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Abstract

In this paper, the unconditional error estimates are presented for the time-dependent

Navier-Stokes equations by the bilinear-constant scheme. The corresponding optimal error

estimates for the velocity and the pressure are derived unconditionally, while the previous

works require certain time-step restrictions. The analysis is based on an iterated time-

discrete system, with which the error function is split into a temporal error and a spatial

error. The τ -independent (τ is the time stepsize) error estimate between the numerical

solution and the solution of the time-discrete system is proven by a rigorous analysis,

which implies that the numerical solution in L∞-norm is bounded. Thus optimal error

estimates can be obtained in a traditional way. Numerical results are provided to confirm

the theoretical analysis.
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1. Introduction

In this paper, we pay our attention to the following time-dependent incompressible Navier-

Stokes equation in two dimensions:

ut − ν∆u + (u · ∇)u+∇p = f , (x, t) ∈ Ω× (0, T ], (1.1)

∇ · u = 0, (x, t) ∈ Ω× (0, T ], (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where Ω ⊂ R
2 is a rectangular domain with boundary ∂Ω and x = (x1, x2). u = (u1, u2)

represents the velocity vector, p the pressure, f = (f1, f2) the body force, ν = 1/Re the

viscosity coefficient and Re is the Reynolds number.

It is well known that the time-dependent incompressible Navier-Stokes equations is a very

important system in the mathematical physics and the fluid mechanics fields. In the past

several decades, a lot of efforts have been devoted to the development of efficient numerical

approximations for solving this system [1–9]. In particular, a new fully-discrete finite element
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nonlinear Galerkin method was studied to the long time integration of the Navier-Stokes equa-

tions in [5] through the spatial discretization based on two-grid finite element technique and

the time discretization based on Euler explicit scheme with variable time stepsize. However,

a certain time step constraint was required so as to obtain the boundedness and convergence

of the above method. In [6], the Lagrange-Galerkin mixed finite element approximation of the

Navier-Stokes equations was discussed and the corresponding optimal estimate was derived with

the time stepsize restriction τ = O(hσ), where σ > (n− 1)/2 and n denotes the dimensions of

the domain Ω. A suboptimal convergence rate O(h+ τ + h2/τ) was derived in [8] by a charac-

teristics type Galerkin finite element methods. The restriction could become more serious when

the problem was considered in a high-dimensional space and/or with a non-uniform mesh.

On the other hand, for the nonlinear problems, linearized (semi)-implicit schemes are more

efficient since at each time step, the schemes only require solving the linear systems. However,

the time step restriction condition of the linearized schemes arising from the error analysis

is always a crucial issue (see [10]- [14]). In addition, the L∞ boundness of the numerical

solution is an essential condition in the error analysis. Most previous works require certain

time step restrictions when the inverse inequality is used to bound the numerical solution.

Therefore, there have been some attempts to reduce the time step restriction conditions. For

example, a new approach was introduced in [15] and [16] to get unconditional stability and

optimal error estimates of a linearized backward Euler Galerkin/Galerkin-mixed finite element

methods for the time-dependent Joule heating equations and the incompressible miscible flow

in porous media, respectively. This new approach is based on a new error splitting technique by

a corresponding time-discrete system. Then, with the proved certain regularity of the solution

of the time-discrete system, it follows that

‖Un
h ‖0,∞ ≤ ‖RhU

n‖0,∞ + ‖RhU
n −Un

h ‖0,∞ ≤ C + Ch−d/2hr+1,

where Un
h is the finite element solution, Rh is the Galerkin projection, d is the dimensions of Ω

and r is the degree of piecewise polynomial. Thus, the boundedness of the numerical solution Uh

in L∞-norm can be derived without any time step restriction. Subsequently, this approach has

been applied to many other problems [17]- [22] to study the convergence or superconvergence

of the numerical schemes and to deduce the error estimates almost unconditionally (i.e., the

step sizes h, τ ≤ s0 for some small positive constant s0). Moreover, in [23], the unconditional

stability and error estimates of modified characteristics finite element methods were researched

for the time-dependent Navier-Stokes equations. However, the boundary ∂Ω of Ω should belong

to C2 due to the boundedness of numerical solutionUn
h inW 1,∞-norm used in the error analysis.

In this paper, the unconditionally optimal error estimates are investigated for the time-

dependent Navier-Stokes equations with Lipschitz boundary ∂Ω, which is weaker than that

in [23]. The spatial discretization is approximated by a low order conforming bilinear-constant

mixed finite element method [24, 25], and the time discretization is approximated by semi-

implicit Euler scheme. The analysis is based on an error splitting technique proposed in [15,16]

with a time-discrete system. More precisely, the τ -independent error estimate is first derived

for the time-discrete system, then the numerical solution in L∞-norm can be bounded in terms

of the mathematical induction and inverse inequality, which lead to the unconditionally optimal

error estimates are achieved in a routine way.

The rest of this paper is organized as follows. In section 2, we introduce some notations and

preliminaries. Moreover, we also present the linearized semi-implicit Euler Galerkin scheme

and the main results. The temporal and the spatial error estimates are established in section
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3 and section 4, respectively. In section 5, the proof of the main result is presented. Finally, in

section 6, numerical results are provided to verify the theoretical analysis.

2. Preliminaries and Main Result

We will use standard notations for the Sobolev spaces Hm(Ω), m ≥ 0 (cf. [26]) with the

norm ‖ · ‖m and seminorm | · |m. In the case m = 0, then H0(Ω) = L2(Ω), the norm and inner

product are denoted by ‖ · ‖0 and (·, ·), respectively. For any Banach space X and I = [0, T ],

let Lp(I;X) be the space of all measurable function f : I → X with the norm

‖f‖Lp(I;X) =

{

(
∫ T

0
‖f‖pXdt)

1

p , 1 ≤ p < ∞,

esssupt∈I‖f‖X, p = ∞.

a1 a2

a3a4

e

e1 e2

e3 e4

Fig. 2.1. The element e (left) and ẽ (right).

Let Th = {e} be a uniform rectangular mesh over Ω with mesh size h. For a given element

e ∈ Th, its four nodes are denoted by ai = (x1i, x2i), i = 1, 2, 3, 4 in the counterclockwise

order (see Fig. 2.1). For the velocity, we choose Vh as the general bilinear finite element space.

For the pressure, we assume that the subdivision Th is obtained from T2h = {ẽ} by dividing

each element of T2h into four small congruent rectangles. Let P
′

h consist of piecewise constant

functions with respect to Th and the local basis functions for P
′

h on a 2×2-patch of ẽ (see Fig. 2.1)

are indicated in Fig. 2.2. Then, the finite element space for pressure is defined by P
′

h ∩ L2
0(Ω).

In the following discussion we always assume that ẽ = ∪4
i=1ei ∈ T2h with ei ∈ Th (1 ≤ i ≤ 4)

(see Fig. 2.1). Thus Vh and Ph for the bilinear-constant scheme are described by (cf. [24])

Vh = {v ∈ (C(Ω))2 : v|e ∈ (Q1(e))
2, v|∂Ω = 0, e ∈ Th},

Ph =
{

p ∈ L2
0(Ω) : p|ẽ =

3
∑

i=1

λẽ
iϕ

ẽ
i ,

∑

ẽ∈T2h

λẽ
1 = 0, ẽ ∈ T2h

}

,

where Q1 denotes the space of all polynomials of degree ≤ 1 with respect to each of the two

variables x1 and x2, and

L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dx1dx2 = 0
}

.

Moreover, let 0 = t0 < t1 < · · · < tN = T be a given uniform partition of the time interval

with time step τ = T/N and tn = nτ, n = 0, 1, · · · , N . For a smooth function u defined on

[0, T ], denote

un = u(tn), Dτu
n =

un − un−1

τ
. (2.1)
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Now, we present the following linearized backward Euler fully-discrete scheme: for given

(Un−1
h , Pn−1

h ) ∈ Vh × Ph, find (Un
h , P

n
h ) ∈ Vh × Ph, such that

(DτU
n
h ,vh) + ν(∇Un

h ,∇vh) + ((Un−1
h · ∇)Un

h ,vh)

− (Pn
h ,∇ · vh) = (fn, vh), ∀vh ∈ Vh, (2.2)

(∇ ·Un
h , qh) = 0, ∀qh ∈ Ph (2.3)

with the initial approximation U0
h = Πhu0(x), in which Πh is the Lagrange interpolation

operator on Vh.

1 1

11

ϕ
ẽ
1

1 −1

−11

ϕ
ẽ
2

−1 −1

11

ϕ
ẽ
3

Fig. 2.2. Local basis functions of P
′

h.

It has been shown in [1,24] that the bilinear-constant scheme satisfies the discrete Babuška-

Brezzi condition, i.e., there exists a constant β > 0, such that

sup
06=vh∈Vh

(qh,∇ · vh)

‖vh‖1
≥ β‖qh‖0, ∀qh ∈ Ph. (2.4)

Moreover, we introduce the following Galerkin projection Rhu ∈ Vh and Qhp ∈ Ph satisfying

ν(∇(Rhu− u),∇vh)− (Qhp− p,∇ · vh) = 0, ∀vh ∈ Vh, (2.5)

(∇ · (Rhu− u), qh) = 0, ∀qh ∈ Ph. (2.6)

From [1, 27, 28], we have

‖u−Rhu‖0 + h‖∇(u−Rhu)‖0 + h‖p−Qhp‖0
≤ Ch2(‖u‖2 + ‖p‖1), u ∈ (H1

0 (Ω))
2 ∩ (H2(Ω))2, p ∈ L2

0(Ω) ∩H1(Ω) (2.7)

and

‖Rhu‖0,∞ ≤ C(‖u‖2 + ‖p‖1). (2.8)

Here, we recall some lemmas, which are necessary to the error estimates.

Lemma 2.1 (H2 regularity of the Stokes equations [1]). Assume that Ω is a convex poly-

gon in R
2 and g ∈ (L2(Ω))2, then the steady Stokes system

− ν∆v +∇q = g, x ∈ Ω,

∇ · v = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,

admits a unique solution (v, q) ∈ (H2(Ω))2×H1(Ω) with
∫

Ω qdx = 0 and there exists a constant

C independent of g such that

‖v‖2 + ‖q‖1 ≤ C‖g‖0. (2.9)
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Lemma 2.2 (Discrete Gronwall inequality [4]). Let τ , C and {an}, {bn}, {cn}, {dn} be

nonnegative numbers such that

an + τ

n
∑

i=0

bi ≤ τ

n
∑

i=0

diai + τ

n
∑

i=0

ci + C,

for given n ≥ 0. Suppose that τdi < 1 for all i. Then

an + τ

n
∑

i=0

bi ≤ exp
(

τ

n
∑

i=0

di
1− τdi

)(

τ

n
∑

i=0

ci + C
)

.

In the rest part of this paper, as [22], we assume that the solution (u, p) to the initial

boundary value problem (1.1)-(1.4) exists and satisfies

‖u0‖H2 + ‖u‖L∞(H2∩W 1,∞) + ‖ut‖L2(H2) + ‖p‖L∞(H1) + ‖pt‖L2(H1) ≤ C. (2.10)

We present our main result on error estimates in the following theorem and prove it later.

Theorem 2.1. Suppose that system (1.1)-(1.4) has a unique solution (u, p) satisfying (2.10).

Then, there exist positive constants τ0 and h0 such that when τ ≤ τ0 and h ≤ h0, the finite

element system (2.2)-(2.3) admits a unique solution (Un
h , P

n
h ), n = 1, 2, . . . , N , which satisfies

max
0≤n≤N

‖un −Un
h ‖20 ≤ C(h4 + τ2), (2.11)

max
0≤n≤N

‖∇(un −Un
h )‖20 ≤ C(h2 + τ2), (2.12)

τ

N
∑

n=1

‖pn − Pn
h ‖20 ≤ C(h2 + τ2), (2.13)

here and later, C is a positive constant independent of n, h and τ .

3. The Temporal Error Estimates

To prove the results in Theorem 2.1, we introduce the following time-discrete system (cf. [23])

DτU
n − ν∆Un + (Un−1 · ∇)Un +∇Pn = fn, (3.1)

∇ ·Un = 0, (3.2)

Un|∂Ω = 0, (3.3)

U0 = u0. (3.4)

Then, we have the following error estimates in the temporal direction.

Theorem 3.1. Suppose that system (1.1)-(1.4) has a unique solution (u, p) satisfying (2.10).

Then the system (3.1)-(3.4) also admits a unique solution (Un, Pn), n = 1, 2, . . . , N , and there

exists a positive constant τ∗ such that when τ ≤ τ∗

max
0≤n≤N

‖en‖0 + ‖∇en‖1 ≤ Cτ, (3.5)

max
0≤n≤N

‖Un‖2 + max
0≤n≤N

‖Pn‖1 ≤ C, (3.6)

τ

N
∑

n=1

‖DτU
n‖22 + τ

N
∑

n=1

‖DτP
n‖21 ≤ C. (3.7)
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Proof. Let en = un −Un, from (1.1)-(1.2), at t = tn, we have

Dτu
n − ν∆un + (un−1 · ∇)un +∇pn = fn +Rn

1 +Rn
2 , (3.8)

∇ · un = 0, (3.9)

where

Rn
1 = Dτu

n − un
t , Rn

2 = ((un−1 − un) · ∇)un

satisfying

τ

N
∑

n=0

‖Rn
1‖20 + τ

N
∑

n=0

‖Rn
2‖20 ≤ Cτ2. (3.10)

Now, we start to prove the following inequality

‖en‖2 ≤ 1 (3.11)

by mathematical induction for n = 0, 1, . . . , N .

In fact, since U0 = u0, the inequality (3.11) holds for n = 0.

We assume that (3.11) also holds for n ≤ k − 1 for some integer k > 0. Thus, we have

‖Un‖0,∞ ≤ ‖un‖0,∞ + ‖en‖0,∞
≤ ‖un‖0,∞ + C‖en‖2 ≤ C. (3.12)

For n = k, from (3.8)-(3.9) and (3.1)-(3.2), we have

Dτe
n − ν∆en +Λn +∇(pn − Pn) = Rn

1 +Rn
2 , (3.13)

∇ · en = 0, (3.14)

where Λn = (un−1 · ∇)un − (Un−1 · ∇)Un.

Multiplying (3.13) by 2τDτe
n, integrating it over Ω and noting the (3.14) give

2τ‖Dτe
n‖20 + ν(‖∇en‖20 − ‖∇en−1‖20)

≤ −(Λn, 2τDτe
n) + (Rn

1 , 2τDτe
n) + (R2, 2τDτe

n). (3.15)

Firstly, we have

Λn = (un−1 · ∇)un − (Un−1 · ∇)Un

= (en−1 · ∇)un + (Un−1 · ∇)en.

Therefore, it follows that

((en−1 · ∇)un, 2τDτe
n) ≤ Cτ‖en−1‖0,4‖∇un‖0,4‖Dτe

n‖0
≤ Cτ‖∇en−1‖0‖Dτe

n‖0
≤ Cτ‖∇en−1‖20 + ǫτ‖Dτe

n‖20,

and

((Un−1 · ∇)en, 2τDτe
n) ≤ Cτ‖Un−1‖0,∞‖∇en‖0‖Dτe

n‖0
≤ Cτ‖∇en‖20 + ǫτ‖Dτe

n‖20.



Unconditionally Estimate of Bilinear-Constant for NS Equations 133

Thus, we obtain

|(Λn, 2τDτe
n)| ≤ Cτ‖∇en‖20 + Cτ‖∇en−1‖20 + 2ǫτ‖Dτe

n‖20. (3.16)

On the other hand, we have

|(Rn
1 , 2τDτe

n)|+ |(Rn
2 , 2τDτe

n)| ≤ Cτ(‖Rn
1 ‖0 + ‖Rn

2 ‖0)‖Dτe
n‖0

≤ Cτ(‖Rn
1 ‖20 + ‖Rn

2 ‖20) + ǫτ‖Dτe
n‖20. (3.17)

Based on the above achievements, it follows that

‖∇en‖20 − ‖∇en−1‖20 + τ‖Dτe
n‖20 ≤ Cτ(‖∇en‖20 + ‖∇en−1‖20)

+ Cτ(‖Rn
1 ‖20 + ‖Rn

2 ‖20), (3.18)

which in turn produces

‖∇en‖20 + τ

n
∑

ℓ=1

‖Dτe
ℓ‖20 ≤ Cτ

n
∑

ℓ=0

‖∇eℓ‖20 + Cτ2, (3.19)

where we have used e0 = 0 and (3.10).

Then, according to Lemma 2.2, there exists a small τ1, when τ ≤ τ1 such that

‖∇en‖20 + τ

n
∑

ℓ=1

‖Dτe
ℓ‖20 ≤ Cτ2. (3.20)

By Pioncaré inequality, we have

‖en‖20 ≤ Cτ2. (3.21)

Secondly, applying Lemma 2.1 to equations (3.13) and (3.14), we arrive at

‖en‖2 + ‖pn − Pn‖1
≤ C‖Dτe

n‖0 + C‖(un−1 · ∇)un − (Un−1 · ∇)Un‖0 + C‖Rn
1‖0 + C‖Rn

2‖0
≤ C‖Dτe

n‖0 + C‖(en−1 · ∇)un‖0 + ‖(Un−1 · ∇)en‖0 + C‖Rn
1 ‖0 + C‖Rn

2 ‖0
≤ C‖Dτe

n‖0 + C‖en−1‖0,4‖∇un‖0,4 + C‖Un−1‖0,∞‖∇en‖0 + C‖Rn
1‖0 + C‖Rn

2‖0
≤ C‖Dτe

n‖0 + C‖∇en−1‖0 + C‖∇en‖0 + C‖Rn
1 ‖0 + C‖Rn

2 ‖0
≤ C‖Dτe

n‖0 + C‖Rn
1 ‖0 + C‖Rn

2 ‖0 + Cτ,

which together with (3.20) and (3.10) implies

τ
n
∑

ℓ=1

‖eℓ‖22 + τ
n
∑

ℓ=1

‖pn − Pn‖21 ≤ Cτ2. (3.22)

The above inequality also implies that, for n = k, there exists a small τ2, when τ ≤ τ2, such

that

‖en‖2 ≤ Cτ
1

2 ≤ 1. (3.23)

Thus, the mathematical induction (3.11) holds uniformly for n = 0, 1, . . . , N .
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Finally, from (3.22) and (3.23), we can see that

‖Un‖2 ≤ ‖un‖2 + ‖en‖2 ≤ C (3.24)

and

‖Pn‖1 ≤ ‖pn‖1 + ‖pn − Pn‖1 ≤ C. (3.25)

Moreover, we derive from (3.20) and (3.22) that

τ

n
∑

ℓ=1

‖DτU
ℓ‖22 ≤ Cτ

n
∑

ℓ=1

(‖Dτu
ℓ‖22 + ‖Dτe

ℓ‖22)

≤ C + Cτ−2 · τ
n
∑

ℓ=1

‖eℓ‖22 ≤ C (3.26)

and

τ

n
∑

ℓ=0

‖DτP
ℓ‖21 ≤ Cτ

(

n
∑

ℓ=0

‖Dτp
ℓ‖21 + ‖Dτ (p

ℓ − P ℓ)‖21
)

≤ C + Cτ−2 · τ
n
∑

ℓ=1

‖pℓ − P ℓ‖21 ≤ C. (3.27)

Thus the desired results are obtained by choosing τ∗ ≤ min{τ1, τ2}. The proof is complete.

4. The Spatial Error Estimates

In this section, we investigative the error estimates in spatial direction.

The weak formulation of (3.1)-(3.4) reads as:

(DτU
n,v) + ν(∇Un,∇v) + ((Un−1 · ∇)Un,v)

− (Pn,∇ · v) = (fn,v), ∀v ∈ (H1
0 (Ω))

2, (4.1)

(∇ ·Un, q) = 0, ∀q ∈ L2
0(Ω). (4.2)

Theorem 4.1. Suppose that system (1.1)-(1.4) has a unique solution (u, p) satisfying (2.10).

Then, there exist positive constants τ∗∗ and h1 such that when τ ≤ τ∗∗ and h ≤ h1, the finite

element system (2.2)-(2.3) admits a unique solution (Un
h , P

n
h ), n = 1, 2, . . . , N , which satisfies

max
0≤n≤N

‖RhU
n −Un

h ‖0 ≤ Ch2, (4.3)

max
0≤n≤N

‖Un
h ‖0,∞ ≤ C. (4.4)

Proof. For each given n, it is easy to see that (2.2)-(2.3) is a finite element system of a Stokes

type problem, thus the system has a unique solution (Un
h , P

n
h ) ∈ Vh × Ph for n = 1, 2, . . . , N .

In terms of (2.5) and (2.6), we split the error between Un and Un
h as:

Un −Un
h = Un −RhU

n +RhU
n −Un

h := Un −RhU
n + θn.

We first prove the following error estimate

‖θn‖0 ≤ C0h
2, n = 0, 1, . . . , N, (4.5)
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by mathematical induction.

In fact, for n = 0, note that U0
h = Πhu0, it is easy to see that (4.5) holds at the initial time

step.

Now, we assume that (4.5) holds for n ≤ k − 1 for some integer k > 0, then we have

‖Un
h ‖0,∞ ≤ ‖θn‖0,∞ + ‖RhU

n‖0,∞ ≤ Ch−1‖θn‖0 + C(‖Un‖2 + ‖Pn‖1) ≤ C, (4.6)

when h ≤ h1, such that CC0h1 ≤ 1.

Moreover, from (4.1)-(4.2) and (2.2)-(2.3), we have

(Dτθ
n,vh) + ν(∇θn,∇vh)− (QhP

n − Pn
h ,∇ · vh)

= −(Dτ (U
n −RhU

n),vh)− ((Un−1 · ∇)Un − (Un−1
h · ∇)Un

h ,vh), ∀vh ∈ Vh, (4.7)

(∇ · θn, qh) = 0, ∀qh ∈ Ph. (4.8)

By taking vh = 2τθn in (4.7) and qh = QhP
n − Pn

h in (4.8), we derive

‖θn‖20 − ‖θn−1‖20 + 2τν‖∇θn‖20
≤ −(Dτ (U

n −RhU
n), 2τθn)− ((Un−1 · ∇)Un − (Un−1

h · ∇)Un
h , 2τθ

n). (4.9)

Firstly, from (2.7), we can obtain

|(Dτ (U
n −RhU

n), 2τθn)| ≤ Cτ‖Dτ (U
n −RhU

n)‖0‖θn‖0
≤ Cτh2(‖DτU

n‖2 + ‖DτP
n‖1)‖θn‖0

≤ Cτh4(‖DτU
n‖22 + ‖DτP

n‖21) + ǫτ‖∇θn‖0. (4.10)

On the other hand, we have

(Un−1 · ∇)Un − (Un−1
h · ∇)Un

h

= ((Un−1 −Un−1
h ) · ∇)Un + (Un−1

h · ∇)(Un −Un
h )

= ((Un−1 −RhU
n−1) · ∇)Un + ((RhU

n−1 −Un−1
h ) · ∇)Un

+ (Un−1
h · ∇)(Un −RhU

n) + (Un−1
h · ∇)(RhU

n −Un
h )

:=

4
∑

k=1

Ak.

For A1, note that

‖U −RhU‖0 ≤ Ch2(‖U‖2 + ‖P‖1) ≤ Ch2,

we have

(A1, 2τθ
n) ≤ Cτ‖Un−1 −RhU

n−1‖0‖∇Un‖0,4‖θn‖0,4
≤ Cτh2‖∇θn‖0 ≤ Cτh4 + ǫτ‖∇θn‖20, (4.11)

and

(A2, 2τθ
n) ≤ Cτ‖RhU

n−1 −Un−1
h ‖0‖∇Un‖0,4‖θn‖0,4

≤ Cτ‖θn−1‖0‖∇θn‖0 ≤ Cτ‖θn−1‖20 + ǫτ‖∇θn‖20.
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For A3, we rewrite it as

A3 = (Un−1
h · ∇)(Un −RhU

n)

= ((Un−1
h −Un−1) · ∇)(Un −RhU

n) + (Un−1 · ∇)(Un −RhU
n)

= ((Un−1
h −RhU

n−1) · ∇)(Un −RhU
n)

+ ((RhU
n−1 −Un−1) · ∇)(Un −RhU

n)

+ (Un−1 · ∇)(Un −RhU
n) :=

3
∑

k=1

A3k.

Then, we have

(A31, 2τθ
n) ≤ Cτ‖Un−1

h −RhU
n−1‖0,4‖∇(Un −RhU

n)‖0‖θn‖0,4
≤ Cτh− 1

2 ‖θn−1‖0(h(‖Un‖2 + ‖Pn‖1))h− 1

2 ‖θn‖0
≤ Cτ‖θn−1‖0‖∇θn‖0 ≤ Cτ‖θn−1‖20 + ǫτ‖∇θn‖20, (4.12)

(A32, 2τθ
n) ≤ Cτ‖RhU

n−1 −Un−1‖0‖∇(Un −RhU
n)‖0‖θn‖0,∞

≤ Cτ(h2(‖Un−1‖2 + ‖Pn−1‖1))(h(‖Un‖2 + ‖Pn‖1))(h−1‖θn‖0)
≤ Cτh2‖∇θn‖0 ≤ Cτh4 + ǫτ‖∇θn‖20. (4.13)

In addition, by applying Green’s formula
∫

Ω

(u · ∇)w · vdx = −
∫

Ω

(∇ · u)w · vdx−
∫

Ω

(u · ∇)v ·wdx+

∫

∂Ω

(u · n)(w · v)ds,

we have

(A33, 2τθ
n) = −2τ((Un−1 · ∇)θn,Un −RhU

n)

≤ Cτ‖Un−1‖0,∞‖∇θn‖0‖Un −RhU
n‖0

≤ Cτh2‖∇θn‖0 ≤ Cτh4 + ǫτ‖∇θn‖20. (4.14)

Hence

(A3, 2τθ
n) ≤ Cτ‖θn−1‖20 + Cτh4 + ǫτ‖∇θn‖20. (4.15)

For A4, by (4.6), we have

(A4, 2τθ
n) ≤ Cτ‖Un−1

h ‖0,∞‖∇θn‖0‖θn‖0 ≤ Cτ‖θn‖20 + ǫτ‖θn‖20. (4.16)

Based on the above estimates, we have

‖θn‖20 − ‖θn−1‖20 + 2τν‖∇θn‖20
≤ Cτh4 + Cτh4(‖DτU

n‖22 + ‖DτP
n‖21) + Cτ(‖θn‖20 + ‖θn−1‖20) + ǫτ‖∇θn‖20. (4.17)

Then, summing the above inequality up leads to

‖θn‖20 + τν
n
∑

ℓ=1

‖∇θℓ‖20 ≤ Cτ
n
∑

ℓ=0

‖θℓ‖20 + Cτh4
n
∑

ℓ=1

(‖DτU
ℓ‖22 + ‖DτP

ℓ‖21) + Ch4

≤ Cτ

n
∑

ℓ=0

‖θℓ‖20 + Ch4, (4.18)
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where we have used ‖θ0‖0 = ‖Rhu0 −U0
h‖0 ≤ ‖Rhu0 − u0‖0 + ‖u0 −Πhu0‖0 ≤ Ch2. Thanks

to Lemma 2.2, there exists a small τ3, such that

‖θn‖20 + τν

n
∑

ℓ=1

‖∇θℓ‖20 ≤ C∗h4. (4.19)

Taking C0 ≥
√
C∗, τ∗∗ ≤ min{τ∗, τ3}, h ≤ h1, we can see that for n = k

‖θn‖0 ≤ C0h
2. (4.20)

Thus, the induction (4.5) holds uniformly for n = 0, 1, . . . , N , which is the desired result (4.3).

Also, we can derive

‖Un
h ‖0,∞ ≤ ‖θn‖0,∞ + ‖RhU

n‖0,∞
≤ Ch−1‖θn‖0 + C(‖Un‖2 + ‖Pn‖1) ≤ C. (4.21)

The proof is complete.

Remark 4.1. In the above proof, ∂Ω is only required to be Lipschitz continuous, which is

indeed weaker than that of C2 in [23].

5. The Proof of the Theorem 2.1

In order to prove Theorem 2.1, we rewrite the weak formulation of (1.1)-(1.4) as:

(Dτu
n,vh) + ν(∇un,∇vh) + ((un−1 · ∇)un,vh)− (pn,∇ · vh)

= (fn,vh) + (Rn
1 ,vh) + (Rn

2 ,vh), ∀vh ∈ Vh, (5.1)

(∇ · un, qh) = 0, ∀qh ∈ Ph. (5.2)

For clarity, let

un −Un
h = un −Rhu

n +Rhu
n −Un

h =: un −Rhu
n + θn

h ,

pn − Pn
h = pn −Qhp

n +Qhp
n − Pn

h =: pn −Qhp
n + ηnh .

Thus, from (5.1)-(5.2) and (2.2)-(2.3), we obtain the error equations:

(Dτθ
n
h ,vh) + ν(∇θn

h ,∇vh)− (ηnh ,∇ · vh) = −(Dτ (u
n −Rhu

n),vh)

− ((un−1 · ∇)un − (Un−1
h · ∇)Un

h ,vh) + (Rn
1 ,vh) + (Rn

2 ,vh), (5.3)

(∇ · θn
h , qh) = 0. (5.4)

Firstly, we give the error estimate of θn
h in L2-norm. To do this, by taking vh = θn

h in (5.3)

and qh = ηnh in (5.4) results in

1

2τ
(‖θn

h‖20 − ‖θn−1
h ‖20) + ν‖∇θn

h‖20
≤− (Dτ (u

n −Rhu
n), θn

h)− ((un−1 · ∇)un − (Un−1
h · ∇)Un

h , θ
n
h)

+ (Rn
1 , θ

n
h) + (Rn

2 , θ
n
h). (5.5)
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Then, by (2.7) and Cauchy-Schwarz inequality, we have

|(Dτ (u
n −Rhu

n), θn
h)| ≤ ‖Dτ (u

n −Rhu
n)‖0‖θn

h‖0
≤ Ch2(‖Dτu

n‖2 + ‖Dτp
n‖1)‖θn

h‖0
≤ Ch4(‖Dτu

n‖22 ++‖Dτp
n‖21) + C‖θn

h‖20, (5.6)

|(Rn
1 , θ

n
h)|+ |(Rn

2 , θ
n
h)| ≤ C(‖Rn

1 ‖0 + ‖Rn
2‖0)‖θn

h‖0
≤ C(‖Rn

1 ‖20 + ‖Rn
2‖20) + C‖θn

h‖20. (5.7)

Moreover, it follows that

(un−1 · ∇)un − (Un−1
h · ∇)Un

h

= ((un−1 −Un−1
h ) · ∇)un + (Un−1

h · ∇)(un −Un
h )

= ((un−1 −Rhu
n−1) · ∇)un + ((Rhu

n−1 −Un−1
h ) · ∇)un

+ ((Un−1
h −Rhu

n−1) · ∇)(un −Rhu
n)

+ ((Rhu
n−1 − un−1) · ∇)(un −Rhu

n)

+ (un−1 · ∇)(un −Rhu
n) + (Un−1

h · ∇)(Rhu
n −Un

h )

:=

6
∑

k=1

Bk. (5.8)

With the similar arguments as Ai (i = 1 ∼ 4), we have

(B1, θ
n
h) ≤ C‖un−1 −Rhu

n−1‖0‖∇un‖0,∞‖θn
h‖0

≤ Ch2(‖un−1‖2 + ‖pn−1‖1)‖θn
h‖0 ≤ Ch4 + C‖θn

h‖20, (5.9)

(B2, θ
n
h) ≤ C‖Rhu

n−1 −Un−1
h ‖0‖∇un‖0,∞‖θn

h‖0
≤ C‖θn−1

h ‖0‖θn
h‖0 ≤ C‖θn−1

h ‖20 + C‖θn
h‖20, (5.10)

(B3, θ
n
h) ≤ ‖Un−1

h −Rhu
n−1‖0‖∇(un −Rhu

n)‖0,2‖θn
h‖0,∞

≤ C‖θn−1
h ‖0(h(‖un‖2 + ‖pn‖1))(h−1‖θn

h‖0)
≤ C‖θn−1

h ‖20 + C‖θn
h‖0, (5.11)

(B4, θ
n
h) ≤ C‖un−1 −Rhu

n−1‖0‖∇(un −Rhu
n)‖0‖θn

h‖0,∞
≤ Ch2(‖un−1‖2 + ‖pn−1‖1)(h(‖un‖2 + ‖pn‖1))(h−1‖θn

h‖0)
≤ Ch4 + C‖θn

h‖20, (5.12)

(B6, θ
n
h) ≤ ‖Un−1

h ‖0,∞‖∇(Rhu
n −Un

h )‖0‖θn
h‖0

≤ C‖∇θn
h‖0‖θn

h‖0 ≤ C‖θn
h‖20 + ǫν‖∇θn

h‖20, (5.13)

and by applying Green’s formula, we have

(B5, θ
n
h) = ((un−1 · ∇)(un −Rhu

n), θn
h)) = −((un−1∇)θn

h ,u
n −Rhu

n)

≤ ‖un−1‖0,∞‖∇θn
h‖0‖un −Rhu

n‖0
≤ Ch2(‖un‖2 + ‖pn‖2)‖∇θn

h‖0 ≤ Ch4 + ǫν‖∇θn
h‖20. (5.14)
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Based on the above estimates, we have

‖θn
h‖20 − ‖θn−1

h ‖20 + ντ‖∇θn
h‖20 ≤ Cτh4 + Cτh4(‖Dτu

n‖22 + ‖Dτp
n‖21)

+ Cτ(‖θn
h‖20 + ‖θn−1

h ‖20) + Cτ(‖Rn
1 ‖20 + ‖Rn

2‖20). (5.15)

Summing up the above inequality leads to

‖θn
h‖20 + ντ

n
∑

ℓ=0

‖∇θℓ
h‖20

≤ Ch4 + Ch4τ

n
∑

ℓ=1

(‖Dτu
n‖22 + ‖Dτp

n‖21) + Cτ

n
∑

ℓ=0

‖θℓ
h‖20 + Cτ

n
∑

ℓ=1

(‖Rn
1 ‖20 + ‖Rn

2 ‖20)

≤ Cτ
n
∑

ℓ=0

‖θℓ
h‖20 + C(h4 + τ2), (5.16)

where we have used ‖θ0
h‖0 = ‖Rhu0 −Πhu0‖0 ≤ Ch2‖u0‖2.

Thus, thanks to Lemma 2.2, there exist a small τ4, when τ ≤ τ4, such that

‖θn
h‖20 + ντ

n
∑

ℓ=0

‖∇θℓ
h‖20 ≤ C(h4 + τ2). (5.17)

Secondly, we focus on the error estimate of ‖∇θn
h‖0. To do this, by taking vh = 2τDτθ

n
h in

(5.3) and qh = ηnh in (5.4), we arrive at

2τ‖Dτθ
n
h‖20 + ν(‖∇θn

h‖20 − ‖∇θn−1
h ‖20)

≤− (Dτ (u
n −Rhu

n), 2τDτθ
n
h)− ((un−1 · ∇)un − (Un−1

h · ∇)Un−1
h , 2τDτθ

n
h)

+ (Rn
1 , 2τDτθ

n
h) + (Rn

2 , 2τDτθ
n
h). (5.18)

It is easy to see that

(Dτ (u
n −Rhu

n), 2τDτθ
n
h) ≤ Cτ‖Dτ (u

n −Rhu
n)‖0‖Dτθ

n
h‖0

≤ Cτh(‖Dτu
n‖2 + ‖Dτp

n‖1)‖Dτθ
n
h‖0

≤ Cτh2(‖Dτu
n‖22 + ‖Dτp

n‖21) + ǫτ‖Dτθ
n
h‖20 (5.19)

and

(Rn
1 , 2τDτθ

n
h) + (Rn

2 , 2τDτθ
n
h) ≤ Cτ(‖Rn

1 ‖0 + ‖Rn
2‖0)‖Dτθ

n
h‖0

≤ Cτ(‖Rn
1 ‖20 + ‖Rn

2‖20) + ǫτ‖Dτθ
n
h‖20. (5.20)

Moreover, we have

(B1, 2τDτθ
n
h) ≤ Cτ‖un−1 −Rhu

n−1‖0‖∇un‖0,∞‖Dτθ
n
h‖0

≤ Cτh(‖un−1‖2 + ‖pn−1‖1)‖Dτθ
n
h‖0 ≤ Cτh2 + ǫτ‖Dτθ

n
h‖20, (5.21)

(B2, 2τDτθ
n
h) ≤ Cτ‖Rhu

n−1 −Un−1
h ‖0‖∇un‖0,∞‖Dτθ

n
h‖0

≤ Cτ‖∇θn
h‖0‖Dτθ

n
h‖0 ≤ Cτ‖∇θn

h‖20 + ǫτ‖Dτθ
n
h‖20, (5.22)

(B3, 2τDτθ
n
h) ≤ Cτ‖Un−1

h −Rhu
n−1‖0‖∇(un −Rhu

n)‖0‖Dτθ
n
h‖0,∞

≤ Cτ‖θn−1
h ‖0(h(‖un‖2 + ‖pn‖1))(h−1‖Dτθ

n
h‖0)

≤ Cτ‖∇θn−1
h ‖0‖Dτθ

n
h‖0 ≤ Cτ‖∇θn−1

h ‖20 + ǫτ‖Dτθ
n
h‖20, (5.23)
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(B4, 2τDτθ
n
h) ≤ Cτ‖Rhu

n−1 − un−1‖0‖∇(un −Rhu
n)‖0‖Dτθ

n
h‖0,∞

≤ Cτ(h2(‖un−1‖2 + ‖pn−1‖1))(h(‖un‖2 + ‖pn‖1))(h−1‖Dτθ
n
h‖0)

≤ Cτh‖Dτθ
n
h‖0 ≤ Cτh2 + ǫτ‖Dτθ

n
h‖20, (5.24)

(B5, 2τDτθ
n
h) ≤ Cτ‖un−1‖0,∞‖∇(un −Rhu

n)‖0‖Dτθ
n
h‖0

≤ Cτ(h(‖un‖2 + ‖pn‖1))‖Dτθ
n
h‖0

≤ Cτh‖Dτθ
n
h‖0 ≤ Cτh2 + ǫτ‖Dτθ

n
h‖20, (5.25)

(B6, 2τDτθ
n
h) ≤ Cτ‖Un−1

h ‖0,∞‖∇(Rhu
n −Un

h )‖0‖Dτθ
n
h‖0

≤ Cτ‖∇θn
h‖0‖Dτθ

n
h‖0 ≤ Cτ‖∇θn

h‖20 + ǫτ‖Dτθ
n
h‖20. (5.26)

Based on the above estimates, we deduce

‖∇θn
h‖20 − ‖∇θn−1

h ‖20 + τ‖Dτθ
n
h‖20 ≤Cτh2 + Cτh2(‖Dτu

n‖22 + ‖Dτp
n‖21)

+ Cτ(‖∇θn
h‖20 + ‖∇θn−1

h ‖20) + Cτ(‖Rn
1 ‖20 + ‖Rn

2‖20).

Summing up the above inequality leads to

‖∇θn
h‖20 + τ

n
∑

ℓ=1

‖Dτθ
ℓ
h‖20 ≤ Ch2 + Ch2τ

n
∑

ℓ=1

(‖Dτu
n‖22 + ‖Dτp

n‖21)

+ Cτ

n
∑

ℓ=0

‖∇θℓ
h‖20 + Cτ

n
∑

ℓ=1

(‖Rn
1 ‖20 + ‖Rn

2‖20)

≤ Cτ
n
∑

ℓ=0

‖∇θℓ
h‖20 + C(h2 + τ2). (5.27)

According to Lemma 2.2, there exists a small τ5, whenτ ≤ τ5, such that

‖∇θn
h‖20 + τ

n
∑

ℓ=1

‖Dτθ
ℓ
h‖20 ≤ C(h2 + τ2). (5.28)

Finally, we present the error estimate of ‖ηnh‖0. To do this, rewrite (5.3) by

(ηnh ,∇ · vh) = −(Dτθ
n
h ,vh)− ν(∇θn

h ,vh) + (Dτ (u
n −Rhu

n),vh)

+ ((un−1 · ∇)un − (Un−1
h · ∇)Un

h ,vh)− (Rn
1 ,vh)− (Rn

2 ,vh).

Then, we can see that

(ηnh ,∇ · vh) ≤ C(‖Dτθ
n
h‖0 + ‖∇θn

h‖0 + ‖Dτ (u
n −Rhu

n)‖0
+ ‖(un−1 · ∇)un − (Un−1

h · ∇)Un
h ‖0 + ‖Rn

1‖0 + ‖Rn
2 ‖0)‖∇vh‖0.

By using discrete LBB condition (2.4) and the estimates obtained above, we get

‖ηnh‖0 ≤ C sup
06=vh∈Vh

(ηnh ,∇ · vh)

‖∇vh‖0
≤ C(‖Dτθ

n
h‖0 + ‖∇θn

h‖0 + ‖Dτ (u
n −Rhu

n)‖0
+ ‖(un−1 · ∇)un − (Un−1

h · ∇)Un
h ‖0 + ‖Rn

1‖0 + ‖Rn
2 ‖0)

≤ C(‖Dτθ
n
h‖0 + ‖Rn

1‖0 + ‖Rn
2 ‖0 + h+ τ), (5.29)
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by (5.27) and (3.10), it follows that

τ

N
∑

ℓ=1

‖ηnh‖20 ≤ C

(

τ

N
∑

ℓ=1

‖Dτθ
ℓ
h‖20 + τ

N
∑

ℓ=0

(‖Rn
1‖20 + ‖Rn

2 ‖20) + h2 + τ2
)

≤ C(h2 + τ2). (5.30)

Taking τ0 = min{τ∗∗, τ4, τ5} and h0 ≤ h1, the proof of Theorem 2.1 is complete by the (2.7)

and triangle inequality.

6. Numerical Results

In this section, some numerical results are provided to confirm the theoretical analysis. The

final time is set T = 1.0 in all computations and the domain Ω = (0, 1)2. A regular triangulation

with M + 1 nodes in both horizontal and vertical directions is made for the domain Ω.

Example 6.1. The viscosity coefficient ν = 1, the boundary/initial conditions and the source

term f are chosen according to the exact solutions

u1 = −e−2t sin2(πx1) sin(πx2) cos(πx2), u2 = e−2t sin(πx1) cos(πx1) sin
2(πx2),

p = e−4t sin(πx1) cos(πx2).

In order to demonstrate the error estimates in Theorems 2.1, we choose τ = O(h2) and

present the numerical results with respect to t = 0.2, 0.6, 1.0 in Tables 6.1-6.3, respectively.

It can been see that the convergence rates for the velocity u are in good agreement with the

theoretical analysis. The convergence rates for the pressure p in L∞×L2-norm are also included

in Tables 6.1-6.3, although the theoretical analysis was given only in the L2 × L2-norm. For

clarity, we also present the graphics of exact solutions and numerical solutions Figs. 6.1-6.3 at

Table 6.1: The numerical errors at t = 0.2 of Example 6.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 8.4849e-03 2.6682e-03 5.1766e-04 1.6655e-04

Rate / 1.6690 2.3658 1.6360

‖un −U
n

h ‖1 3.3903e-01 1.6877e-01 8.4426e-02 4.2201e-02

Rate / 1.0063 0.99933 1.0004

‖pn − Pn

h ‖0 4.6940e-02 1.9257e-02 9.2024e-03 4.5227e-03

Rate / 1.2854 1.0653 1.0248

Table 6.2: The numerical errors at t = 0.6 of Example 6.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 4.4365e-03 1.0105e-03 2.7426e-04 6.2876e-05

Rate / 2.1343 1.8815 2.1250

‖un −U
n

h ‖1 1.5172e-01 7.5884e-02 3.7925e-02 1.8963e-02

Rate / 0.99955 1.0007 0.99997

‖pn − Pn

h ‖0 1.3955e-02 4.7630e-03 1.9727e-03 9.2927e-04

Rate / 1.5509 1.2717 1.0860
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Table 6.3: The numerical errors at t = 1.0 of Example 6.1.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 2.3455e-03 5.8688e-04 1.4674e-04 3.6687e-05

Rate / 1.9988 1.9998 1.9999

‖un −U
n

h ‖1 6.8101e-02 3.4073e-02 1.7040e-02 8.5202e-03

Rate / 0.99903 0.99975 0.99994

‖pn − Pn

h ‖0 5.4383e-03 1.5399e-03 5.0090e-04 2.0240e-04

Rate / 1.8203 1.6202 1.3073

(a) |un|. (b) |Un

h
|.

Fig. 6.1. The graphics at t = 1.0 on mesh 64× 64 of Example 6.1.

(a) The vector field of un. (b) The vector field of Un

h
.

Fig. 6.2. The graphics at t = 1.0 on mesh 64× 64 of Example 6.1.

t = 1.0. These also indicate that the numerical results are in accordance with the theoretical

analysis.

On the other hand, to show the unconditional convergence of the linearized Euler scheme

(2.2)-(2.3), we use different time steps τ = 0.1, 0.05, 0.01 on gradually refined meshes M =

10i, i = 1, . . . , 8 at t = 1.0. The L2-norm, H1-norm for the velocity and L2-norm for the

pressure are given in Fig. 6.4. It is easy to see that the scheme is stable for large time steps,

which indicate that the time step restriction is not necessary.
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(a) Exact solution pn. (b) Numerical solution Pn

h
.

Fig. 6.3. The graphics at t = 1.0 on mesh 64× 64 of Example 6.1.
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(a) L2-norm of u.
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(b) H1-norm of u.
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(c) L2-norm of p.

Fig. 6.4. The error of different time-steps.

Example 6.2. The viscosity coefficient ν = 0.01, the boundary/initial conditions and the

source term f are chosen according to the exact solutions

u1 = e−t(x4
1 − 2x3

1 + x2
1)(4x

3
2 − 6x2

2 + 2x2),

u2 = −e−t(x4
2 − 2x3

2 + x2
2)(4x

3
1 − 6x2

1 + 2x1),

p = 10e−t(2x1 − 1)(2x2 − 1).

We present the numerical results with respect to t = 0.2, 0.6, 1.0 in Tables 6.4-6.6, respectively.

It can been seen from Tables 6.4-6.6 that the numerical results are in accordance with the

theoretical analysis. For clarity, we also present the graphics of exact solutions and numerical

solutions at t = 1.0 in Figs. 6.5-6.7, respectively. Moreover, we use different time steps τ =

Table 6.4: The numerical errors at t = 0.2 of Example 6.2.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 5.3019e-04 1.4750e-04 3.4029e-05 9.2819e-06

Rate / 1.8458 2.1159 1.8743

‖un −U
n

h ‖1 1.2641e-02 6.3238e-03 3.1586e-03 1.5793e-03

Rate / 0.99925 1.0015 1.0000

‖pn − Pn

h ‖0 4.9843e-01 2.4311e-01 1.2086e-01 6.0335e-02

Rate / 1.0358 1.0082 1.0023
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Table 6.5: The numerical errors at t = 0.6 of Example 6.2.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 4.6361e-04 1.1624e-04 2.9987e-05 7.3266e-06

Rate / 1.9958 1.9547 2.0331

‖un −U
n

h ‖1 8.5993e-03 4.2505e-03 2.1195e-03 1.0588e-03

Rate / 1.0166 1.0039 1.0013

‖pn − Pn

h ‖0 3.3353e-01 1.6301e-01 8.1008e-02 4.0444e-02

Rate / 1.0329 1.0088 1.0021

Table 6.6: The numerical errors at t = 1.0 of Example 6.2.

M ×M 8× 8 16× 16 32× 32 64× 64

‖un −U
n

h ‖0 3.9818e-04 1.0275e-04 2.5888e-05 6.4845e-06

Rate / 1.9543 1.9888 1.9972

‖un −U
n

h ‖1 5.9408e-03 2.8750e-03 1.4238e-03 7.1016e-04

Rate / 1.0471 1.0138 1.0036

‖pn − Pn

h ‖0 2.2345e-01 1.0923e-01 5.4300e-02 2.7110e-02

Rate / 1.0325 1.0084 1.0021

(a) |un| (b) |Un

h
|

Fig. 6.5. The graphics at t = 1.0 on mesh 64× 64 of Example 6.2.

(a) The vector field of un (b) The vector field of Un

h

Fig. 6.6. The graphics at t = 1.0 on mesh 64× 64 of Example 6.2.
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(a) Exact solution pn (b) Numerical solution Pn

h

Fig. 6.7. The graphics at t = 1.0 on mesh 64× 64 of Example 6.2.

10
2

10
3

10
4

10
−2.53964

10
−2.53963

10
−2.53962

10
−2.53961

10
−2.5396

10
−2.53959

Number of Elements

L
2
-n
o
r
m

o
f
u

 

 

τ=0.1
τ=0.05
τ=0.01

(a) L2-norm of u.
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(b) H1-norm of u.
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Fig. 6.8. The error of different time-steps.

0.1, 0.05, 0.01 on gradually refined meshes M = 10i, i = 1, 2, . . . , 8 at t = 1.0 to demonstrate

the unconditional stability of the linearized Euler scheme (2.2)-(2.3) and graph the results in

Fig. 6.8.
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