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Abstract. We prove some boundedness results for a large class of sublinear operators
with rough kernel on the homogeneous Herz spaces where the three main indices are
variable exponents. Some known results are extended.
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1 Introduction

Suppose that Sn−1 is the unit sphere of Rn (n ≥ 2) equipped with normalized Lebesgue
measure dσ(x′). Let Ω ∈ L1(Sn−1) be homogeneous of degree zero and satisfy∫

Sn−1
Ω(x′)dσ(x′) = 0,

where x′ = x/|x| for any x 6= 0. In this paper, we will consider sublinear operators which
satisfy that for any f ∈ L1(Rn) with compact support and x /∈ supp f ,

|TΩ f (x)| ≤ C
∫

Rn

|Ω(x− y)|
|x− y|n | f (y)|dy, (1.1)

and their corresponding fractional versions

|TΩ,β f (x)| ≤ C
∫

Rn

|Ω(x− y)|
|x− y|n−β

| f (y)|dy, (1.2)
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where 0 < β < n and C > 0 is an absolute constant.
Soria and Weiss [20] first introduced the condition (1.1), which is satisfied by many

classical operators in harmonic analysis, such as the Calderón-Zygmund operators, Car-
leson’s maximal operators, Hardy-Littlewood maximal operators, etc. In the case Ω ∈
Ls(Sn−1) for some s ∈ [1, ∞], Lu et al. [15] proved the boundedness of sublinear operators
TΩ and TΩ,β on generalized Morrey spaces. Hu et al. [10] established the boundedness of
sublinear operators with rough kernel on the classical Herz spaces. We refer to [13] for
further results on these operators.

In recent years, function spaces with variable exponents have attracted more and
more attention. The growing interest in such spaces is strongly stimulated by the treat-
ment of recent problems in fluid dynamics [19], image restoration [3] and PDE with
non-standard growth conditions [7]. The generalized Lebesgue spaces Lp(·)(Rn) (also
known as Lebesgue spaces with variable exponent) and the corresponding generalized
Sobolev spaces Wk,p(·)(Rn) have been systematically studied by Kováčik and Rákosnı́k
in [12]. Since then various other function spaces such as Herz spaces [11], Morrey type
spaces [8, 16] and so on have been investigated in the variable exponent setting.

As shown in [14, 18], Herz spaces play a crucial role in harmonic analysis and PDE.
For instance, they appear in the characterization of multiplier on Hardy spaces and in
the regularity theory for elliptic and parabolic equations in divergence form. Herz spaces
K̇α(·)

p(·),q(R
n) and Kα(·)

p(·),q(R
n) with variable exponent α, p but fixed q ∈ R were first studied

by Almeida and Drihem [1], and they also studied the boundedness of a wide class of
sublinear operators on these spaces. Recently, Drihem and Seghiri in [6] generalized
some of the main results in [1] to the Herz spaces K̇α(·)

p(·),q(·)(R
n) and Kα(·)

p(·),q(·)(R
n), where

the exponent q is variable as well. The main purpose of this paper is to further extend
these results to the rough kernel case.

In general, by B we denote the ball with center x ∈ Rn and radius r > 0. If E is a subset
of Rn, |E| denotes its Lebesgue measure and χE its characteristic function. p′ denotes the
conjugate exponent defined by 1

p + 1
p′ = 1. We use x ≈ y if there exist constants c1, c2

such that c1x ≤ y ≤ c2x. The symbol C stands for a positive constant, which may vary
from line to line.

2 Preliminaries and lemmas

We begin with a brief and necessarily incomplete review of the variable exponent Lebesgue
spaces Lp(·)(Rn), see [4, 5] for more information.

Let P(Rn) denote the set of all measurable functions p(·) : Rn → [1, ∞). For p(·) ∈
P(Rn), we use the notation

p− := ess inf
x∈Rn

p(x), p+ := ess sup
x∈Rn

p(x).
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The Lebesgue space with variable exponent Lp(·)(Rn) is the class of all measurable func-
tions f on Rn such that

Ip(·)( f ) :=
∫

Rn
| f (x)|p(x)dx < ∞.

This is a Banach space with respect to the Luxemburg norm

‖ f ‖Lp(·)(Rn) = inf{λ > 0 : Ip(·)( f /λ) ≤ 1}.

It is obvious that the variable exponent Lebesgue norm has the following property

‖| f |σ‖Lp(·)(Rn) = ‖ f ‖σ
Lσp(·)(Rn)

, σ ≥ 1/p−. (2.1)

Given an open set Ω ⊂ Rn, the space Lp(·)
loc (Ω) is defined by

Lp(·)
loc (Ω) = { f : f ∈ Lp(·)(F) for all compact subsets F ⊂ Ω}.

For p(·) ∈ P(Rn), Hölder’s inequality (see [12, Theorem 2.1]) holds in the form∫
Rn
| f (x)g(x)|dx ≤

(
1 +

1
p−
− 1

p+

)
‖ f ‖Lp(·)(Rn)‖g‖Lp′(·)(Rn), (2.2)

where and in the sequel p′(x) = p(x)
p(x)−1 is the conjugate function of p(x).

For our main results we need to impose some regularities on the exponent function
p(·). The most important condition, one widely used in the study of variable Lebesgue
spaces, is so-called log-Hölder continuity. Given a function φ(·) : Rn → R, we say φ(·) is
locally log-Hölder continuous if there exists a constant Clog > 0 such that

|φ(x)− φ(y)| ≤
Clog

log(e + 1/|x− y|) , ∀x, y ∈ Rn. (2.3)

If, for some φ∞ ∈ R and Clog > 0, there holds

|φ(x)− φ(0)| ≤
Clog

log(e + 1/|x|) , ∀x ∈ Rn, (2.4a)

|φ(x)− φ∞| ≤
Clog

log(e + |x|) , ∀x ∈ Rn, (2.4b)

then we say φ(·) is log-Hölder continuous at the origin (or has a log decay at the origin)
and at infinity (or has a log decay at infinity), respectively.

By P
log
0 (Rn) and P

log
∞ (Rn) we denote the class of exponents p(·) ∈ P(Rn), which

satisfy conditions (2.4a) and (2.4b), respectively. Plog(Rn) is the set of functions p(·) ∈
P(Rn) satisfying conditions (2.3) and (2.4b), with p∞ := lim|x|→∞ p(x). It is easy to see

that Plog(Rn) ⊂ P
log
0 (Rn) ∩ P

log
∞ (Rn) and p(·) ∈ Plog(Rn) if and only if p′(·) ∈ Plog(Rn).
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In particular, we note that if p(·) ∈ Plog(Rn) with 1 < p− ≤ p+ < ∞, then the Hardy-
Littlewood maximal operator M defined by

M f (x) = sup
x∈Rn, r>0

1
|B(x, r)|

∫
B(x,r)

| f (y)|dy,

is bounded on Lp(·)(Rn), see [5, Theorem 4.3.8].
By p∗(·) we denote the Sobolev exponent defined by 1/p∗(x) := 1/p(x)− β/n, 0 <

β < n. We note that if p(·) is locally log-Hölder continuous and has a log decay at infinity,
1 ≤ p− ≤ p+ < ∞ and 0 < β < n/p+, then p∗(·) is locally log-Hölder continuous and
has a log decay at infinity, and

1 <
np−

n− βp−
= (p∗)− ≤ (p∗)+ =

np+
n− βp+

< ∞.

Moreover, we can show that the assumption p(·) ∈ Plog(Rn) implies p∗(·) ∈ Plog(Rn),
see [1, 9] for further details.

Next, let us introduce some lemmas. We remark that Lemma 2.1 is due to Nakai and
Sawano [17, p. 3681]. Lemmas 2.2-2.4 were shown in Almeida and Drihem [1].

Lemma 2.1. Let p(·) ∈ P(Rn). If q > p+ and 1
p(x) =

1
q̃(x) +

1
q , then we have

‖ f g‖Lp(·)(Rn) ≤ C‖ f ‖Lq̃(·)(Rn)‖g‖Lq(Rn)

for all measurable functions f and g.

Lemma 2.2. Let r1 > 0. Suppose α(·) ∈ L∞(Rn) is log-Hölder continuous both at the origin
and at infinity, then we have

rα(x)
1 ≤ Crα(y)

2 ×



( r1

r2

)α+
, 0 < r2 ≤ r1/2,

1, r1/2 < r2 ≤ 2r1,( r1

r2

)α−
, r2 > 2r1,

for any x ∈ B(0, r1)\B(0, r1/2) and y ∈ B(0, r2)\B(0, r2/2).

Lemma 2.3. Let p(·) ∈ P
log
∞ (Rn) and R = B(0, r)\B(0, r/2). If |R| ≥ 2−n, then

‖χR‖Lp(·)(Rn) ≈ |R|
1

p(x) ≈ |R|
1

p∞ .

The left-hand side equivalence remains true for every |R| > 0 if we assume, additionally, p(·) ∈
P

log
0 (Rn)

⋂
P

log
∞ (Rn).

By `q, we denote the discrete Lebesgue space equipped with the usual quasinorm.
As a consequence of Young’s inequality in the sequence Lebesgue space `q, we have the
following statement.
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Lemma 2.4. Let 0 < a < 1 and 0 < q ≤ ∞. Let {εk}k∈Z be a sequence of positive real numbers,
such that

‖{εk}k∈Z‖`q = I < ∞.

Then the sequences{
ξk : ξk = ∑

j≤k
ak−jε j

}
k∈Z

and
{

ηk : ηk = ∑
j≥k

aj−kε j

}
k∈Z

belong to `q, and
‖{ξk}k∈Z‖`q + ‖{ηk}k∈Z‖`q ≤ CI,

with the implicit constant only depending on a and q.

3 Main results and their proofs

In what follows, by P0(Rn) we denote the set of measurable functions on Rn with range in
[c,+∞) for some c > 0. By P+(Rn) we denote the set of variable exponents p(·) ∈ P(Rn)
with 1 < p− ≤ p+ < ∞.

Let p(·), q(·) ∈ P0(Rn). Define the mixed Lebesgue sequence space `q(·)(Lp(·)) to be
the set of all sequences { fk}∞

k=0 of measurable functions on Rn such that

‖{ fk}∞
k=0‖`q(·)(Lp(·)) := inf

{
µ > 0 : ρ`q(·)(Lp(·))

({
fk

µ

}∞

k=0

)
≤ 1

}
< ∞,

where

ρ`q(·)(Lp(·))

(
{ fk}∞

k=0

)
:= ∑

k≥0
inf
{

λk :
∫

Rn

(
| fk(x)|

λ
1

q(x)
k

)p(x)

dx ≤ 1
}

.

Since q+ < ∞, then we have

ρ`q(·)(Lp(·))

(
{ fk}∞

k=0

)
= ∑

k≥0

∥∥∥∥| fk|q(·)
∥∥∥∥

L
p(·)
q(·)

.

Furthermore, if p and q are constants, then `q(·)(Lp(·)) = `q(Lp). It is known that ‖ ·
‖`q(·)(Lp(·)) is a quasi-norm for all p(·), q(·) ∈ P0(Rn) and that ‖ · ‖`q(·)(Lp(·)) is a norm when

1
p(·) +

1
q(·) ≤ 1, see [2] for further details.

Here and below, we set

Bk := {x ∈ Rn : |x| ≤ 2k}, Rk := Bk\Bk−1 and χk = χRk , k ∈ Z.

Definition 3.1. Let p(·), q(·) ∈ P0(Rn) and α(·) : Rn → R with α(·) ∈ L∞(Rn). The
homogeneous Herz space K̇α(·)

p(·),q(·)(R
n) is defined as the set of all f ∈ Lp(·)

loc (Rn\{0}) such that

‖ f ‖
K̇α(·)

p(·),q(·)(R
n)

:=
∥∥∥∥(2kα(·) f χk

)
k∈Z

∥∥∥∥
`q(·)(Lp(·))

< ∞.
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Obviously, Herz spaces K̇α(·)
p(·),q(·)(R

n) can be regarded as a generalization of K̇α,q
p(·)(R

n)

and K̇α(·)
p(·),q(R

n) defined in [11] and [1], respectively. If both α(·), p(·) and q(·) are con-

stants, then K̇α(·)
p(·),q(·)(R

n) coincides with the classical Herz spaces.
Let us denote

‖{hk}‖`q
>(Lp(·)) =

(
∑
k≥0
‖hk‖

q
Lp(·)(Rn)

)1/q

and ‖{hk}‖`q
<(Lp(·)) =

(
∑
k<0
‖hk‖

q
Lp(·)(Rn)

)1/q

for sequences {hk}k∈Z of measurable functions (with the usual modification when q =
∞).

Drihem and Seghiri in [6] obtained the following result.

Proposition 3.1. Let p(·), q(·) ∈ P0(Rn) and α(·) ∈ L∞(Rn). If both α(·), q(·) are log-Hölder
continuous at the origin and at infinity, then

‖ f ‖
K̇α(·)

p(·),q(·)(R
n)
≈ ‖{2α(0)k f χk}‖`q(0)

< (Lp(·))
+ ‖{2α∞k f χk}‖`q∞

> (Lp(·)).

The main results obtained in this paper are as follows.

Theorem 3.1. Suppose q(·) ∈ P0(Rn), p(·) ∈ P+(Rn) ∩ P
log
0 (Rn) ∩ P

log
∞ (Rn) and Ω ∈

Ls(Sn−1) with (p′)+ < s ≤ ∞. Let α(·) ∈ L∞(Rn) be log-Hölder continuous both at the origin
and at infinity, such that

− n
p+

< α− ≤ α+ < n
(

1− 1
p−

)
− n− 1

s
.

Then every sublinear operator TΩ satisfying condition (1.1) which is bounded on Lp(·)(Rn) is also
bounded on K̇α(·)

p(·),q(·)(R
n).

Remark 3.1. In the case Ω is constant, the corresponding statement to Theorem 3.1 was
proved by Almeida and Drihem [1], with variable exponents α, p but fixed q ∈ (0, ∞].
Theorem 3.1 is also a generalization of Drihem and Seghiri’s result in [6, Theorem 2].

Theorem 3.2. Suppose 0 < β < n, q(·) ∈ P0(Rn), p(·) ∈ P
log
0 (Rn) ∩ P

log
∞ (Rn) with 1 <

p− ≤ p+ < n/β and Ω ∈ Ls(Sn−1), (p′)+ < s ≤ ∞. Let α(·) ∈ L∞(Rn) be log-Hölder
continuous both at the origin and at infinity, such that

β− n
p+

< α− ≤ α+ < n
(

1− 1
p−

)
− n− 1

s
.

Then every sublinear operator TΩ,β satisfying condition (1.2) which is bounded from Lp(·)(Rn)

into Lp∗(·)(Rn) is also bounded from K̇α(·)
p(·),q(·)(R

n) into K̇α(·)
p∗(·),q(·)(R

n).
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Obviously, if Ω is constant, then the Riesz potential operator

Iβ f (x) :=
∫

Rn

f (y)
|x− y|n−β

dy

and the fractional maximal function

Mβ f (x) := sup
x∈Rn,r>0

1

|B(x, r)|1−
β
n

∫
B(x,r)

| f (y)|dy

both satisfy the size condition (1.2). In view of the well-known pointwise estimate
Mβ f (x) ≤ CIβ(| f |)(x) and the (Lp(·), Lp∗(·))-boundedness of Iβ for p(·) ∈ Plog(Rn) with
1 < p− ≤ p+ < n/β (see [5, Theorem 6.1.9]), from Theorem 3.2, we get the following.

Corollary 3.1. Suppose 0 < β < n, q(·) ∈ P0(Rn) and p(·) ∈ Plog(Rn) with 1 < p− ≤
p+ < n/β. Let α(·) ∈ L∞(Rn) be log-Hölder continuous both at the origin and at infinity, such
that

β− n
p+

< α− ≤ α+ < n
(

1− 1
p−

)
.

Then Iβ and Mβ are bounded from K̇α(·)
p(·),q(·)(R

n) into K̇α(·)
p∗(·),q(·)(R

n).

In fact, without essential difficulties, one can prove Theorem 3.1 by using the similar
arguments as in the proof of Theorem 3.2. Thus we need only to prove Theorem 3.2.

Proof of Theorem 3.2. In view of Proposition 3.1, we split the operator into

|TΩ,β f (x)| ≤ |TΩ,β( f χBk−2)(x)|+ |TΩ,β( f χR̃k
)(x)|+ |TΩ,β( f χRn\Bk+2

)(x)|,

where R̃k := {x ∈ Rn : 2k−2 ≤ |x| < 2k+2} with k ∈ Z and x ∈ Rk.
To estimate TΩ,β( f χBk−2), we write

2kα(0)|TΩ,β( f χBk−2)(x)|

≤C2kα(0)
∫

Bk−2

|Ω(x− y)|
|x− y|n−β

| f (y)|dy

=C2kα(0)
k−2

∑
j=−∞

∫
Rj

|Ω(x− y)|
|x− y|n−β

| f (y)|dy. (3.1)

Note that if x ∈ Rk, k < 0, then

|x− y| ≥ |x| − |y| > 2k

4
and 2kα(x) ≈ 2kα(0).

Hence by Lemma 2.2, we arrive at the inequality

2kα(0)|TΩ,β( f χBk−2)(x)| ≤ C
k−2

∑
j=−∞

2(k−j)α+−k(n−β)
∫

Rj

2jα(y)|Ω(x− y)|| f (y)|dy.
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This together with Hölder’s inequality (2.2) gives

‖2kα(0)TΩ,β( f χBk−2)χk‖Lp∗(·)(Rn)

≤C
k−2

∑
j=−∞

2(k−j)α+−k(n−β)‖2jα(·) f χj‖Lp(·)(Rn)‖Ω(x− ·)χj‖Lp′(·)(Rn)‖χk‖Lp∗(·)(Rn). (3.2)

Since s > (p′)+, we can define a variable exponent p̃(·) by

1
p′(x)

=
1

p̃(x)
+

1
s

,

then by Lemma 2.1 and Lemma 2.3, we have

‖Ω(x− ·)χj‖Lp′(·)(Rn)

≤C‖Ω(x− ·)χj‖Ls(Rn)‖χj‖L p̃(·)(Rn)

≤C‖χj‖Lp′(·)(Rn)|Bj|−1/s
( ∫ |x|+2j

|x|−2j

∫
Sn−1
|Ω(y′)|sdσ(y′)ρn−1dρ

) 1
s

≤C2(k−j)(n−1)/s‖χj‖Lp′(·)(Rn). (3.3)

Observe that

|Rj|
− 1

p(xj) |Rk|
1

p(xk) ≤ C2(k−j) n
p−

for xj ∈ Rj, xk ∈ Rk and j ≤ k − 2 (see [1, p. 790]). Since p(·) ∈ P
log
0 (Rn) ∩ P

log
∞ (Rn)

implies that p′(·), p∗(·) ∈ P
log
0 (Rn) ∩ P

log
∞ (Rn), from (3.2), (3.3) and Lemma 2.3, it follows

that

‖2kα(0)TΩ,β( f χBk−2)χk‖Lp∗(·)(Rn)

≤C
k−2

∑
j=−∞

2(k−j)α+−k(n−β)2(k−j)(n−1)/s‖2jα(·) f χj‖Lp(·)(Rn)‖χj‖Lp′(·)(Rn)‖χk‖Lp∗(·)(Rn)

≤C
k−2

∑
j=−∞

2(k−j)(α+−n)2(k−j)(n−1)/s‖2jα(·) f χj‖Lp(·)(Rn)|Rj|
− 1

p(xj) |Rk|
1

p(xk)

≤C
k−2

∑
j=−∞

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn). (3.4)
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Noting that α+ − n + n
p− + n−1

s < 0, we apply Lemma 2.4 and obtain

{ −1

∑
k=−∞

∥∥∥∥2kα(0)TΩ,β( f χBk−2)χk

∥∥∥∥q(0)

Lp∗(·)(Rn)

} 1
q(0)

≤C
{ −1

∑
k=−∞

( k−2

∑
j=−∞

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

)q(0)} 1
q(0)

≤C
{ −1

∑
k=−∞

∥∥∥∥2kα(0) f χk

∥∥∥∥q(0)

Lp(·)(Rn)

} 1
q(0)

≤C‖ f ‖
K̇α(·)

p(·),q(·)(R
n)

.

To estimate 2kα∞ TΩ,β( f χBk−2) in `
q∞
> -norm, we have the same estimate (3.4), with 2kα∞

in place of 2kα(0). We write

‖2kα∞ TΩ,β( f χBk−2)χk‖Lp∗(·)(Rn)

≤C
k−2

∑
j=−∞

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

=C
0

∑
j=−∞

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

+ C
k−2

∑
j=1

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn),

for any k ≥ 0 (we put ∑k−2
j=1 · · · = 0 if k = 0, 1, 2). Once again by Lemma 2.4, we get

{ ∞

∑
k=0

∥∥∥∥2kα∞ TΩ,β( f χBk−2)χk

∥∥∥∥q∞

Lp∗(·)(Rn)

} 1
q∞

≤C
{ ∞

∑
k=0

( 0

∑
j=−∞

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

)q∞} 1
q∞

+ C
{ ∞

∑
k=0

( k−2

∑
j=1

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

)q∞} 1
q∞

≤C
{ ∞

∑
k=0

(
2k(α+−n+ n

p−
+ n−1

s )
0

∑
j=−∞

2−j(α+−n+ n
p−

+ n−1
s ) sup

j≤0
2jα(0)‖ f χj‖Lp(·)(Rn)

)q∞} 1
q∞

+ C
{ ∞

∑
k=0

( k−2

∑
j=1

2(k−j)(α+−n+ n
p−

+ n−1
s )‖2jα(·) f χj‖Lp(·)(Rn)

)q∞} 1
q∞
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≤ C‖ f ‖
K̇α(·)

p(·),q(·)(R
n)

.

For TΩ,β( f χR̃k
), using the (Lp(·), Lp∗(·))-boundedness of TΩ,β, we have

‖TΩ,β( f χR̃k
)‖

K̇α(·)
p∗(·),q(·)(R

n)

≈‖{TΩ,β(2kα(0) f χR̃k
)}‖

`
q(0)
< (Lp∗(·))

+ ‖{TΩ,β(2kα∞ f χR̃k
)}‖`q∞

> (Lp∗(·))

≤C
(
‖{2kα(0) f χR̃k

}‖
`

q(0)
< (Lp(·))

+ ‖{2kα∞ f χR̃k
}‖`q∞

> (Lp(·))

)
≤C‖ f ‖

K̇α(·)
p(·),q(·)(R

n)
.

We proceed now to estimate TΩ,β( f χRn\Bk+2
). Given x ∈ Rk, k < 0, we write

2kα(0)|TΩ,β( f χRn\Bk+2
)(x)|

≤C2kα(0)
∫

Rn\Bk+2

|Ω(x− y)|
|x− y|n−β

| f (y)|dy

=C2kα(0)
∞

∑
j=k+3

∫
Rj

|Ω(x− y)|
|x− y|n−β

| f (y)|dy. (3.5)

Noting that
|x− y| > 2j−1 − 2k > 2j−3

for x ∈ Rk and y ∈ Rj, by Lemma 2.2, we have

2kα(0)|TΩ,β( f χRn\Bk+2
)(x)| ≤ C

∞

∑
j=k+3

2(k−j)α−−j(n−β)
∫

Rj

2jα(y)|Ω(x− y)|| f (y)|dy.

An application of Hölder’s inequality (2.2) gives

‖2kα(0)TΩ,β( f χRn\Bk+2
)χk‖Lp∗(·)(Rn)

≤C
∞

∑
j=k+3

2(k−j)α−−j(n−β)‖2jα(·) f χj‖Lp(·)(Rn)‖Ω(x− ·)χj‖Lp′(·)(Rn)‖χk‖Lp∗(·)(Rn). (3.6)

Similarly to (3.3), we have the estimate

‖Ω(x− ·)χj‖Lp′(·)(Rn)

≤C‖χj‖Lp′(·)(Rn)|Bj|−1/s
( ∫ 2j+1

0

∫
Sn−1
|Ω(y′)|sdσ(y′)ρn−1dρ

) 1
s

≤C‖χj‖Lp′(·)(Rn). (3.7)
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Noting that

|Rj|
− 1

p(xj) |Rk|
1

p(xk) ≤ C2(k−j) n
p+

for xj ∈ Rj, xk ∈ Rk and j ≥ k + 3 (see [16, Lemma 3.2]), from (3.6), (3.7) and Lemma 2.3,
we get

‖2kα(0)TΩ,β( f χRn\Bk+2
)χk‖Lp∗(·)(Rn)

≤C
∞

∑
j=k+3

2(k−j)α−−j(n−β)‖2jα(·) f χj‖Lp(·)(Rn)‖χj‖Lp′(·)(Rn)‖χk‖Lp∗(·)(Rn)

≤C
∞

∑
j=k+3

2(k−j)(α−−β)‖2jα(·) f χj‖Lp(·)(Rn)|Rj|
− 1

p(xj) |Rk|
1

p(xk)

≤C
∞

∑
j=k+3

2(k−j)(α−+ n
p−
−β)‖2jα(·) f χj‖Lp(·)(Rn). (3.8)

Observing that

α− +
n

p−
− β > 0 and 2jα(y) ≈ 2jα∞ ,

for any y ∈ Rj, j ≥ 0. Then Lemma 2.4 implies that{ −1

∑
k=−∞

∥∥∥∥2kα(0)TΩ,β( f χRn\Bk+2
)χk

∥∥∥∥q(0)

Lp∗(·)(Rn)

} 1
q(0)

≤C
{ −1

∑
k=−∞

( −1

∑
j=k+3

2(k−j)(α−+ n
p+
−β)‖2jα(·) f χj‖Lp(·)(Rn)

)q(0)} 1
q(0)

+ C
{ −1

∑
k=−∞

( ∞

∑
j=0

2(k−j)(α−+ n
p+
−β)‖2jα(·) f χj‖Lp(·)(Rn)

)q(0)} 1
q(0)

≤C
{ −1

∑
k=−∞

∥∥∥∥2kα(0) f χk

∥∥∥∥q(0)

Lp(·)(Rn)

} 1
q(0)

+ C
{ −1

∑
k=−∞

(
2k(α−+ n

p+
−β)

∞

∑
j=0

2−j(α−+ n
p+
−β) sup

j≥0
2jα∞‖ f χj‖Lp(·)(Rn)

)q(0)} 1
q(0)

≤C‖ f ‖
K̇α(·)

p(·),q(·)(R
n)

.

To estimate 2kα∞ TΩ,β( f χRn\Bk+2
) in `

q∞
> -norm, we have the same estimate (3.4), with 2kα∞

in place of 2kα(0). We write

‖2kα∞ TΩ,β( f χRn\Bk+2
)χk‖Lp∗(·)(Rn) ≤ C

∞

∑
j=k+3

2(k−j)(α−+ n
p−
−β)‖2jα(·) f χj‖Lp(·)(Rn).
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This together with Lemma 2.4 yields the desired inequality

{ ∞

∑
k=0

∥∥∥∥2kα∞ TΩ,β( f χRn\Bk+2
)χk

∥∥∥∥q∞

Lp∗(·)(Rn)

} 1
q∞

≤C
{ ∞

∑
k=0

( ∞

∑
j=k+3

2(k−j)(α−+ n
p+
−β)‖2jα(·) f χj‖Lp(·)(Rn)

)q∞} 1
q∞

≤C‖ f ‖
K̇α(·)

p(·),q(·)(R
n)

.

The proof of Theorem 3.2 is completed.
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