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Abstract. Deformable microcapsules are widely used in industries and also serve as a
mechanical model of living biological cells. In this study, we develop a novel method,
by integrating a deep convolutional neural network (DCNN) with high-fidelity mech-
anistic capsule modelling, to identify the membrane constitutive law and estimate as-
sociated parameters of a microcapsule from its steady deformed profile in a capillary
tube. Compared with conventional inverse methods, the present approach is more
accurate and can increase the prediction throughput rate by a few orders of magni-
tude. It can process capsules with large deformation in inertial flows. Furthermore,
the method can predict the capsule membrane shear elasticity, area dilatation modulus
and initial inflation from a single steady capsule profile. We explore the mechanism
that the DCNN makes decisions by considering its feature maps, and discuss their
potential implication on the development of inverse methods. The present method
provides a promising tool which may enable high-throughput mechanical characteri-
sation of microcapsules and biological cells in microfluidic flows.

AMS subject classifications: 92C10, 76Z99
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1 Introduction

A capsule consists of a liquid droplet enclosed by a thin elastic membrane [1]. Micro-
capsules are widely used in food, cosmetic, biomedical and pharmaceutical industries
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in a vast range of applications such as controlled agent release [2], targeted drug deliv-
ery [3], and encapsulated cell culture [4]. The capsule membrane protects its internal
contents and regulates mass exchange, therefore knowing its mechanical properties is
crucial in the design and fabrication of capsules. Microcapsules have also been widely
used as a mechanical model of living biological cells [5–7]. The capsule elasticity, inferred
from overall cell deformation, can be employed as a marker-free way to quantify the cell
states and properties, such as the metastatic potential and degree of differentiation [8]. It
therefore has many ground-breaking biological and clinical applications [9, 10].

It has been very challenging to characterise the mechanical properties of microcap-
sules and biological cells due to their small size and fragility. A few methods have been
proposed, such as the parallel plate squeezing [11], micropipette aspiration [12], optical
stretching [13] and AFM measurement [14]. It is also possible to deform capsules us-
ing viscous fluid force that can be generated in shear [15, 16], centrifugal [17, 18], and
extensional [19, 20] flows. Those methods measure the deformation of capsules or cells
under well-defined stress. Their throughput rates are typically limited to 100 capsules
or cells per hour, which may be low for many important applications, such as cancer di-
agnosis or cell sorting based on cell mechanical properties. Those applications need to
measure many thousands to millions of cells in minutes to hours, and therefore require
high-throughput methods capable of processing at least hundreds of cells per second [21].

In recent years, a novel hydrodynamic approach with a much higher throughput rate
has been proposed. In this method, microcapsules or biological cells are flowed through
a microfluidic channel with comparable cross-sectional dimension, where they are de-
formed by the viscous fluid force. By fitting the steady deformed capsule profile to com-
putational or theoretical predictions, one can inversely infer the membrane mechanical
law and associated parameters. This promising approach has been developed for both
artificial microcapsules [22–24] and living biological cells [6, 8, 9, 25, 26]. The state-of-the-
art system can perform real-time processing of the deformation of hundreds of cells per
second. However, the cell mechanical properties need to be calculated through post-
processing, due to the long processing time of inverse methods.

Recently, deep neural networks have attracted much attention in a wide range of
applications, for it provides a versatile method to infer the relationship between data
and their corresponding measurements. In particular, the convolutional neural networks
have significant merits in processing data that comes in the form of images [27], and have
led to ground-breaking applications in image processing [28], classification of cells [29],
geometrical optimization of aerofoils [30], and turbulence research [31–33].

In the present study, we for the first time integrate a deep convolutional neural net-
work (DCNN) with high fidelity mechanistic modelling to create a novel approach to
identify the membrane constitutive law and estimate associated parameters of a micro-
capsule from its steady deformed profile when flowing in a capillary tube. Unlike con-
ventional inverse methods which need to identify the best fit online, the present DCNN
is trained offline, and its prediction process only involves a limited number of algebraic
calculations. It is therefore much faster and can predict the properties of more than one
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thousand capsules per second. We also demonstrate that the present method is more
accurate and has fewer restrictions.

2 Problem statement

We consider an initially spherical capsule of radius a suspended in a Newtonian fluid
flowing in a tube of radius R. The capsule is enclosed by a hyper-elastic membrane which
is described by either the strain-softening neo-Hookean (NH) law [34] or the strain-
hardening Skalak’s (SK) law [35]. The NH law assumes that the membrane is an infinitely
thin sheet of a three-dimensional isotropic volume-incompressible material

WNH =
1
2

Gs

(
I1−1+

1
I2+1

)
, (2.1)

where W is the strain energy density per unit undeformed surface area, Gs is the mem-
brane shear elasticity modulus, I1 and I2 are the first and second strain invariants of the
surface deformation. The SK law is designed for biological cells and assumes a strain
energy function
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where the dimensionless parameter C measures the resistance to membrane area dilata-
tion. It indicates the strength of the strain-hardening nature of the SK membrane. In
the limitation of small capsule deformation, the membrane area dilatation modulus Ks
is related to the shear elasticity by Ks =(1+2C)Gs. For biological membranes, C is usu-
ally much larger than unity, because of their quasi area incompressibility. However, for
artificial capsules, the SK law has been found to fit experimental data well when C is
of order 1 [11]. In the present study, we set C =1 in most simulations unless otherwise
specified. The bending resistance of the capsule membrane is modelled using Helfrich’s
formulation [36,37], with a small bending rigidity to prevent the formation of membrane
wrinkles. The present model is therefore valid mainly for capsules with a thin mem-
brane, where the membrane bending has negligible effect on global deformation of the
capsules [38]. The fluids inside and outside the capsule are assumed to have identical
dynamic viscosity and density. Note that the ratio of dynamic viscosity between the flu-
ids inside and outside the capsule has no effect on the steady profile that the capsule
reaches in tube flows [39]. This is because the internal fluid is largely in solid translation
after the capsule membrane has achieved a steady shape.

Under the viscous force of the tube flow, the capsule deforms to a steady profile de-
pending on the following dimensionless parameters:

• the flow Reynolds number Re= ρU(2R)
µ , where ρ and µ represent the fluid density

and dynamic viscosity, respectively, and U is the mean velocity of the tube flow;

• the size ratio β= a
R , which compares the size of the capsule to that of the tube;
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• the capillary number Ca = µU
Gs

, which represents the ratio of viscous and elastic
forces;

• the pre-inflation ratio α = a
a0
−1, which relates the initial inflated radius a to the

radius a0 of the capsule at unstressed configuration.

3 Computational method

The present method predicts the membrane constitutive law and associated parameters
of a capsule from its steady deformed profile in tube flow. The method consists of two
parts: the first part is a mechanical approach to simulate the deformation of a capsule
in tube flow to obtain its steady shape. The present simulations have been based on an
immersed-boundary lattice Boltzmann method, which has been validated extensively for
deformation of capsules in shear and tube/channel flows [40–46]. Details of the method
can be found in pertinent literature and are not described here. The simulations results,
mainly the steady deformed capsule profile, the corresponding membrane constitutive
law and associated parameters, are then used to train a DCNN, which represents the
second part of the present method. The present DCNN is detailed below.

3.1 Structure of the DCNN

The present DCNN belongs to supervised learning. It learns functions mapping the in-
puts, which are binary images of deformed capsules, to the measurements, that are mem-
brane constitutive laws and associated parameters. The DCNN is developed using the
open-source software Tensorflow [47] with Keras Application Programming Interface
(API) [48]. Its architecture is shown in Fig. 1. There are four convolutional blocks, within

Figure 1: Architecture of the present convolutional neural network which predicts membrane mechanical prop-
erties of a microcapsule from its steady deformed profile when flowing in a capillary tube. Details of the
convolutional (C), pooling (P), fully connected (FC) and output layers are elaborated in the text.
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Figure 2: Convolution operation in the convolutional layer.

each a convolutional and a pooling layers are in sequence. These are followed by a fully-
connected layer and a few output layers. Details of the different layers are elaborated
below.

The convolutional layer consists of a number of filters, which are smaller in spatial
dimensions compared with the input image. During the convolution operation between
each filter and the input image, the filter slides through the entire image and the filter
weights make an elementwise scalar product with each small region of the image (see
Fig. 2), following [30]:

xij =(I∗w)ij =
l1−1

∑
m=0

l2−1

∑
n=0

wm,n · Ii+m,j+n, (3.1)

where I represents the input image which has l and h pixels along directions of the length
and height, respectively. The term w is the weights of the filter with a size of l1×l2. The
indexes i, j of the scalar product range from 0 to l−l1 and h−l2, respectively. The output
of the convolution operation follows:

oij =σ(xij+b), (3.2)

where b is a bias term which is independent of i and j, and σ is a nonlinear activation
function, which we have used the rectified linear unit (ReLU) function:

σ(z)=max(0,z). (3.3)

In Eq. (3.3), the output of the ReLU function is 0 when z<0. The ReLU function has been
shown to have superior ability to train DCNNs faster [49].

The pooling layer usually follows the convolutional layer and operates on the output
of the convolutional layer to reduce its dimension. In the present study, we have em-
ployed the maximum pooling operation which gives the maximum of the numbers in
the pooling kernel (see Fig. 3). The shared fully connected layer follows the pooling layer
and contains neurons that have full connections to the pooling layer.
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Figure 3: Maximum pooling operation in the pooling layer.

The present DCNN is ended with a few output layers, which can conduct multiple
classification and regression tasks. A classification output layer predicts the class (or type,
such as NH or SK) of the membrane constitutive law of a capsule. This is done through
choosing the membrane law type that has the highest probability predicted by the DCNN
from the input capsule image. The regression output layers directly predict the values of
capsule membrane shear elasticity Gs and the pre-inflation ratio α etc. Details of the
classification and regression tasks are provided in the following Section 3.2.

3.2 Training of the DCNN

The DCNN needs to be trained on a set of examples. In the present study, each example
consists of a binary image of a deformed capsule, and multiple corresponding measure-
ments such as the membrane constitutive law and associated parameters. The training
examples are obtained from numerical simulations using an immersed-boundary lattice
Boltzmann method.

During training, the internal parameters of the DCNN are adjusted to minimize a loss
function that describes how close the predictions are to the ground truth. The total loss
consists of the losses from classification and regression tasks. For classification we use
the cross-entropy loss function following [50]:

Lcls
i =−

(
ycls

i log(pi)+
(

1−ycls
i

)
log(1−pi)

)
, (3.4)

where pi represents the probability (predicted by the DCNN) that the capsule follows the
SK law, and ycls

i is the ground-truth label of the input image (ycls
i = 0 represents SK law,

ycls
i =1 represents NH law).

We use the square loss function for regression tasks:

Lreg
i =

∥∥yreg
i −yi

∥∥2
, (3.5)
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where yi represents the predicted quantity of Gs or α by the present DCNN and yreg
i is the

corresponding ground-truth. The total loss function follows:

Ltotal =
1
N

N

∑
i=1

(
Lcls

i +Lreg
i

)
, (3.6)

where N is the number of training samples.

To optimize the trainable internal parameters, we obtain the gradients of the loss func-
tion Ltotal with respect to these parameters using a backpropagation algorithm [51], and
then an optimizer using a stochastic gradient descent algorithm called ADAM [52] is ap-
plied to update the values of the parameters. Mini-batch mode training is adapted, and
exposing all training samples to the DCNN once is called an epoch. At the end of each
epoch, the DCNN is validated with a small portion (i.e., 10% in the present study) of the
training samples that have not been used during training. With the process iterates the
total loss decreases and converges towards small values (typically at the order of 10−3).
To avoid overfitting, a batch-normalization [53] and a dropout regularization [54] have
been employed in the present DCNN. The training process is terminated with predefined
early stopping criteria, when the total loss of validation shows no further improvement
over several iterations even after reducing the learning rate.

After training and validation, the DCNN is used to predict the membrane law type,
membrane shear elasticity Gs and capsule pre-inflation ratio α from the steady deformed
image of a capsule.

3.3 Choices of hyperparameters

The performance of the present DCNN is affected by its certain hyperparameters. In the
present study we conduct extensive tests to identify the optimum set of hyperparame-
ters that leads to the smallest converged total loss (defined in Eq. (3.6)) during training
and validation. Our test results (not shown) suggest that the following choices of hyper-
parameters lead to the optimum prediction accuracy of the present DCNN: the network
has four convolutional blocks, and the number of filters in each of the four convolutional
layers is 16, 32, 64, and 128, respectively. The size of filter for convolutional layers is 3× 3
with a stride of one and the same padding operation. The max-pooling kernel size is 2 ×
2 with a stride of two and the same padding operation. There is one fully connected layer
with 256 neurons. During training, the size of the mini-batch is chosen to be 32. An initial
learning rate of 0.001 is used with a learning rate scheduler, which reduces the learning
rate in steps when the total loss of validation shows no improvement over epochs. In the
dropout regularization to avoid overfitting, the dropout rate is set as 0.7.
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4 Results and discussion

4.1 Tests against simulation results

We first test the performance of the present DCNN by predicting the membrane consti-
tutive law and capillary number Ca from the cross-sectional profile of a steady deformed
capsule. The membrane shear elasticity Gs is related to Ca by Gs =µU/Ca. All the sam-
ples are obtained from numerical simulations based on an immersed-boundary lattice
Boltzmann method. The training samples consist of 200 sets of binary images (with 300
pixels in both directions), equally covering NH and SK laws, two capsule sizes β= 0.77
and 0.89, with Ca ranging from 0.001 to 0.055. The flow is in Stokes regime and the
capsule pre-inflation ratio is fixed at 3%. In this parameter space, there are high-quality
experimental results available [39], and a capsule can achieve moderate to large deforma-
tion. The testing samples are within the same parameter regime, and are not used during
training and validation. We find for all 20 testing samples, the present DCNN has cor-
rectly predicted the types of membrane constitutive laws, and this is shown in Fig. 4(a).
The predicted Ca are compared with the corresponding ground truth in Figs. 4(b) and
(c), where very good agreements can be observed. The mean absolute percentage error
(MAPE) of the predicted Ca from the corresponding ground truth calculated from the
entire testing samples is 2.1%, which suggests excellent prediction accuracy. Note that
MAPE of a parameter A is defined as:

MAPE(A)=
1
M

M

∑
i=1

∣∣∣Apre,i−Agt,i

Agt,i

∣∣∣, (4.1)

where Apre,i and Agt,i are the predicted and ground-truth values of the ith testing sam-
ple; M is the total number of testing samples. From Figs. 4(b) and (c), it is also seen that
the steady profiles of capsules with NH and SK membranes are very similar at low Ca
in small deformation regime, which is consistent with previous studies [55]; however,
with Ca increasing, a capsule with an NH membrane undergoes considerably larger de-
formation compared with a capsule with an SK membrane at the same Ca, due to the
strain-softening nature of the NH membrane. From Fig. 4(d), we can find that the MAPE
decreases with Ca, which suggests the DCNN generally performs better when the cap-
sule deformation is large.

It should be noted that the present mechanical models for flows and capsules can
readily account for inertial effect [45], which is relevant to inertial microfluidics where the
average flow speed can reach meters per second and the flow Reynolds number achieves
the order of 100 [8,26]. We conduct studies similar to those in Fig. 4 and consider a capsule
with β=0.77 at a much higher Re=40 in the inertial flow regime. In practical experiments,
for a microcapsule with a radius of 50µm suspended in water at room temperature, a flow
Reynolds number of Re=40 can be achieved with an average flow speed of 0.31m/s. This
corresponds to a pressure drop of 5.89kpa per centimeter tube length in a tube with a
radius of 65µm (β=0.77). We find that the inertial effect increases capsule deformation at
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Figure 4: Comparisons of predicted (a) membrane constitutive law and (b)-(c) capillary number Ca with the
corresponding ground truth. The membrane shear elasticity Gs is related to Ca by Gs=µU/Ca. The solid lines
are used as guides for the eyes representing perfect agreement. Parameters are Re=0.2, α=3%, β= (b) 0.77;
(c) 0.89. Insets in (b)-(c) are cross-sectional profiles of capsules with NH (blue solid) and SK (red dashed)
membrane at the corresponding Ca, which show extents of deformation. (d) MAPE of predicted Ca from the
corresponding ground truth for β=0.77 and 0.89, respectively.

the same value of Ca. However, the prediction accuracy of the present DCNN is similar
to that in Fig. 4.

The present DCNN can be conveniently extended to multiple classification and re-
gression tasks, by adding more parallel output layers. Here we demonstrate its extension
to the prediction of the capsule pre-inflation ratio α, besides the membrane constitutive
law and Ca. In experiments, capsules with polymeric membranes in microchannel flows
have been found to be slightly inflated due to the osmotic effect [22, 39]. Here we con-
sider a capsule with β= 0.77. All the samples are obtained from numerical simulations.
The training samples have been extended from those used in Fig. 4, to include additional
400 cross-sectional images of capsules with α =1%, 2%, 4% and 5%, covering both NH
and SK laws. An increase of the training sample size has resulted in a longer training
time, which is about 5 hours using a Tesla GPU (V100-16GB, 1.38GHz). The testing sam-
ples cover both membrane laws, five values of α, and five values of Ca, and consist of
2×5×5=50 images. Again the present DCNN predicts the membrane constitutive laws
of all 50 testing samples correctly; however, to save space this is not shown in a figure.
Figs. 5(a) and (b) compare the predicted capsule pre-inflation ratio and capillary number
with their corresponding ground truth for the 50 testing samples. The mean absolute
percentage error of α and Ca from their ground truth are 4.5% and 2.6%, respectively.

We also extend the DCNN used in Fig. 4 to predict the membrane dilatation param-
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Figure 5: Comparison of predicted capsule pre-inflation ratio α and capillary number Ca with the corresponding
ground truth. The solid lines are used as guides for the eyes representing perfect agreement. Parameters are
Re=0.2, β=0.77.

Figure 6: Comparison of predicted membrane dilatation parameter C (associated with the SK membrane) and
capillary number Ca with the corresponding ground truth. The solid lines are used as guides for the eyes
representing perfect agreement. Parameters are Re=0.2, α=3%, β= 0.77.

eter C of capsules with an SK membrane. The parameter is related to the membrane
area dilatation modulus by Ks =(2C+1)Gs. Note that for such capsules, both the shear
elasticity and the membrane dilatation parameter affect the capsule deformation. In pre-
vious studies multiple experiments are commonly needed to disentangle their individ-
ual contribution and infer their values. Here we consider a capsule with β= 0.77. The
training samples have been extended from those used in Fig. 4, to include additional
200 cross-sectional images of capsules enclosed by an SK membrane with the membrane
area dilatation parameter ranging from 0.2 to 1. The testing samples consist of 30 cross-
sectional images of capsules that have not been used during the training phase. These
include 25 images for capsules with an SK membrane covering five values of C and five
values of Ca, and 5 images for capsules with an NH membrane covering five values of
Ca. The present DCNN predicts the membrane constitutive laws of all 30 testing samples
correctly. Fig. 6(a) shows the comparison between the predicted C with the correspond-
ing ground truth for the 25 testing images of capsules with an SK membrane. Fig. 6(b)
compares the predicted capillary number and the corresponding ground truth for all the
30 testing samples covering both membrane laws. Good agreements can be observed
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in both figures. The MAPE of C and Ca from their ground truth are 4.3% and 2.7%, re-
spectively. The present results therefore suggest that it may be possible to reasonably
accurately predict the membrane constitutive law and estimate multiple associated pa-
rameters from the steady profile of a capsule with moderate/large deformation in tube
flows. We will further discuss this point in Section 4.3.

4.2 Prediction using the footprint profile of a capsule

The present method can conveniently process capsules with large deformation, where
the rear region of capsule forms a concave parachute shape (see the photo on the left
of Fig. 7(a)). For a capsule under large deformation, it becomes difficult to obtain the
cross-sectional profile because part of it hides in the shadow. In previous studies, it was
necessary to manually erase the concave region to obtain the cross-sectional shape (see
the photo in the upper row of Fig. 7(a)) [39], which may cost considerable processing
time.

To solve this problem, we test if the present DCNN can make accurate predictions
from the footprint shape of a capsule (see the image in the lower row of Fig. 7(a)). The

Figure 7: (a) Illustration of cross-section binarization and footprint binarization. Photos are taken from [39].
Comparisons of (b) prediction accuracy of membrane constitutive laws, (c) MAPE of predicted α, (d) MAPE
of predicted Ca from different methods with the same training and testing samples of Fig. 3.
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training and testing samples, using footprint profiles, are prepared from the same cases
employed in Fig. 5. The accuracy of the new method, labelled as DCNN f, is shown in
Figs. 7(b)-(d). From Fig. 7(b) it is seen that DCNN f has predicted the laws of all 50 testing
samples correctly. The mean absolute percentage errors of α and Ca from the DCNN f are
5.7% and 4.2%, respectively. These are only slightly higher than those from the DCNN
using the cross-sectional shapes of capsules (labelled as DCNN c), which contain more
geometrical information of the rear region of the capsules. Note that when Ca≤0.01, the
capsule deformation is small and its footprint profile closely resembles the cross-sectional
shape. With the ten testing samples at Ca=0.01 not included, the MAPEs of α and Ca of
the DCNN f are 5.3% and 3.9%, respectively, compared with the corresponding values of
4.3% and 2.2% of the DCNN c.

4.3 Comparison with inverse methods

We compare the prediction accuracy of the present methods with two types of conven-
tional inverse methods. The first type compares simple unique features of a deformed
capsule measured in the experiment, such as the total length and parachute depth along
the flow direction, with those from a data bank that have been obtained by numerical sim-
ulations. The membrane constitutive law and associated parameters are inferred from the
simulation result that gives the best fit [24].

The second type of inverse method is similar to the first type in that it also infers
properties from the best fit, however, the second type of method compares the entire
profile of a deformed capsule in experiment (i.e., Ce) with those obtained from numerical
simulations Cs [6]. The difference of two profiles can be quantified with a parameter,
such as the mean Hausdorff distance (MHD) [56]. The minimum MHD indicates the
best fit. To explain the MHD, let’s considers a set of m points, R= {r1,r2,r3,··· ,rm} from
Ce, and another set of n points, T= {t1,t2,t3,··· ,tn} from Cs. Assuming that the two sets
of points have the same centre of mass, the MHD h(R,T) is defined as:

h(R,T)=
1
m ∑

r∈R
min
t∈T

[d(r,t)], (4.2)

where d(r,t) is the distance from any point in R to any point in T.
Figs. 7(b)-(d) show the accuracy of the two inverse methods and the present ap-

proaches in predicting membrane constitutive laws, pre-inflation ratio and capillary num-
ber. It should be noted that the same training and testing samples used in Fig. 5 have
been employed here for all four methods. In both inverse methods, the training samples
of Fig. 5 are used as the data bank, which provides images that a testing image can be
compared with. It is not surprising to see from Fig. 7 that the present method is the most
accurate. We find that the first inverse method does not perform well when capsule de-
formation is small. There the NH and SK laws give similar predictions (see insets in Fig. 4
at low Ca) and the capsule total length is not sensitive to α and Ca. The present DCNN
learns features from the entire deformed profile of a capsule which may have contained
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Table 1: Throughput rates of different methods.

Throughput rate / Method Inverse method 1 Inverse method 2 DCNN
Image processing (image / s) 714 714 2225
Prediction (image / s) 208 0.03 1400

unique individual contribution from the membrane constitutive law and its associated
parameters. The present method is therefore closer to the second inverse method. In the
second inverse method, the cross-sectional profile of a capsule membrane has been dis-
cretized into 128 elements. In the present DCNN, both the training and testing images
have 300 pixels in both directions. The cross-sectional and footprint profiles of a capsule
membrane are covered by more than 500 pixels, which are considerably more than the
number of elements used in the second inverse method and have therefore resulted in
higher prediction accuracy. We further discuss the accuracy of the present DCNN in the
following Section 4.4.

We also compare the throughput rates of the two inverse methods and the present
DCNN in Table 1. The whole prediction process consists of two steps. The first step is
image processing where the original image of a deformed capsule is converted into a
form that can be used as an input by a prediction method. In the second step a predic-
tion method calculates the capsule membrane constitutive law and associated parameter
values. For the two types of inverse methods, image processing mainly involves edge
detection and segmentation of the cross-sectional profile of a capsule membrane into 128
equal-sized elements. This can be done conveniently using the standard subroutines in
Matlab and about 714 images can be processed within a single second using a desktop
personal computer (Intel Core i7, 4GHz). For the present DCNN, image processing is
mainly a binarization process where a capsule image is represented by 300 × 300 pixels
with value 1 inside the capsule and 0 outside (see Fig. 7(a)). A matlab subroutine can
process 2225 images per second with the same desktop computer.

Regarding the prediction throughput rate, the first inverse method is much more ef-
ficient than the second one since it only considers the total length and parachute depth
of a capsule. Similar to the second inverse method, the present DCNN considers global
deformation, however, it is quite interesting to see from Table 1 that the present DCNN
is faster than the second type of inverse method by four orders of magnitude. The much
higher throughput rate of the present method is mainly due to two reasons. First, unlike
a conventional inverse method which needs to compare a test sample with a large num-
ber of samples stored in a data bank online to find the best fit, the present DCNN has
completed training off-line before making a prediction, and the prediction process only
involves a limited number of algebraic calculations. Second, computations of DCNN are
GPU based and utilize parallel computing, which is the case for the present prediction
(GPU model: Tesla V100-16GB, 1.38GHz).

We compare the computational resources required by the two inverse methods and
the DCNN in Table 2. For tests of this section, 500 samples have been employed either
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Table 2: Computational resources required by different methods.

Computational resources / Method Inverse method 1 Inverse method 2 DCNN
CPU hours for samples generation 474,000 474,000 474,000
Size of data (megabytes) 0.03 1.97 42.93
Size of memory in prediction (megabytes) 0.19 4.23 316.33

for training of the DCNN or as a data bank in the inverse methods. It takes 474,000 CPU
hours to run the mechanical model and generate the data with a high-performance com-
puting cluster (CPU: Intel E5-2650 2.2GHz). For prediction, the data of the first and sec-
ond inverse methods are capsules lengths, and 2D coordinates of the membrane points,
respectively; while the DCNN requires 2D binary images of deformed capsules. The
complexity of the methods increases significantly, from the first inverse method to the
DCNN. Therefore both the data size and the required memory increase exponentially. It
is worth mentioning that inverse methods necessarily have many conditional statements,
which can significantly degrade the performance of parallel computing.

Note that both the DCNN and inverse methods are algorithms to predict capsule
membrane mechanical properties. They are independent of the mechanical model that
predicts the deformed profile of the capsule in the tube. The present method can deal
with capsules undergoing large deformation in inertial flows, mainly due to the versa-
tility of the present mechanical model. Cross-sectional or footprint profiles of capsules
in inertial flows can also be processed by inverse methods. However, we expect that the
accuracy and throughput rate will be similar to those presented in this section and be
lower than those of the DCNN.

4.4 Feature maps of the DCNN

It is very interesting to investigate what features of the capsule profiles have been learned
by the DCNN to make the predictions of membrane law type and parameter values.
Identifying those features not only helps to open the black box of the DCNN, but also
provides useful information for the development of physics-based inverse methods to
predict capsule properties from its deformation.

Before visualizing features learned by the DCNN, we consider the effects of mem-
brane constitutive law, capillary number Ca and pre-inflation ratio α on the steady de-
formed profiles of capsules. A few examples are shown in Fig. 8(a). In the figure in each
comparison, we have only varied a single parameter. From the comparisons, it can be
clearly seen that the steady profiles of capsules are most affected by the membrane con-
stitutive law and parameters in two regions: the rear corners (region A) and the parachute
trough (region B).

Next, we consider the feature maps of the present DCNN. In the DCNN, both the
convolutional and pooling layers use sliding filters. The outputs are known as feature
maps. They present not only the strength of the activations (or responses), but also their
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Figure 8: (a) Comparisons of the steady deformed cross-sectional profiles of capsules with different membrane
constitutive law (left, Ca=0.03, α=2%), capillary number Ca (middle, SK membrane with α=2%) and pre-
inflation ratio α (right, SK membrane with Ca=0.03). In the figures, regions A, B highlight the regions of
the capsule profiles where the membrane law and associated parameters have the most significant effects. (b)
Feature maps of some P4 filters corresponding to the steady cross-sectional profile of a capsule with the SK
law at Ca=0.03 and α=2%. Bright color denotes high activation while dark color denotes low activation.

spatial locations. Since the features learned by the high-level layer have included those
learned by layers of lower levels, here we only focus on the feature maps of some filters
of the level 4 pooling layer (i.e., P4 in Fig. 1).

Fig. 8(b) presents the feature maps of some P4 filters corresponding to the steady
deformed cross-sectional profile of a capsule with the SK law at Ca =0.03 and α =2%.
In the feature maps, the strength of activation is indicated by the local brightness. The
feature maps indicate regions of the capsule profile that the DCNN model uses to perform
predictions. When comparing the feature maps with Fig. 8(a), it is quite interesting to
find that the high response regions of the feature maps are corresponding to regions of
the capsule profile where the capsule membrane law and associated parameters have the
most significant effect. The overlaps suggest that the DCNN has successfully learned
the locations of the capsule profile that are the most sensitive to the membrane laws and
parameters. It is therefore not surprising that the present DCNN can perform accurate
predictions, even with capsules under small deformation.

The feature maps of the present DCNN also suggest that particular attention should
be paid to the parameter-sensitive regions when building high-accuracy inverse methods
to predict the mechanical properties of capsules from their steady deformed profiles in
tube flow.
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4.5 Tests against experiments

Finally, we use the same DCNN of Fig. 5 to predict the membrane constitutive law
and shear elasticity of bioartificial capsules with polymeric membrane. In the experi-
ments [39], capsules with different sizes were flowed through a tube at different flow
strength in Stokes flow regime. The tube is long enough for a capsule to deform to a
steady profile, which was captured by a CCD camera. The capsule membrane elasticity
was characterised in separated experiments by parallel plates compression [57]. In the
present study, we have concentrated on capsules with β=0.77 and 0.89, and have used the
binarized steady deformed profiles of capsules (taken from [39]) as inputs in our DCNN,
which then predicts membrane constitutive law, pre-inflation ratio and membrane shear
elasticity.

The present DCNN has predicted the membrane constitutive law as the SK law for
all cases. The predicted capsule pre-inflation ratio α ranges from 2% to 4% with a mean

Figure 9: Comparison of predicted membrane shear elasticity with those reported in experiments [39]. The
capsule is flowed through a tube at different flow strength, leading to different values of Ca. β=(a) 0.77; (b)
0.89. Photo insets are images of steady deformed capsules at the corresponding flow strength from [39].
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Figure 10: (a) Binary images of a deformed capsule with three levels of resolution: from left to right 100 × 100,
200 × 200, 300 × 300 pixels. The original image is taken from an experiment [39] at β= 0.77 and Ca= 0.052.
(b) Comparison of predicted membrane shear elasticity from images with different resolutions with experimental
measurements [39].

value of 3%. Both are consistent with a previous study use an inverse method [58]. The
predicted membrane shear elasticity Gs are presented in Fig. 9 and are compared with
experiments. Reasonably good agreements can be observed for capsules with both sizes.
Note that the experiments have measured the membrane area dilation elastic modulus
Ks, which is related to Gs by Ks =3Gs. We find that the mean values of predicted Gs only
deviate from experimental measurements by 12% and 0.5%, for capsules with β = 0.77
and 0.89, respectively. Note that in experiments the capsule profiles are not perfectly
symmetric, which may have affected the accuracy of the present prediction. One example
can be seen in Fig. 9(a) for a capsule with β=0.77 at Ca=0.052.

In experiments capsule images may have different resolutions which will affect the
performance of the present method. To test this, we consider capsule images with three
levels of resolution (illustrated in Fig. 10(a)). Note that both training and testing samples,
with various resolutions, are prepared using the same cases employed in Fig. 9. From
Fig. 10(b), it is seen that with the image resolution dropping to 100 pixels in each di-
rection, deviation of the predicted Gs from the experimental measurement has increased
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significantly. However, the sacrifice of prediction accuracy is associated with a significant
increase of prediction throughput rate, which has grown from 1400 to 3800 images per
second.

5 Conclusions

We have developed a novel approach by integrating a DCNN with mechanistic capsule
modelling to predict the mechanical properties of flowing capsules. The method consid-
ers the entire cross-sectional or footprint profile of the steady deformed capsule, and its
accuracy has been demonstrated through tests against both numerical and experimen-
tal data. A significant merit of the approach is that unlike conventional inverse meth-
ods, which need to conduct a time-consuming online process to identify the best fit, the
present DCNN is trained offline and its prediction process only involves a limited num-
ber of algebraic calculations. The present method can therefore increase the prediction
throughput rate by a few orders of magnitude and process more than one thousand cap-
sules per second. The method is flexible in that it can deal with both cross-sectional and
footprint capsule profiles with comparable high accuracy. It can also characterise cap-
sules with large deformation beyond Stokes flow regime, due to the versatility of the
present mechanical models for both capsule dynamics and fluid flows. Furthermore, the
method can predict multiple membrane parameters, such as the shear elasticity, area di-
latation modulus and initial inflation, from a single steady capsule profile.

We have also attempted to uncover the mechanism that the DCNN makes decisions
by considering its feature maps. The results suggest that the DCNN can successfully
learn geometrical features of the capsule profile that are the most sensitive to the mem-
brane law and its associated parameters. These features provide important information
to the development of high-accuracy inverse methods which predict mechanical proper-
ties of flowing capsules from their steady deformed profiles.

Our new approach provides a promising tool which may enable high-throughput
mechanistic characterisation of capsules and biological cells in microfluidic flows. How-
ever, for practical unknown capsules there may be a range of possibilities in membrane
constitutive law and associated parameters. Biological cells usually have complicated in-
ternal structures such as the cytoskeleton and nucleus. In principle the present method
can be extended to cover additional membrane constitutive laws, cell internal structures
and a much larger parametric space. For the new purposes, the mechanical model, the
DCNN architecture and its training samples will all need to be expanded.
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M. LEONETTI, Mechanical characterization of cross-linked serum albumin microcapsules, Soft Mat-
ter, 10(25) (2014), pp. 4561–4568.

[20] C. DE LOUBENS, J. DESCHAMPS, G. BOEDEC, AND M. LEONETTI, Stretching of capsules in an
elongation flow, a route to constitutive law, J. Fluid Mech., 767 (2015).

[21] E. M DARLING AND D. DI CARLO, High-throughput assessment of cellular mechanical properties,
Annu. Rev. Biomed. Eng., 17 (2015), pp. 35–62.

[22] Y. LEFEBVRE, E. LECLERC, D. BARTHÈS-BIESEL, J. WALTER, AND F. EDWARDS-LÉVY, Flow
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