=qγm.
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