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Abstract. Few studies focus on the application of functional data to the field of
design-based survey sampling. In this paper, the scalar-on-function regression
model-assisted method is proposed to estimate the finite population means
with auxiliary functional data information. The functional principal compo-
nent method is used for the estimation of functional linear regression model.
Our proposed functional linear regression model-assisted (FLR-assisted) es-
timator is asymptotically design-unbiased, consistent under mild conditions.
Simulation experiments and real data analysis show that the FLR-assisted esti-
mators are more efficient than the Horvitz-Thompson estimators under differ-
ent sampling designs.
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1 Introduction

In survey sampling, the auxiliary information is often available for all units of
the finite population of interest, which can be used to improve the precision of
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estimators. Särndal et al. [20] provided a fundamental framework for the esti-
mation of finite population means with the help of auxiliary information, which
assumes a superpopulation model to describe the relationship between the aux-
iliary variable and the study variable. It was called the model-assisted method.
While in [19], a linear regression model was assumed to be the superpopulation
model, which obtained improved estimators with the aid of auxiliary variables.
Following this idea, many researchers use the model-assisted method to construct
estimators based on the entire finite population and sampling design under some
predefined superpopulation models. For example, Breidt and Opsomer [5] pro-
posed a nonparametric model-assisted estimator based on local polynomial re-
gression. Zhang et al. [22] considered a similar problem from the perspective of
semi-supervised learning, which is a particular case of Robinson and Särndal [19]
when the sampling design was assumed to be simple random sampling. By a ge-
ographically weighted regression model-assisted method, Liu et al. [16] proposed
to estimate the finite population totals using survey data with the aid of a spa-
tially varying coefficient model. To reduce the variance of the estimated treatment
effect, Bloniarz et al. [3] studied the Lasso-adjusted average treatment effect (ATE)
estimate under the Neyman-Rubin model for randomization by adjusting for co-
variates. Other researches on model-assisted estimators based on nonparametric
and semiparametric models can be seen in Breidt and Opsomer [6] and references
therein.

All the model-assisted estimators mentioned above are considered with the
superpopulation model where auxiliary variable is assumed to be a scalar or
a vector. Under the framework of experimental design, the problem of design
choice in function-on-scalar regression was studied by Cuevas et al. [9] whose
consideration is more complicate than in the ordinary finite-dimensional regres-
sion. Following this functional framework, Cardot et al. [7, 8] developed model-
assisted approaches, which enable to use auxiliary vector data. When dealing
with the whole functional sample in Big Data, Aaron et al. [1] studied how to
combine estimators from different subsamples by the popular method of “divide
and conquer”.

From the perspective of survey sampling, few researches have considered
the model-assisted estimation of population totals or means in which the aux-
iliary variable is functional data through scalar-on-function regression. In fact,
recent technology with practical applications can generate an increasing amount
of functional data of which each observation represents a curve or a function
instead of a scalar or multivariate vector. Functional data analysis (FDA) has
gained increasing attention in modern data analysis due to the advances in data
recording techniques. FDA is of paramount importance in the field of modern
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data analysis, and a lot of monographs emerge, see Ramsay and Silverman [17],
Hsing and Eubank [12], Kokoszka and Reimherr [14]. Functional data analysis
deals with the analysis and theory of data that are in the form of functions. The
atom of functional data is a function, a curve or an image instead of a scalar or
multivariate vector. In this paper, the population curve {X(t) :t∈ I} is considered
as a square integrable stochastic process on a closed interval I. We observe X(tj)
on a dense and regular grid {tj ∈ I}.

Motivated by a range of applications, functional data becomes more and more
common in supervised learning. Researchers are increasingly focusing on re-
lating functional variables to other variables of interest, that is, the regression
model. In particular, the functional linear regression model with scalar response
in which a functional random variable is used to predict a real random variable
has attracted considerable attention. In the problem of functional linear regres-
sion (FLR) we observe data

{

(X1(t),Y1),··· ,(XN(t),YN), t∈ I
}

,

where the regressors Xi(t)’s are independent realizations of a random function
X(t), and the regression scheme for responses Yi’s are modeled by

Yi =α+
∫

I
Xi(t)β(t)dt+ǫi , 1≤ i≤N. (1.1)

Here, α is a constant, denoting the intercept in the model, usually assumed or
centered to be zero. The β(t) is a true slope function on I. The ǫi’s are independent
distributed with zero mean, independent of Xi(t)’s.

Several procedures have been proposed to estimate the parameters of the
model, the functional principal component regression (FPCR) is currently the
most popular method used, see Hall and Hosseini-Nasab [11], Hall and Horowitz
[10], Reiss and Ogden [18]. To estimate the slope function, the standard FPCR
method enables to regress the response on the principal component scores linked
with the largest eigenvalues of the functional predictor covariance operator. For
more details of FPCR, see Section 2.

Model-assisted survey sampling in terms of functional data has been scarcely
investigated in contrast to finite dimension regression analysis. A known docu-
mental record can be found in Cardot et al. [7], which studies the mean curve es-
timation with auxiliary information from the large populations. In this paper, we
consider the problem of the estimate of population means of a finite population,
which is a realization of an infinite superpopulation defined with the functional
linear regression model (1.1). A design-unbiased model-assisted estimator of
the population mean is proposed based on the generalized difference estimator,
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which is called FLR-assisted estimator. More specifically, for functional auxiliary
data X(t), model (1.1) is assumed to relate the auxiliary data X(t) to the variable
of interest Y, where β(t) is an unknown coefficient function. We derive a gener-
alized regression estimator of µY :=E(Y) based on the usual Horvitz-Thompson
estimator and a corrective term that exploits the auxiliary functional data through
the functional linear regression model. An estimate β̂(t) of the slope function β(t)
is obtained through functional principal component regression (FPCR) and then
the model-assisted estimator is obtained by a plug-in method. The proposed FLR-
assisted estimator does not require a strong assumption for the response, which
enjoys robust properties in both theoretical and empirical performance.

The remainder of this paper is organized as follows. Section 2 introduces the
estimation of the FLR model based on FPCR. The proposed FLR-assisted estima-
tor and its asymptotic properties are given in Section 3. Moreover, the simulation
studies and real data analysis are shown in Section 4 and Section 5 respectively,
where we make a comparison of the average biase and average mean squared
error under different sampling designs for the Horvitz-Thompson estimator and
FLR-assisted estimator. Finally, Section 6 concludes.

2 Brief description of FPCR

In this section, we present how to estimate the parameters of the functional linear
regression model based on the method of functional principal component regres-
sion (FPCR). Assume that random function {X(t) : t∈ I} in model (1.1) has mean
function E[X(t)]=µX (t) and covariance function cov(X(t),X(s))=Σ(t,s),s,t∈ I.
Suppose the covariance function is positive definite, in which case it admits es-
sentially a spectral decomposition, that is,

Σ(t,s)=
∞

∑
k=1

λkψk(t)ψk(s), s,t∈ I, (2.1)

where λ1≥λ2≥···≥0 are nonincreasing nonnegative eigenvalues and {ψk(t)}∞
k=1

are the corresponding eigenfunctions. (2.1) is also named as Mercer’s theorem,
which is analogous to singular-value decomposition of a square matrix.

The eigenfunctions {ψk(t)}∞
k=1 form an orthonormal basis for the space of all

square-integrable functions on I, denote this space by L2(I) (or L2 for simplicity).
The space L2 is indeed a Hilbert space, see [12, Section 2] and [14, Section 10].
What render the space L2 so handy in FDA is that the inner product of two func-
tions is defined by

〈 f ,g〉=
∫

I
f (t)g(t)dt
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and the corresponding norm is given by

‖ f‖=
√

〈 f , f 〉.

Consequently, by the Karhunen-Loève theorem (decomposition), the random fun-
ction X(t) can be expressed as a linear combination of the eigenfunctions, that is,

X(t)=µX(t)+
∞

∑
k=1

ξkψk(t), (2.2)

where the functional principal component scores ξk=〈X−µX ,ψk〉, (k=1,2,.. .) are
uncorrelated random variables with mean zero and variance λk: i.e.,

Eξk =0, Eξ2
k =λk, cov(ξ j,ξk)=0 for j 6= k.

Furthermore, we have the accumulated variance over I : E‖X−µX‖2 = ∑
∞
k=1λk,

which is viewed as the sum of the variances of random function X(t) in the prin-
cipal directions ψk defined by the Karhunen-Loève decomposition (2.2). Assume
the coefficient function β(t)∈L2 and can be expressed as

β(t)=
∞

∑
k=1

bkψk(t),

where
bk = 〈β,ψk〉 for k=1,2,.. . .

Under the above representation, the functional linear model (1.1) can be rewritten
as

Y−µY
.
=Y∗=

∞

∑
k=1

bkξk+ǫ,

where the scalar response Y∗ is represented by an infinite linear combination of
ξ1,ξ2,···. As β(t) is square integrable, which implies ∑

∞
k=1b2

k <∞. Then the coef-
ficients bk can be given by

bk =
Cov(ξk ,Y∗)

λk
.

Now we consider the estimation of slope function based on the finite pop-
ulation {(Xi(t),Yi)}N

i=1. Empirical versions of covariance function under finite
population-level and its spectral decomposition are

Σ̃(t,s)=
1

N

N

∑
i=1

{

Xi(t)−µ̃X(t)
}{

Xi(s)−µ̃X(s)
}

=
∞

∑
j=1

λ̃jψ̃j(t)ψ̃j(s), (2.3)
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where s,t ∈ I, µ̃X(t) = N−1∑
N
i=1Xi(t). Analogously to Σ(t,s), λ̃1 ≥ λ̃2 ≥ ··· and

ψ̃k(s),k=1,2,.. . are eigenvalues and corresponding eigenfunctions of Σ̃(s,t). Then
the estimate of β(t) under population-level can be obtained by

β̃(t)=
rN

∑
k=1

b̃kψ̃k(t) (2.4)

with

b̃k=
1

λ̃kN

N

∑
i=1

ξ̃ik(Yi−µ̃Y),

where

ξ̃ik =
∫

I

(

Xi(t)−µ̃X(t)
)

ψ̃(t)dt, µ̃X(t)=N−1
N

∑
i=1

Xi(t), µ̃Y =N−1
N

∑
i=1

Yi.

Here, rN is the truncation parameter which can be selected by cross-validation or
some other criterion such as AIC in [14, Section 6.2].

3 The proposed estimator and its properties

Let (Ω,A,P) be a probability space where Ω is a sample space, A is a σ-algebra,
and P is a probability measure. For N ≥ 1, consider a finite population UN =
{1,.. .,N} with N elements as a full sample defined on (Ω,A,P), and the associ-
ated functional auxiliary variables {Xi(t),t∈ I}N

i=1 also defined on (Ω,A,P).
A sample S of size n is drawn from UN according to sampling design pN(S),

where pN(S) is the probability of drawing the sample S on the set of 2N subsets
of UN. We can treat pN(S) as the probability of selecting a specific sample S. Let
Ik = I (k∈S) be the sample membership indicator which is Bernoulli distributed
for k∈UN . The sample membership indicator is the main source of randomness
in the derivation of the asymptotical properties, instead of the error terms in the
model. The first-order inclusion probability is defined by

πk =P{k∈S}=EIk = ∑
S∈UN :k∈S

pN(S).

Similarly, denote the second-order inclusion probability by

πkl =P{k,l∈S}=E[Ik Il]= ∑
S∈UN :k,l∈S

pN(S)

for all i, j∈UN. Here πk,πkl are supposed to be positive.
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We know that the whole information of auxiliary functional data Xi(t) can be
obtained for each i ∈UN. In practice, they may be obtained as discrete realiza-
tions. By model-assisted estimators with the aids of functional principal com-
ponents analysis, Cardot et al. [8] considered the estimation of population total
curve from samples {Yk(t)}N

k=1 for t ∈ [0,1], they briefly mentioned the follow-
ing model-assisted estimators which takes the advantages of auxiliary covariate
information

ŶN(t)= ∑
k∈S

Yk(t)−Ŷk(t)

πk
+ ∑

k∈UN

Ŷk(t), t∈ [0,1],

where Ŷk(t) is predicted by some function-on-scalar regressions. The significant
difference from Cardot et al. [8] is that here we deal with the Yi defined by the
scalar-on-function regression model with the form (1.1).

Our interest is the estimation of the population mean ȲN = 1
N ∑i∈UN

Yi, where
Yi is the i-th sample drawn from population variable Y. Observe that the infor-
mation of underlying variable Yi can be known only for i∈S while the informa-
tion of auxiliary functional data Xi(t) can be obtained for all i∈UN . If no auxil-
iary information other than the inclusion probabilities is obtained, a well-known
design-unbiased estimator is the Horvitz-Thompson estimator (H-T estimator in
short, [21]) via inverse-probability weighting

ˆ̄YHT
N =

1

N ∑
i∈S

Yi

πi
(3.1)

with the design variance

Var
( ˆ̄YHT

N |FYN

)

=
1

N2 ∑
i,j∈UN

(πij−πiπj)
Yi

πi

Yj

πj
,

where FYN :=σ({Yi}N
i=1).

If πkl are positive for k,l∈UN , then we call the sampling design is measurable,
see Särndal et al. [20]. Therefore, the unbiased estimator of design variance is
given by

V̂ar
( ˆ̄YHT

N |FYN

)

=
1

N2 ∑
i,j∈UN

(πij−πiπj)
Yi

πi

Yj

πj

Ii Ij

πij
, (3.2)

where Ii=I(i∈S) and Ij is similarly defined, see Breidt and Opsomer [6] for more
details.

Despite the fact that ŶHT
N is an appealing and commonly used estimator in

survey sampling since it is unbiased, functional covariates {X1(t),··· ,Xn(t)} as
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auxiliary information is available to do adjustments in order to shrink variance.
An improved estimator is obtained by the following difference estimator (3.3):

˜̄Ydi f f =
1

N ∑
i∈S

Yi

πi
+
∫

I

(

1

N ∑
i∈UN

Xi(t)−
1

N ∑
i∈S

Xi(t)

πi

)

β(t)dt

=
1

N

(

∑
i∈S

1

πi

(

Yi−
∫

I
Xi(t)β(t)dt

)

+ ∑
i∈UN

(

∫

I
Xi(t)β(t)dt

)

)

, (3.3)

where β(t) is the true slope function in model (1.1). In the first line of Eq. (3.3) the
difference

1

N ∑
i∈S

Xi(t)

πi
− 1

N ∑
i∈UN

Xi(t)

characterizes the oscillation of the functional covariates in the subsample with
regard to the full sample, and the auxiliary slope β(t) fits the functional linear
relationships between the covariates and responses. Note that

1

N ∑
i∈UN

(

∫

I
Xi(t)β(t)dt

)

is not random given the full sample FN :=σ({Yi ,Xi(t),t∈ I}N
i=1). Then, the design

variance of the difference estimator is

Var
( ˜̄Ydi f f |FN

)

=
1

N2 ∑
i,j∈UN

(πij−πiπj)
1

πi

(

Yi−
∫

I
Xi(t)β(t)dt

)

× 1

πj

(

Yi−
∫

I
Xi(t)β(t)dt

)

by using expression in the second line of Eq. (3.3) and the variance of Horvitz-
Thompson estimator.

While in survey sampling studies, the auxiliary variables can be obtained
from the finite population, which is not the same situation for the study vari-
ables due to some practical difficulties. Only a sample from the finite population
can be obtained under some predefined sampling design. Denote the empiri-
cal versions of covariance function under sample-level Σ̂(t,s), which is the same
as the population-level covariance function Σ̃(t,s), as well as the eigenvalues λ̃k

and eigenfunctions ψ̃k(t). Then the estimate of β(t) under sample-level can be
obtained by

β̂(t)=
rn

∑
k=1

b̂kψ̃k(t) (3.4)
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with

b̂k =
1

λ̃kn

n

∑
i=1

ξ̃ik(Yi−µ̂Y),

where ξ̃ik,λ̃k are the same as the estimate under population-level, while µ̂Y =
n−1∑

n
i=1Yi, rn is the truncation parameter under sample-level, which can be se-

lected by cross-validation or AIC criterion.
After plugging β̂(t) into the difference estimator (3.3), then the FLR-assisted

estimator for the population means is defined as follow:

˜̄YN =
1

N

(

∑
i∈S

1

πi

(

Yi−
∫

I
Xi(t)β̂(t)dt

)

+ ∑
i∈UN

(

∫

I
Xi(t)β̂(t)dt

)

)

, (3.5)

where β̂(t) is computed by (3.4). The corresponding estimate of the variance of
the FLR-assisted estimator is given by

ˆVar( ˜̄YN |FN)=
1

N2 ∑
i,j∈UN

(πij−πiπj)
1

πi

(

Yi−
∫

I
Xi(t)β̂(t)dt

)

× 1

πj

(

Yi−
∫

I
Xi(t)β̂(t)dt

)

Ii Ij

πij
,

where Ii = I (i∈S) and Ij is similarly defined.
In the following, we provide theoretical guarantees that our proposed FLR-

assisted estimator is asymptotically design unbiased and design consistent, and
this inherits the properties of simple mean estimator. In asymptotic analysis, we
allow N→∞ and so we need to define the σ-algebra generated by population and
functional auxiliary variables as FN :=σ({Yi ,Xi(t),t∈ I}N

i=1). Then the asymptot-
ical results are conditioning on FN as N→∞ since we prefer statement in terms
of random {Yi}∞

i=1. This notation is analogous to the “with ξ-probability one”
in Robinson and Särndal [19], and “consistency in conditional probability with
probability approaching one” in [2, Theorem 1].

Conditioning on FN, we propose the required regularity assumptions, which
are reasonable in previous references and real data analysis.

(A1) limsup
N→∞

1

N ∑
i∈UN

Y2
i <∞.

(A2) limsup
N→∞

1

N ∑
i∈UN

(

∫

I
X2

i (s)ds

)(

∫

I
β̂2(s)ds

)

<∞.

(A3) liminf
N→∞

N min
i∈UN

πi =∞, limsup
N→∞

max
i,j∈UN,i 6=j

∣

∣

∣

∣

πij−πiπj

πiπj

∣

∣

∣

∣

=0.
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(A1) is a classical hypothesis that concerns the second-order population mo-
ment, and this condition is very mild unless the heavy tail case. (A2) is also
a common assumption by our L2 space framework. (A3) is a regularity condition
that is akin to Robinson and Särndal [19] for the parametric regression case. The
first condition in (A3) implies that n→∞ as N →∞, we do not require that n in-
crease as fast as N. And the second condition in (A3) signifies that we only allow
sufficiently small dependence between different sample membership indicators.

Theorem 3.1 (Design consistency). Under assumptions (A1)-(A3), the FLR-assisted

estimator (3.5) is asymptotically design unbiased in the sense that ˆ̄YN is consistent to ȲN

in conditional probability

lim
N→∞

E
[

∣

∣
ˆ̄YN−ȲN

∣

∣|FN

]

=0 with probability approaching one, (3.6)

which means that

lim
N→∞

P
(

E
[

η
∣

∣
ˆ̄YN−ȲNη

∣

∣|FN

]

< ε
)

=1 for any ε>0.

Moreover, it is design consistent in the sense that

lim
N→∞

P
(

∣

∣
ˆ̄YN−ȲN

∣

∣>η|FN

)

=0 with probability approaching one for all η>0.

Proof. By Markov’s inequality of conditional expectation, we have

E
[

I
(

∣

∣
ˆ̄YN−ȲN |>η

∣

∣FN

)]

=P
{

∣

∣
ˆ̄YN−ȲN

∣

∣>η|FN

}

≤ 1

η
E
[

∣

∣
ˆ̄YN−ȲN

∣

∣FN

]

.

So it suffices to show that

lim
N→∞

E
[

∣

∣
ˆ̄YN−ȲN

∣

∣|FN

]

=0

with probability approaching 1.

Denote

aN =
1

N ∑
i∈U

Yi

(

Ii

πi
−1

)

, bN =
1

N ∑
i∈U

(

∫

I
Xi(t)β̂(t)dt

)(

Ii

πi
−1

)

.

Then, conditioning on FN,

E
(

∣

∣
ˆ̄YN−ȲN

∣

∣|FN

)

≤E
(

|aN ||FN

)

+E
(

|bN ||FN

)

≤
[

E
(

a2
N |FN

)

] 1
2
+
[

E
(

a2
N |FN

)

] 1
2
,
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where the last inequality stems from Jensen’s inequality for conditional expecta-

tion.

Notice that

E
(

a2
N |FN

)

=
1

N2 ∑
i∈UN

Y2
i

[

1−πi

πi

]

+
1

N2 ∑
i,j∈UN,i 6=j

YiYj

[

πij−πiπj

πiπj

]

≤ 1

Nmin
i∈UN

πi

(

1

N ∑
i∈UN

Y2
i

)

+ max
i,j∈UN,i 6=j

∣

∣

∣

∣

πij−πiπj

πiπj

∣

∣

∣

∣

1

N2 ∑
i,j∈UN,i 6=j

YiYj

≤ 1

Nmin
i∈UN

πi

(

1

N ∑
i∈UN

Y2
i

)

+ max
i,j∈UN,i 6=j

∣

∣

∣

∣

πij−πiπj

πiπj

∣

∣

∣

∣

(

1

N ∑
i∈UN

|Yi|
)2

≤ 1

Nmin
i∈UN

πi

(

1

N ∑
i∈UN

Y2
i

)

+ max
i,j∈UN,i 6=j

∣

∣

∣

∣

πij−πiπj

πiπj

∣

∣

∣

∣

1

N ∑
i∈UN

Y2
i ,

and by independence of {Ii} and FN

E
(

b2
N|FN

)

=
1

N2
E





[

∑
i∈U

∫

I
Xi(s)β̂(s)ds

(

Ii

πi
−1

)

]2∣
∣

∣

∣

FN





≤ 1

N2
E





[

∑
i∈U

(

∫

I
X2

i (s)ds

)
1
2
(

∫

I
β̂2(s)ds

)
1
2
(

Ii

πi
−1

)

]2
∣

∣

∣

∣

FN





=
1

N2
E

(

∑
i∈UN

(

∫

I
X2

i (s)ds

)(

∫

I
β̂2(s)ds

)[

1−πi

πi

]∣

∣

∣

∣

FN

)

+
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.
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By (A1) and (A3), conditioning on FN, it gives (E(a2
N))

1/2→0 as N→∞. Sim-

ilarly, applying (A1)-(A3), as N→∞, we have (E(b2
N))

1/2 →0.

As N→∞, FN is not random by the fact that an infinite population usually

has elements that consist of all the outcomes. So that we can draw the conclusion

in (3.6) with probability approaching one and complete the proof.

4 Simulation study

In this section, we compare the efficiency of our proposed FLR-assisted estimators
to the H-T estimators without considering the auxiliary information.

Following the simulation setting in Hall and Horowitz [10], we consider the
infinite superpopulation defined as the functional linear regression model with
the form

Yi =
∫ 1

0
β0(t)Xi(t)dt+ǫi ,

where

β0(t)=
50

∑
j=1

β0jφj(t), β01=0.3, β0j =4(−1)j+1j−2, j≥2,

φj(t)=
√

2cos(jπt), Xi(t)=
50

∑
j=1

γjZijφj(t),

γj=(−1)j+1 j−
a
2 , a∈{1.1,2}, Zij∼U

[

−
√

3,
√

3
]

.

For the error term ǫi, we consider four cases ǫ∼N(0,1), N(0,0.25), t(3), t(5). i∈UN

with UN the finite population, a realization of the infinite superpopulation. Here
t∈ I=[0,1] and T=100 equally spaced time points {tij∈ [0,1],i∈UN; j=1,.. .,100}
are used in our simulation study.

The finite population is of size N = 1000, samples are generated with sample
size n=100,200,400 under a fixed sampling design. The following two sampling
designs are considered:

• Simple Random Sampling (SRS): the inclusion probability of i∈UN defined

by πi =n/N, which satisfies ∑
N
i=1πi =n.

• Unequal Probability Sampling (UPS): the inclusion probability of i∈UN de-

fined by πi =n∗ci/∑
N
i=1ci, ci ∼U[0,1] which satisfies ∑

N
i=1πi =n.
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The samples are random arranged in every sampling process. For the four er-
ror cases, nsample=100 replicated samples are selected from the same population,
then the estimators can be calculated, and the design bias and the design mean
squared error of the estimators can be computed empirically. The simulations
were replicated nsimu=500 times to obtain the average bias (ABIAS) and average
mean squared error (AMSE) defined as follow:

ABIAS( ˆ̄Y)=
1

nsimunsample

nsimu

∑
i=1

nsample

∑
j=1

∣

∣
ˆ̄Yij−Ȳij

∣

∣,

AMSE( ˆ̄Y)=
1

nsimunsample

nsimu

∑
i=1

nsample

∑
j=1

( ˆ̄Yij−Ȳij
)2

,

where ˆ̄Yij and Ȳij are the estimated and true value of the i-th simulation under
the jth sampling.

Tables 1 and 2 show the result of the above simulation under simple random
sampling and unequal probability sampling, respectively. Obviously, the ABIAS
and AMSE in FLR-assisted estimators is substantially smaller than those in H-
T estimators under both sampling designs. The results imply that the proposed
FLR-assisted estimators have a better performance than the H-T estimators under
different error assumptions.

5 The real-world data study

5.1 Gasoline data

The gasoline data was provided by Kalivas [13], which is available in the R pack-
age “refund”. The data consists of near-infrared reflectance spectra and octane
numbers of 60 gasoline samples. It was also analyzed by Reiss and Ogden [18].
The response variable “octane” is a numeric vector of octane numbers for the 60
samples. The predictor variable “NIR” is a 60×401 matrix of NIR spectra, a dis-
crete realization of the functional data. Each NIR spectrum consists of log(1/
reflectance) measurements at 401 wavelengths, in 2-nm intervals from 900 nm to
1700 nm.

For the gasoline data, the size of the finite population UN is assumed to be
N = 60, and the simulation sample size is set to be n = 20. Our interest is the
population means of octane numbers. The sampling design was repeated 1000
times. Two estimators of the population means are computed under simple ran-
dom sampling and unequal probability sampling. Fig. 1 presents the boxplots of
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Table 1: Comparison of H-T estimators and FLR-assisted estimators under SRS.

n Error a
H-T FLR-assisted

ABIAS AMSE ABIAS AMSE

100

N(0,1) 1.1 0.0981 0.0152 0.0843 0.0113

2 0.0895 0.0126 0.0578 0.0053

N(0,0.5) 1.1 0.0650 0.0067 0.0649 0.0066

2 0.0516 0.0042 0.0463 0.0034

t(3) 1.1 0.1415 0.0318 0.1077 0.0189

2 0.1392 0.0309 0.0701 0.0079

t(5) 1.1 0.1155 0.0210 0.0938 0.0141

2 0.1079 0.0183 0.0592 0.0057

200

N(0,1) 1.1 0.0655 0.0067 0.0551 0.0048

2 0.0599 0.0056 0.0411 0.0028

N(0,0.5) 1.1 0.0434 0.0029 0.0463 0.0033

2 0.0345 0.0019 0.0339 0.0018

t(3) 1.1 0.0971 0.0151 0.0730 0.0084

2 0.0897 0.0128 0.0501 0.0040

t(5) 1.1 0.0766 0.0092 0.0625 0.0062

2 0.0725 0.0083 0.0449 0.0033

400

N(0,1) 1.1 0.0398 0.0025 0.0443 0.0030

2 0.0369 0.0021 0.0337 0.0017

N(0,0.5) 1.1 0.0263 0.0011 0.0338 0.0017

2 0.0209 0.0007 0.0252 0.0010

t(3) 1.1 0.0591 0.0055 0.0552 0.0047

2 0.0570 0.0051 0.0467 0.0034

t(5) 1.1 0.0467 0.0034 0.0327 0.0014

2 0.0437 0.0030 0.0397 0.0025

FLR-assisted estimators and H-T estimators of population mean for 1000 repli-
cations of sampling process under two sampling designs, which shows the rais-
ing efficiency of our proposed FLR-assisted estimators, especially in the unequal
probability sampling case.

5.2 Tecator data

Now we consider the tecator data, which comes from a quality control problem
in the food industry and can be found at http://lib.stat.cmu.edu/datasets/



C. Liu, H. Zhang and J. Yan / Commun. Math. Res., 38 (2022), pp. 81-98 95

Table 2: Comparison of H-T estimators and FLR-assisted estimators under UPS.

n Error a
H-T FLR-assisted

ABIAS AMSE ABIAS AMSE

100

N(0,1) 1.1 0.1547 0.0519 0.1172 0.0254

2 0.1408 0.0515 0.1056 0.0343

N(0,0.5) 1.1 0.1087 0.0789 0.0697 0.0079

2 0.0808 0.0170 0.0537 0.0052

t(3) 1.1 0.2212 0.1808 0.1715 0.1072

2 0.1988 0.0861 0.1502 0.0574

t(5) 1.1 0.1785 0.0709 0.1393 0.0523

2 0.1682 0.0678 0.1260 0.0424

200

N(0,1) 1.1 0.1153 0.0341 0.0877 0.0164

2 0.1051 0.0295 0.0811 0.0170

N(0,0.5) 1.1 0.0779 0.0141 0.0507 0.0042

2 0.0620 0.0114 0.0397 0.0033

t(3) 1.1 0.1557 0.0558 0.1253 0.0344

2 0.1514 0.0506 0.1186 0.0345

t(5) 1.1 0.1362 0.0488 0.1063 0.0291

2 0.1247 0.0335 0.1005 0.0235

400

N(0,1) 1.1 0.0912 0.0675 0.0726 0.0165

2 0.0800 0.0161 0.0690 0.0107

N(0,0.5) 1.1 0.0582 0.0080 0.0361 0.0022

2 0.0467 0.0055 0.0294 0.0016

t(3) 1.1 0.1270 0.0691 0.1115 0.0552

2 0.1210 0.0710 0.1098 0.0626

t(5) 1.1 0.1032 0.0265 0.0905 0.0250

2 0.0966 0.0237 0.0818 0.0181

tecator. It was first studied by Borggaard and Thodberg [4], who used a neu-
ral networks approach. This dataset concerns a sample of finely chopped meat,
which consists of near-infrared reflectance spectra of 240 samples of ground pork.
It is of interest to predict the wet-chemistry measurements using the correspond-
ing NIR spectra on the fat, water, and protein contents. The NIR spectra are
recorded on a Tecator Infrared spectrometer that measures the absorbance at 100
wavelengths in the region 850-1050 nm. We use the first 215 samples as suggested
by Borggaard and Thodberg [4].
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Figure 1: Boxplots of FLR-assisted estimators and H-T estimators for gasoline data: the blue dotted
line is the true value of population means.

Figure 2: Boxplots of FLR-assisted estimators and H-T estimators for tecator data: the blue dotted
line is the true value of population means.

For this data, the size of the finite population is assumed to be N = 215, and
the simulation sample size is n = 80. The sampling design was repeated 1000
times. Our interest is the population means of wet-chemistry measurements. Two
estimators of the population means are computed. Fig. 2 shows the boxplots
of FLR-assisted estimators and H-T estimators of the population mean for 1000
replications of the sampling process under two sampling designs, implying that
our proposed FLR-assisted estimators are more efficient than H-T estimators.
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6 Conclusion

This paper investigates the model-assisted estimation of finite population means
when the functional linear regression model is assumed to be the infinite super-
population model. The main goal of adopting model-assisted approach is to re-
duce the variance of population means. A FLR-assisted estimator of population
means was proposed with some well-defined properties. Simulation results show
that our proposed FLR-assisted estimators are more efficient than the traditional
H-T estimators, which implies that the auxiliary functional data can indeed help
improve the estimation accuracy.

In the future, it is challenging to add conditions that ensure asymptotic distri-
bution of the proposed model-assisted estimator. The obtained asymptotic vari-
ance can be applied to construct a conservative confidence interval for the FLR-
assisted estimator. It is also interesting to develop other model-assisted estima-
tors from some complex functional data models in the future study, such as func-
tional single-index model, functional additive model and partial linear functional
regression model with RKHS framework; see Lei and Zhang [15] and references
therein.
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