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1 Introduction

In this work, we consider the spatially homogeneous Landau equation

{

∂t f =QL( f , f ),

f |t=0= f0 ≥0,

where f = f (t,v) is the density distribution function depending on the variables v∈R
3

and the time t≥0. The Landau bilinear collision operator is given by

QL(g, f )(v)=▽v ·
∫

R3
a(v−v∗)

(

g(v∗)(▽v f )(v)−(▽vg)(v∗) f (v)
)

dv∗,
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where a=(ai,j)1≤ i,j≤3 stands for the nonnegative symmetric matrix

a(v)=(|v|2I−v⊗v)|v|γ ∈ M3(R), −3<γ<+∞.

This equation is obtained as a limit of the Boltzmann equation, when all the collisions

become grazing. See [1, 2]. We shall consider the Cauchy problem of radially symmetric

homogeneous non-cutoff Landau equation under the hard potential case γ= 2 with the

natural initial datum f0≥0

∫

R3
f0(v)dv=1;

∫

R3
vj f0(v)dv=0, j=1,2,3;

∫

R3
|v|2 f0(v)dv=3. (1.1)

Consider the fluctuation f (t,v)=µ(v)+
√

µ(v)g(t,v) near the absolute Maxwellian

µ(v)=(2π)−
3
2 e−

|v|2
2 ,

the Cauchy problem is reduced to

{

∂tg+L(g)=Γ(g,g), t>0, v∈R
3,

g|t=0= g0,
(1.2)

with g0(v)=µ− 1
2 f0(v)−√

µ(v), where

Γ(g,g)=µ− 1
2 QL(

√
µg,

√
µg), L(g)=−µ− 1

2

(

QL(
√

µg,µ)+QL(µ,
√

µg)
)

.

The linear operator L is nonnegative with the null space

N =span
{√

µ,
√

µv1,
√

µv2,
√

µv3,
√

µ|v|2} .

The projection function P : S ′(R3)→N is well defined. The assumption of the initial

datum f0 in (1.1), transforms to be g0 ∈N ⊥. We introduce the symmetric Gelfand-Shilov

spaces, for 0< s≤1,

S
1
2s
1
2s

(R3)=
{

u∈S ′(R3); ∃c>0, ecHs
u∈L2(R3)

}

;

where H=−∆+ |v|2
4 . This spaces can be also characterized through the decomposition

into the Hermite basis (Ψα)α∈N3 ,

f ∈S
1
2s
1
2s

(R3) ⇔ f ∈ L2(R3), ∃ǫ0>0,
∥

∥

∥

(

eǫ0 |α|s( f ,Ψα)L2

)

α∈N3

∥

∥

∥

l2
<+∞.

For more details, see in [3, Theorem 2.1] or in [4, Proposition 2.1].

The existence and regularity of the solution to Cauchy problem for the spatially ho-

mogeneous Landau equation with hard potentials has already been treated in [5, 6]. We
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can also refer to [7, 8] for the Gevrey regularity and Analytic smoothing effect for the so-

lution of the Landau equation with hard potential. However, the mathematical technique

in these works are mostly the energy methods. In this method, the smoothness effect of

the Landau equation are almost not better than analytic smoothing effect.

In 2012, Lerner, Morimoto, Pravda-Starov, Xu(LMPX) began to study the radially

symmetric spatially homogeneous non-cutoff Boltzmann equation with Maxwellian mole

cules by using spectrum analysis and then showed that the solution enjoys the Gelfand-

Shilov smoothing effect in [9,10] and [11]. For Landau equation, Villani in [2] constructed

a linear equation for the homogeneous Landau equation and MPX in [12] proved that the

solution enjoys a Gelfand-Shilov regularizing effect in the class S1/2
1/2(R

3). Recently, Li

and Xu in [13] showed that global existence and Gelfand-Shilov regularizing properties

of the solution to the Cauchy problem (1.2) for homogeneous non-cutoff Landau equation

in Maxwellian molecules. From now on, the Gelfand-Shilov smoothing effect have never

been studied in the non-Maxwellian case. In this paper, based on the spectral decompo-

sition for the linear and nonlinear radially symmetric homogeneous non-cutoff Landau

operators under the the hard potential γ=2 in perturbation framework, we show the ex-

istence and the Gelfand-Shilov smoothing effcet for the solution to the Cauchy problem

for this spatially homogeneous Landau equation.

The main theorem is given in the following.

Theorem 1.1. There exists a small positive constant ǫ0 > 0, such that for any initial datum

g0∈ L2(R3)∩N ⊥ with

‖g0‖L2(R3)≤ǫ0,

the Cauchy problem (1.2) for radially symmetric homogeneous non-cutoff Landau equation in

hard potential γ=2 admits a global radially symmetric weak solution

g∈L+∞([0,+∞[; L2(R3)).

Moreover, we have the Gelfand-Shilov S1
1(R

3) smoothing effect of Cauchy problem, for any given

T>0, there exists a positive constant δ>0 such that for all 0≤ t≤T,

‖eδt
√
Hg(t)‖2

L2 +
∫ t

0
‖H 1

2 eδt
√
Hg(τ)‖2

L2 dτ≤‖g0‖2
L2 .

Remark 1.1. (1) The decompositions of the linear and nonlinear Landau operators under

the hard potential γ=2 are the technical part in this paper, in fact, the algebra structure

of the linear Landau operator L is different from the Maxwellian molecules in [2] or [13].

(2) We think the regularizing property in the hard potential γ=2 is similar to that in

Maxwellian molecules. This work is a first step to study the Gelfand-Shilov smoothing

effect for Landau equation in non-Maxwellian case. It is interesting to study more general

case rather than the case of γ=2.



14 H. G. Li and H. Y. Wang / J. Partial Diff. Eq., 35 (2022), pp. 11-30

The rest of the paper is arranged as follows: in Section 2, we introduce the spectral

analysis of the linear and nonlinear Landau operators, and the formal solution of the

Cauchy problem (1.2) by transforming the linearized Landau equation into an infinite

system of ordinary differential equations, then we construct the solution to the Cauchy

problem for linear Landau equation. In Section 3, we prove the main Theorem 1.1. The

spectrum analysis of the linear and nonlinear Landau operator is the technique part,

which will be presented in Section 4.

2 Spectral analysis and linear Landau equation

2.1 Spectral analysis

Diagonalization of the linear operators. We recall that {ϕn} constitute an orthonormal

basis of L2
rad(R

3), the radially symmetric function space (see [11]) with

ϕn(v)=

√

n!

4
√

2πΓ(n+ 3
2)

L
( 1

2 )
n

( |v|2
2

)

e−
|v|2

4 ,

where Γ(·) is the standard Gamma function, for any x>0,

Γ(x)=
∫ +∞

0
tx−1e−xdx,

and the Laguerre polynomial L
(α)
n of order α, degree n read,

L
(α)
n (x)=

n

∑
r=0

(−1)n−r Γ(α+n+1)

r!(n−r)!Γ(α+n−r+1)
xn−r.

In particular,

ϕ0(v)=(2π)−
3
4 e−

|v|2
4 =

√
µ,

ϕ1(v)=

√

2

3

(

3

2
− |v|2

2

)√
µ,

ϕ2(v)=

√

8

15

(

15

8
− 5|v|2

4
+
|v|4

8

)√
µ.

Furthermore, we have, for suitable radially symmetric function g,

H(g)=
∞

∑
n=0

(2n+
3

2
)gn ϕn, gn = 〈g, ϕn〉.

It follows that

g∈S
1
2s
1
2s

(R3) ⇔ g∈ L2(R3), ∃ǫ0>0,
∞

∑
n=0

eǫ0(2n+ 3
2 )

s |gn|2<+∞.
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Triangular effect of the linear and non-linear operators. We study now the algebra

property of the nonlinear operators Γ(ϕn,ϕm), and then the linear operator

Lϕn =L1 ϕn+L2 ϕn=−Γ(ϕ0,ϕn)−Γ(ϕn,ϕ0).

Similar to the proof of [11, Lemma 3.3], we can prove the following triangular effect for

the nonlinear Landau operators on the basis {ϕn} in hard potential γ=2.

Proposition 2.1. Let Γ be the nonlinear Landau operator, the following algebraic identities hold

true,

Γ(ϕ0,ϕm)=8m

√

(m+1)(m+
3

2
)ϕm+1−8m(2m+3)ϕm+8(m−1)

√

m(m+
1

2
)ϕm−1;

Γ(ϕ1,ϕm)=−8

3

√

6(m+1)(m+2)(m+
3

2
)(m+

5

2
)ϕm+2

+
8(2m+5)

3

√

6(m+1)(m+
3

2
)ϕm+1−

8
√

6

3
m(m−1)ϕm;

Γ(ϕ2,ϕm)=−8
√

30

3

√

(m+1)(m+
3

2
)ϕm+1;

Γ(ϕn,ϕm)=0, n>2,

where for convenience, we always set ϕ−1≡0.

This proposition play a crucial role in the proof of the global existence of the solutions

to the Landau equation under the hard potential γ = 2. We will give the proof of this

proposition in the Section 4.

Remark 2.1. Obviously, we can deduce from Proposition 2.1 that, for n∈N

L1 ϕn=−Γ(ϕ0,ϕn)=−8n

√

(n+1)(n+
3

2
)ϕn+1+8n(2n+3)ϕn−8(n−1)

√

n(n+
1

2
)ϕn−1

with ϕ−1=0 and

L2 ϕn=−Γ(ϕn,ϕ0)=−(40ϕ1−8
√

5ϕ2)δ1,n+8
√

5ϕ1δ2,n.

Then

Lϕn =L1 ϕn+L2 ϕn=−[Γ(ϕ0,ϕn)+Γ(ϕn,ϕ0)]

=−8n
√

(n+1)(n+3/2)ϕn+1+8n(2n+3)ϕn−8(n−1)
√

n(n+1/2)ϕn−1

−(40ϕ1−8
√

5ϕ2)δ1,n+8
√

5ϕ1δ2,n,
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which satisfies that Lϕ0 =Lϕ1 ≡ 0. Let P be the orthogonal Projection on N . Moreover,

we have

Lϕ2=−8
√

42ϕ3+112ϕ2;

Lϕn =−8n
√

(n+1)(n+3/2)ϕn+1+8n(2n+3)ϕn−8(n−1)
√

n(n+1/2)ϕn−1, for n>2.

Then for radial symmetric function g, one can verify that

L(g)=
+∞

∑
n=2

gn(t)L(ϕn)∈N ⊥. (2.1)

2.2 The Cauchy problem of linear Landau equation

Now we solve explicitly the Cauchy problem (1.2) associated to the non-cutoff radial

symmetric spatially homogeneous Landau equation with hard potential γ = 2 for the

initial radial data g0∈L2(R3)∩N ⊥.

We search a radial solution to the Cauchy problem (1.2) in the form

g(t)=
+∞

∑
n=0

gn(t)ϕn with gn(t)= 〈g(t), ϕn〉

with initial data

g|t=0= g0 =
+∞

∑
n=0

〈

g0, ϕn

〉

ϕn .

Remark that g0∈L2(R3)∩N ⊥ is equivalent to g0 radial and

‖g0‖2
L2(R3)=

+∞

∑
n=2

∣

∣g0
n

∣

∣

2
<+∞, g0

n =(g0, ϕn)L2(R3).

For suitable radially symmetric function g, we have

Γ(g,g)= g0(t)
+∞

∑
n=0

gn(t)Γ(ϕ0,ϕn)+g1(t)
+∞

∑
n=0

gn(t)Γ(ϕ1,ϕn)+g2(t)
+∞

∑
n=0

gn(t)Γ(ϕ2,ϕn).

It follows from Proposition 2.1 that,

Γ(g,g)=g0(t)

(

+∞

∑
n=1

gn−1(t)8(n−1)

√

n(n+
3

2
)

−
+∞

∑
n=0

[

8n(2n+3)gn(t)+8n

√

(n+1)(n+
3

2
)gn+1(t)

]

)

ϕn
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+g1(t)

(

−
+∞

∑
n=2

8

3

√

6(n−1)n(n− 1

2
)(n+

1

2
)gn−2(t)

+
∞

∑
n=1

8(2n+3)

3

√

6n(n+
1

2
)gn−1(t)−

+∞

∑
n=0

8
√

6

3
n(n−1)gn(t)

)

ϕn

−g2(t)
+∞

∑
n=1

8
√

30

3

√

n(n+
1

2
)gn−1(t)ϕn.

For radially symmetric function g, we can deduce from (2.1) in Remark 2.1 that

(L(g),ϕ0)L2(R3)=0, (L(g),ϕ1)L2(R3)=0.

Formally, we take inner product with ϕn on both sides of the Cauchy problem (1.2), we

find that the functions {gn(t)} satisfy the following infinite system of the differential

equations






























∂tg0(t)=0;

∂tg1(t)=0;

∂tgn(t)+
+∞

∑
k=2

gk(t)(Lϕk,ϕn),=(Γ(g,g),ϕn), ∀n≥2;

gn(0)=
〈

g0,ϕn

〉

= g0
n, ∀n∈N.

(2.2)

Since g0∈N ⊥, then it is obviously that

g0(t)≡
〈

g0,ϕ0

〉

=0; g1(t)≡
〈

g0,ϕ1

〉

=0.

The nonlinear Landau term turns out to be

Γ(g,g)=−g2(t)
+∞

∑
n=2

8
√

30

3

√

n(n+
1

2
)gn−1(t)ϕn.

Furthermore, for n≥2,

+∞

∑
k=2

gk(t)(Lϕk,ϕn)=−8(n−1)

√

n(n+
1

2
)gn−1(t)+8n(2n+3)gn(t)

−8n

√

(n+1)(n+
3

2
)gn+1(t). (2.3)

The infinite system of the differential equations (2.2) reduces to be










































g0(t)≡0; g1(t)≡0;

∂tg2(t)+112g2(t)=8
√

42g3(t);

∂tgn(t)+8n(2n+3)gn(t)=8(n−1)

√

n(n+
1

2
)gn−1(t)

+8n

√

(n+1)(n+
3

2
)gn+1(t)−

8
√

30

3

√

n(n+
1

2
)g2(t)gn−1(t), ∀n>2;

gn(0)=
〈

g0,ϕn

〉

.

(2.4)
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Now we prove the existence of weak solution to Cauchy problem of the following

linear Landau equation.

Proposition 2.2. For any f , g0 ∈L2(R3)∩N ⊥, there exists c0>0, such that f satifies

‖P2 f‖L2(R3)< c0,

where P2 f = f2 ϕ2, then the Cauchy problem
{

∂tg(t)+L1g(t)=Γ( f ,g(t))−L2 f ,

g(t,v)|t=0 = g0(v),
(2.5)

admits a weak solution

g∈L+∞([0,+∞[,L2(R3)∩N ⊥)∩C0([0,+∞[;S ′(R3)).

Moreover, we have

‖g‖L2(R3)≤‖g0‖L2(R3).

Before the proof of Proposition 2.2, we provide the sharp trilinear estimates for the

radially symmetric nonlinear landau operator in the following Lemma.

Lemma 2.1. For all f ,g,h∈Sr(R3)∩N ⊥, we have

|(Γ( f , g),h)L2 |≤8‖P2 f‖L2‖H 1
2 g‖L2‖H 1

2 h‖L2 .

Proof. Let f ,g,h ∈Sr(R3)∩N ⊥ be some radially symmetric Schwartz functions, we can

decompose these functions into the Hermite basis (ϕn)n≥0 as follows

f =
+∞

∑
n=2

fn ϕn, g=
+∞

∑
n=2

gn ϕn, h=
+∞

∑
n=2

hn ϕn.

It follows from Proposition 2.1 that,

Γ( f ,g)= f2

+∞

∑
n=0

gnΓ(ϕ2,ϕn).

This implies that,

(Γ( f , g),h)L2 =− f2

+∞

∑
n=3

8
√

30

3

√

n(n+
1

2
)gn−1hn.

By using the Cauchy-Schwartz inequality, one can verify that

|(Γ( f , g),h)L2 |≤8‖P2 f‖L2‖H 1
2 g‖L2‖H 1

2 h‖L2 .

This ends the proof of Lemma 2.1.
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Now we are prepared to prove the Proposition 2.2.

The proof of the Proposition 2.2. We search a radially symmetric solution to the Cauchy prob-

lem (2.5) in the form

g(t)=
+∞

∑
n=2

gn(t)ϕn

with initial data g(0)=g0=∑
+∞
n=0(g0, ϕn)L2(R3)ϕn. Remark that g0∈L2(R3)∩N ⊥ is equiv-

alent to g0 radial and

‖g0‖2
L2 =

+∞

∑
n=2

∣

∣g0
n

∣

∣

2
<+∞.

Since f ∈ L2(R3)∩N ⊥, for radially symmetric function g∈Sr(R3)∩N ⊥, it follows from

Proposition 2.1 that,

Γ( f ,g)=− f2

+∞

∑
n=1

8
√

30

3

√

n(n+
1

2
)gn−1(t)ϕn.

Moreover, for this g∈Sr(R3)∩N ⊥, we can deduce from Remark 2.1 that

L1g=
+∞

∑
n=2

(

−8(n−1)
√

n(n+1/2)gn−1(t)+8n(2n+3)gn(t)

−8n
√

(n+1)(n+3/2)gn+1(t)

)

ϕn,

with ϕ−1=0 and

L2 f =8
√

5 f2(t)ϕ1.

Formally, we take inner product with {ϕn}n≥2 on both sides of the Cauchy problem (2.5),

we find that the functions {gn(t)}n≥2 satisfy the following infinite system of the differen-

tial equations






































∂tg2(t)+112g2(t)=8
√

42g3(t);

∂tgn(t)+8n(2n+3)gn(t)=8(n−1)

√

n(n+
1

2
)gn−1(t)

+8n

√

(n+1)(n+
3

2
)gn+1(t)−

8
√

30

3

√

n(n+
1

2
) f2gn−1(t), ∀n≥3;

gn(0)=
〈

g0,ϕn

〉

.

(2.6)

Let us now fix some positive integer N≥2 and define the following function uN : [0,+∞[
×R

3→S ′(R3) by

uN(t)=
N

∑
n=2

gn(t)ϕn,
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where gn(t) is the solution to the ODEs (2.6) for n≤ N. For h∈S ′(R3), we defined the

k+1 projection Pk that

Pkh=
k

∑
n=0

〈h,ϕn〉ϕn.

Then for N≥2, PNuN =uN and uN satisfies











∂tuN(t)+PNL1uN(t)=PNΓ( f ,uN),

uN(0)=
N

∑
n=2

〈g0,ϕn〉ϕn.
(2.7)

For N≥2, taking the inner product of uN(t) in L2(R3) on both sides of (2.7), we have

(∂tuN(t),uN(t))L2(R3)+(PNL1uN(t),uN(t))L2(R3)=(PNΓ( f ,uN(t)),uN(t))L2(R3) .

Then one can verify from (2.6) that

1

2

d

dt
‖uN(t)‖2

L2(R3)+
N

∑
k=2

8k(2k+3)|gk(t)|2

=2
N−1

∑
k=2

8k

√

(k+1)(k+
3

2
)gk(t)gk+1(t)+(PNΓ( f ,uN(t)),uN(t))L2(R3) .

By using Cauchy-Schwartz inequality, we have

N−1

∑
k=2

8k

√

(k+1)(k+
3

2
)gk(t)gk+1(t)

≤
N−1

∑
k=2

4k(k+3/2)|gk (t)|2+
N−1

∑
k=2

4k(k+1)|gk+1(t)|2

≤
N−1

∑
k=2

4k(2k+1/2)|gk (t)|2.

We can conclude from Lemma 2.1 that

1

2

d

dt
‖uN(t)‖2

L2(R3)+‖H1/2uN(t)‖2
L2(R3)≤8‖P2 f‖L2(R3)‖H

1
2 uN(t)‖2

L2(R3). (2.8)

By the assumption that ‖P2 f‖L2(R3)<c0 with c0 small, then there exists a positive constant

δ0>0, such that for any t>0, we have

‖uN(t)‖2
L2(R3)+δ0

∫ t

0
‖H1/2uN(τ)‖2

L2(R3)dτ≤‖uN(0)‖2
L2(R3)≤‖g0‖2

L2(R3).
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For any N≥2, there exists positive constant C>0, we have also

‖H−2
PNL1(uN)‖L2(R3)≤C‖g0‖L2(R3) ,

‖H−1
PNΓ( f ,uN)‖L2(R3))≤C‖g0‖2

L2(R3).

So that Eq. (2.7) implies that the sequence { d
dt uN(t)} is uniformly bounded in S ′(R3)

with respect to N ∈ N and t ∈ [0,+∞[. The Arzelà-Ascoli Theorem implies that, there

exists a subsequence {uNk
(t)}⊂{uN(t)} such that

uNk
(t)→ g(t)∈C0([0,+∞[;S ′(R3)).

Moreover, we have

‖g(t)‖L2(R3)≤ liminf
k→+∞

‖uNk
(t)‖L2(R3)≤‖g0‖L2(R3). (2.9)

This shows that

g∈L+∞([0,+∞[,L2(R3)∩N ⊥)∩C0([0,+∞[;S ′(R3)),

g(t) is a weak solution of Cauchy problem (2.5). We end the proof of Proposition 2.2.

3 The Proof of Theorem 1.1

We recall the definition of weak solution of (1.2):

Definition 3.1. Let g0 ∈S ′(R3), g(t,v) is called a weak solution of the Cauchy problem (1.2) if

it satisfies the following conditions:

g∈C0([0,+∞[;S ′(R3)), g(0,v)= g0(v),

L(g)∈L2([0,T[;S ′(R3)), Γ(g,g)∈L2([0,T[;S ′(R3)), ∀T>0,

〈g(t),φ(t)〉−〈g0,φ(0)〉+
∫ t

0
〈Lg(τ),φ(τ)〉dτ

=
∫ t

0
〈g(τ),∂τφ(τ)〉dτ+

∫ t

0
〈Γ(g(τ),g(τ)),φ(τ)〉dτ, ∀t≥0,

for any φ(t)∈C1
(

[0,+∞[;S(R3)
)

.

Now we are prepared to prove Theorem 1.1.

Existence. By using Proposition 2.2, we begin to prove the Global existence of solutions

to the nonlinear Landau equation. For linear Landau equation (2.5), we consider the

following sequence of iterating approximate solutions:
{

∂tg
n+1+L1gn+1=Γ(gn,gn+1)−L2gn, t>0, v∈R

3,

gn+1(t,v)|t=0= g0(v),
(3.1)
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starting from g0(t,v)≡ g0(v). Taking g=gn+1, f =gn in Proposition 2.2 gives, for any t>0,

there exists a constant δ0>0,

‖gn‖2
L2(R3)+δ0

∫ t

0
‖H1/2gn‖2

L2(R3)dτ≤‖g0‖2
L2(R3)≤ǫ2. (3.2)

Then it remains to prove the convergence of the sequence

{gn,n∈N}⊂ L∞
t (L2(R3)∩N ⊥), {H1/2gn,n∈N}⊂ L2

t (L2(R3)).

Set wn = gn+1−gn, one can verify from (3.1) that

∂tw
n+L1wn=Γ(gn,wn)+Γ(wn−1,gn)−L2wn−1,

with wn|t=0=0. Since wn ∈N ⊥, we have

L2wn−1≡0.

By the similar computation as (2.8), we get

1

2

d

dt
‖wn(t)‖2

L2(R3)+‖H1/2wn(t)‖2
L2(R3)

≤(Γ(gn,wn),wn)L2(R3)+(Γ(wn−1,gn),wn)L2(R3).

By using Lemma 2.1 again, we have

|(Γ(gn,wn),wn)L2(R3)|≤8‖g0‖L2(R3)‖H
1
2 wn‖2

L2(R3);

|(Γ(wn−1,gn),wn)L2(R3)|≤8‖wn−1‖L2(R3)‖H
1
2 gn‖L2(R3)‖H

1
2 wn‖L2(R3).

For any t≥0, we obtain that,

‖wn(t)‖2
L2(R3)+

∫ t

0
‖Hwn‖2

L2(R3)dτ

≤8‖wn−1‖L∞
t L2(R3)

∫ t

0
‖H 1

2 gn‖L2(R3)‖H
1
2 wn‖L2(R3)dτ

≤λ‖wn−1‖L∞
t L2(R3),

for some 0<λ<1. Then it follows that

‖wn(t)‖2
L∞

t L2(R3)+
∫ t

0
‖Hwn‖2

L2(R3)dτ≤λn−1‖w1‖L∞
t L2(R3)≤2λn−1‖g0‖L2(R3),

for some 0<λ<1. It concludes that {gn} is a Cauchy sequence which satisfies

{gn,n∈N}⊂ L∞
t (L2(R3)∩N ⊥), {Hgn,n∈N}⊂ L2

t L2(R3).



Landau Equation with Hard Potential γ=2 23

And its limit function g is a desired solution to the Cauchy problem (1.2) in t∈ [0,+∞[.
We obtain the global solution

g∈L+∞([0,+∞[,L2(R3)∩N ⊥)∩C0([0,+∞[;S ′(R3)).

Gelfand-Shilov smoothing effect. Let 0≤δ,δ1≤1. Define

h=Mδ1
(δt)g with Mδ1

(δt)=
eδt

√
H

1+δ1eδt
√
H

.

The function h depends on δ,δ1. We can also write that

g=(Mδ1
(δt))−1

h=δ1h+e−δt
√
Hh.

The equation (1.2)

∂tg+Lg=Γ(g,g)

reads as

(Mδ1
(δt))−1∂th+L((Mδ1

(δt))−1h)

=Γ((Mδ1
(δt))−1h,(Mδ1

(δt))−1h)+δ
√
He−δt

√
Hh.

It follows that

∂th+(Mδ1
(δt))L((Mδ1

(δt))−1
h)

=(Mδ1
(δt))Γ((Mδ1

(δt))−1
h,(Mδ1

(δt))−1
h)+

δ
√
H

1+δ1eδt
√
H

h. (3.3)

We define

hδ2
=(1+δ2H)−1h with 0<δ2≤1.

Then by multiplying (1+δ2H)−2h on both sides of (3.3), we have

1

2
‖hδ2

‖2
L2+

(

(1+δ2H)−1(Mδ1
(δt))L((Mδ1

(δt))−1
h),hδ2

)

=
(

(1+δ2H)−1(Mδ1
(δt))Γ((Mδ1

(δt))−1h,(Mδ1
(δt))−1h),hδ2

)

+

∥

∥

∥

∥

∥

∥

(

δ
√
H

1+δ1eδt
√
H

)
1
2

hδ2

∥

∥

∥

∥

∥

∥

2

L2

. (3.4)

Set h=∑
∞
n=2hn ϕn, then

hδ2
=

∞

∑
n=2

hn,δ2
ϕn=

∞

∑
n=2

hn(1+δ2(2n+
3

2
))−1ϕn,
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one can verify that

(Mδ1
(δt))L((Mδ1

(δt))−1h)

=
∞

∑
n=2

hn(t)
1+δ1etδ

√
2n+ 7

2

etδ
√

2n+ 3
2

[

−8n

√

(n+1)(n+
3

2
)

etδ
√

2n+ 7
2

1+δ1etδ
√

2n+ 7
2

ϕn+1

+8n(2n+3)
etδ
√

2n+ 3
2

1+δ1etδ
√

2n+ 3
2

ϕn−8(n−1)

√

n(n+
1

2
)

etδ
√

2n− 1
2

1+δ1etδ
√

2n− 1
2

ϕn−1

]

.

It follows from the Cauchy-Schwartz inequality that

(

(1+δ2H)−1(Mδ1
(δt))L((Mδ1

(δt))−1
h),hδ2

)

=
∞

∑
n=2

8n(2n+3)|hn,δ2
(t)|2−

∞

∑
n=2

8n

√

(n+1)(n+
3

2
)hn,δ2

(t)hn+1,δ2
(t)

×
[

(1+δ2(2n+ 3
2))e

δt
√

2n+ 7
2 (1+δ1etδ

√
2n+ 3

2 )

(1+δ2(2n+ 7
2))e

δt
√

2n+ 3
2 (1+δ1etδ

√
2n+ 7

2 )

+
(1+δ2(2n+ 7

2))e
δt
√

2n+ 3
2 (1+δ1etδ

√
2n+ 7

2 )

(1+δ2(2n+ 3
2))e

δt
√

2n+ 7
2 (1+δ1etδ

√
2n+ 3

2 )

]

≥
∞

∑
n=2

8n(2n+3)|hn,δ2
(t)|2−

∞

∑
n=2

8n

√

(n+1)(n+
3

2
)|hn,δ2

(t)||hn+1,δ2
(t)|R

where

R=
eδt
√

2n+ 7
2 (1+δ1etδ

√
2n+ 3

2 )

eδt
√

2n+ 3
2 (1+δ1etδ

√
2n+ 7

2 )
+

(

2n+ 7
2

2n+ 3
2

)

eδt
√

2n+ 3
2 (1+δ1etδ

√
2n+ 7

2 )

eδt
√

2n+ 7
2 (1+δ1etδ

√
2n+ 3

2 )
.

Direct calculation shows that, for any 0< t≤T

R≤ 2

2n+3/2
+e

2δt√
2n+3/2+

√
2n+7/2 +e

−2δt√
2n+3/2+

√
2n+7/2

≤2+
4

4n+3
+

δ2t2

2n+3/2

(

e
2δτ√

2n+3/2+
√

2n+7/2 +e
−2δτ√

2n+3/2+
√

2n+7/2

)

≤2+
1

n+3/4

(

1+δ2T2e
δT
2

)

.

Let δ= 1√
2T

, since n+3/4≥
√

n(n+3/2), we have

R≤2+
2

√

n(n+3/2)
.
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Then it follows from the Cauchy-Schwartz inequality that

(

(1+δ2H)−1(Mδ1
(δt))L((Mδ1

(δt))−1
h),hδ2

)

≥
∞

∑
n=2

8n(2n+3)|hn,δ2
(t)|2−2

∞

∑
n=2

8n

√

(n+1)(n+
3

2
)|hn,δ2

(t)||hn+1,δ2
(t)|

−2
∞

∑
n=2

8
√

n(n+1)|hn,δ2
(t)||hn+1,δ2

(t)|

≥
∞

∑
n=2

4n(2n+3)|hn,δ2
(t)|2−

∞

∑
n=2

4n(2n+2)|hn+1,δ2
(t)|2

−
∞

∑
n=2

8n|hn,δ2
(t)|2−

∞

∑
n=2

8(n+1)|hn+1,δ2
(t)|2

=
∞

∑
n=2

4n|hn,δ2
(t)|2 ≥‖H 1

2 hδ2
‖2

L2 . (3.5)

Remind that h∈N ⊥, we can deduce from Proposition 2.1 that

(

(1+δ2H)−1(Mδ1
(δt))Γ((Mδ1

(δt))−1
h,(Mδ1

(δt))−1
h),hδ2

)

=
(1+δ2(2n+ 3

2))(1+
11
2 δ2)

1+δ2(2n+ 7
2)

∞

∑
n=2

8

3

√

30(n+1)(n+
3

2
)

× (1+δ1e
√

11
2 δt)(1+δ1eδt

√
2n+ 3

2 )eδt
√

2n+ 7
2

eδt
√

2n+ 3
2 e
√

11
2 δt(1+δ1eδt

√
2n+ 3

2 )
h2,δ(t)hn,δ2

(t)hn+1,δ2
(t).

Since

eδt
√

2n+ 7
2 ≤ eδt

√
2n+ 3

2 eδt
√

11
2 ,

recall that δ1,δ2≤1, we have
∣

∣

∣

(

(1+δ2H)−1(Mδ1
(δt))Γ((Mδ1

(δt))−1h,(Mδ1
(δt))−1h),hδ2

)∣

∣

∣

≤(1+3δ1+3δ2)
∞

∑
n=2

8

3

√

30(n+1)(n+
3

2
)|h2,δ2

(t)||hn,δ2
(t)||hn+1,δ2

(t)|

≤C‖P2hδ2
(t)‖L2‖H 1

2 hδ2
‖2

L2 . (3.6)

Substituting the estimates (3.5) and (3.6) into (3.4), one can verify that

d

dt
‖hδ2

‖2
L2 +2‖H 1

2 hδ2
‖2

L2 ≤C‖P2hδ2
(t)‖L2‖H 1

2 hδ2
‖2

L2+δ‖H 1
2 hδ2

‖2
L2 .

We consider the fact that,

‖g‖L2 ≤‖g0‖L2 ≤ǫ0,
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then for 0< t≤T and δ≤ 1√
2T

,

‖P2hδ2
(t)‖2

L2 ≤ e2δT
√

11
2 |g2|2≤ e4ǫ2

0.

Therefore, choose ǫ,δ small, we have

d

dt
‖hδ2

‖2
L2+‖H 1

2 hδ2
‖2

L2 ≤0.

This means that, for any 0< t≤T,

‖hδ2
(t)‖2

L2 +
∫ t

0
‖H 1

2 hδ2
(τ)‖2

L2 dτ≤‖g0‖2
L2 .

Let δ2→0, we have

‖eδt
√
Hg(t)‖2

L2 +
∫ t

0
‖H 1

2 eδt
√
Hg(τ)‖2

L2 dτ≤‖g0‖2
L2 .

This ends the proof of Theorem 1.1.

4 The proof of Proposition 2.1

In this section, we will prove the proposition 2.1. This Proposition shows the spectral

decomposition for the linear and nonlinear radially symmetric spatially homogeneous

Landau operators under the hard potential γ= 2 in details. At the beginning, we intro-

duce the kronecker function

δn,m=

{

1, m=n,

0, m 6= n.

Proposition 4.1. Let Γ be the nonlinear Landau operator, the following algebraic identities hold

true, for n,m∈N

Γ(ϕn,ϕm)=
1

√

µ(v)

[

10(|v|2+3)
(

Ψm

( |v|2
2

)

+Ψ′
m

( |v|2
2

))

+2|v|2(|v|2+5)
(

Ψm

( |v|2
2

)

+Ψ′
m

( |v|2
2

)

)′
]

δ0,n

− 2
√

6

3
√

µ(v)

[

15Ψm

( |v|2
2

)

+10(|v|2+3)Ψ′
m

( |v|2
2

)

+|v|2(|v|2+10)Ψ′′
m

( |v|2
2

)

]

δ1,n
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+
2
√

120

3
√

µ(v)

[

3Ψ′
m

( |v|2
2

)

+|v|2Ψ′′
m

( |v|2
2

)

]

δ2,n.

Proof. In all the proof of this proposition, we will set Ψk :R→R

Ψn(ρ)= cn L
( 1

2 )
n (ρ)e−ρ (4.1)

with

cn =(2π)−
3
4

√

n!

4
√

2πΓ(n+ 3
2)

. (4.2)

Therefore, recalled from the definition of ϕn(v) that, for v∈R
3,

√
µ(v)ϕn(v)= cn L

( 1
2 )

n

( |v|2
2

)

e−
|v|2

2 =Ψn

( |v|2
2

)

.

It follows that, for m,n∈N

▽v∗(
√

µϕn)(v∗)=Ψ′
n

( |v∗|2
2

)

v∗, ▽v(
√

µϕm)(v)=Ψ′
m

( |v|2
2

)

v,

where we used the notation Ψk(ρ) in (4.1) and Ψ′
k(ρ)=

dΨk(ρ)
dρ for k∈N. Then

Γ(ϕn,ϕm)=
1

√

µ(v)
∑

1≤ i,j≤3

∂vi

∫

R3
ai,j(v−v∗)

×
[

Ψn

( |v∗|2
2

)

Ψ′
m

( |v|2
2

)

vj−Ψ′
n

( |v∗|2
2

)

Ψm

( |v|2
2

)

v∗j

]

dv∗,

where we have written v=(v1,v2,v3),v∗=(v∗1 ,v∗2 ,v∗3)∈R
3 and

ai,i(v−v∗)= ∑
1≤k≤3

k 6= i

(vk−v∗k )
2|v−v∗ |2;

ai,j(v−v∗)=−(vi−v∗i )(vj−v∗j )|v−v∗|2, when i 6= j.

Direct computation shows that

Γ(ϕn,ϕm)

=
1

√

µ(v)
∑

1≤ i,j≤3
i 6= j

∂vi

{

∫

R3

[

vi(v
∗
j )

2|v|2+2viv
2
j (v

∗
j )

2

+vi(v
∗
j )

2|v∗|2−2v2
j vi(v

∗
i )

2
]

Ψn

( |v∗|2
2

)

dv∗Ψ′
m

( |v|2
2

)

}
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+
1

√

µ(v)
∑

1≤ i,j≤3
i 6= j

∂vi

{

∫

R3

[

2viv
2
j (v

∗
i )

2−2viv
2
j (v

∗
j )

2

−vi(v
∗
j )

2|v|2−vi(v
∗
j )

2|v∗|2
]

Ψ′
n

( |v∗|2
2

)

dv∗Ψm

( |v|2
2

)

}

.

By using the elementary equalities

√
µ(v∗)= ϕ0,

|v∗|2
√

µ(v∗)=3ϕ0−
√

6ϕ1,

|v∗|4
√

µ(v∗)=15ϕ0−10
√

6ϕ1+
√

120ϕ2,

we can deduce from Ψn

(

|v∗|2
2

)

=
√

µ(v∗)ϕn(v∗) that

∫

R3
Ψn

( |v∗|2
2

)

dv∗=δ0,n,

∫

R3
|v∗|2Ψn

( |v∗|2
2

)

dv∗=3δ0,n−
√

6δ1,n,

∫

R3
|v∗|4Ψn

( |v∗|2
2

)

dv∗=15δ0,n−10
√

6δ1,n+
√

120δ2,n.

Similar to the above symmetric property, and integration by parts, we can also prove that

∫

R3
|v∗|2Ψ′

n

( |v∗|2
2

)

dv∗=−3
∫

R3

√
µ(v∗)ϕn(v∗)dv∗=−3δ0,n,

and

∫

R3
|v∗|4Ψ′

n

( |v∗|2
2

)

dv∗=−5(3δ0,n−
√

6δ1,n).

By using the symmetric of the coordinate axis, we end the proof of Prop. 4.1.

Now we prepare to prove the Proposition 2.1.

The proof of Proposition 2.1. Denote that

A(v)=10(|v|2+3)
(

Ψm

( |v|2
2

)

+Ψ′
m

( |v|2
2

))

+2|v|2(|v|2+5)
(

Ψm

( |v|2
2

)

+Ψ′
m

( |v|2
2

)

)′
,

B(v)=15Ψm

( |v|2
2

)

+10(|v|2+3)Ψ′
m

( |v|2
2

)

+|v|2(|v|2+10)Ψ′′
m

( |v|2
2

)

,
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C(v)=3Ψ′
m

( |v|2
2

)

+|v|2Ψ′′
m

( |v|2
2

)

.

Recall from the definition of Ψm

(

|v|2
2

)

in (4.1) and take intermediate variable ρ= |v|2
2 , we

have

Ψm

( |v|2
2

)

= cme−ρL
( 1

2 )
m (ρ),

Ψ′
m

( |v|2
2

)

= cme−ρ d

dρ
L
( 1

2 )
m (ρ)−cme−ρL

( 1
2 )

m (ρ),

Ψ′′
m

( |v|2
2

)

= cme−ρ d2

d2ρ
L
( 1

2 )
m (ρ)−2cme−ρ d

dρ
L
( 1

2 )
m (ρ)+cme−ρL

( 1
2 )

m (ρ).

Using the formulas (141),(7),(12) of Chapter IV in [14] that, we have

A(v)=8m

√

(m+1)(m+
3

2
)Ψm+1−8m(2m+3)Ψm+8(m−1)

√

m(m+
1

2
)Ψm−1,

B(v)=4

√

(m+1)(m+2)(m+
3

2
)(m+

5

2
)Ψm+2

−4(2m+5)

√

(m+1)(m+
3

2
)Ψm+1+4m(m−1)Ψm,

C(v)=−2

√

(m+1)(m+
3

2
)Ψm+1.

Substituting back to Proposition 4.1, we end the proof of Proposition 2.1.
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