Eigenvalue Problem of Doubly Stochastic Hamiltonian Systems with Boundary Conditions*

Han Yue-Cai ${ }^{1,2}$ and Ma Yong ${ }^{1}$
(1. School of Mathematics, Jilin University, Changchun, 130012)
(2. School of Mathematics, Shandong University, Jinan, 250100)
Communicated by Li Yong

Abstract

In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic differential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.

Key words: doubly stochastic Hamiltonian system, eigenvalue problem, spectrum theory
2000 MR subject classification: $60 \mathrm{H} 10,62 \mathrm{P} 05$
Document code: A
Article ID: 1674-5647(2009)01-0030-07

1 Introduction

Stochastic Hamiltonian systems were introduced in the theory of stochastic optimal control as a necessary condition of an optimal control, known as the stochastic version of the maximum principle of Pontryagin's type (see [1]-[6]). In fact, those stochastic Hamiltonian systems with boundary conditions are forward-backward stochastic differential equations (FBSDE for short). These have been extensively investigated by Antonelli ${ }^{[7]}$, Ma et al. ${ }^{[8]}$, Hu and Peng ${ }^{[9]}$, Peng and $\mathrm{Wu}^{[10]}$, Yong ${ }^{[11]}$. Recently, combining the FBSDE and the backward doubly stochastic differential equations introduced by Pardoux and Peng ${ }^{[12]}$, Peng and Shi ${ }^{[13]}$ have investigated a type of time-symmetric FBSDE. They showed the uniqueness and existence of solutions for these equations under certain monotonicity conditions.

In this paper, we study a special type of time-symmetric FBSDE, namely doubly stochastic Hamiltonian systems (DSHS for short). We discuss the eigenvalue problem of this type

[^0]of stochastic Hamiltonian system in a standard functional analysis way.
The rest of this paper is organized as follows. The next section begins with a general formulation of time-symmetric FBSDE, then a special case, DSHS with boundary conditions. In Section 3, we give the proof of the main results.

2 Preliminaries

Let (Ω, \mathcal{F}, P) be a probability space and $T>0$ be fixed throughout this paper. Let $\left\{W_{t}\right.$: $0 \leq t \leq T\}$ and $\left\{B_{t}: 0 \leq t \leq T\right\}$ be two mutually independent standard Brownian motions which are \mathbf{R}^{d}-valued processes defined on (Ω, \mathcal{F}, P). Without loss of generality, we assume that $d=1$. Let \mathcal{N} denote the class of P-null sets of \mathcal{F}. For each $t \in[0, T]$, we define

$$
\mathcal{F}_{t} \triangleq \mathcal{F}_{t}^{w} \vee \mathcal{F}_{t, T}^{B}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{t}^{w}=\mathcal{N} \vee \sigma\left\{W_{r}-W_{0}: 0 \leq r \leq t\right\}, \\
& \mathcal{F}_{t, T}^{B}=\mathcal{N} \vee \sigma\left\{B_{r}-B_{t}: t \leq r \leq T\right\} .
\end{aligned}
$$

Note that the collection $\left\{\mathcal{F}_{t}: t \in[0, T]\right\}$ is neither increasing nor decreasing. Thus it does not constitute a filtration.

Let $M^{2}\left(0, T ; \mathbf{R}^{n}\right)$ denote the set of all classes $\left(d t \times d P\right.$ is equal a.e.) \mathcal{F}_{t}-measurable stochastic processes $\left\{\varphi_{t}: t \in[0, T]\right\}$ which satisfy

$$
\mathrm{E} \int_{0}^{T}\left|\varphi_{t}\right|^{2} \mathrm{~d} t<+\infty
$$

For a given $\varphi_{t}, \psi_{t} \in M^{2}\left(0, T ; \mathbf{R}^{n}\right)$, one can define the forward Itô integration $\int_{0}^{\tau} \varphi_{s} \mathrm{~d} W_{s}$ and the backward Itô integration $\int_{\text {. }}^{T} \psi_{s} \mathrm{~d} B_{s}$. They are both in $M^{2}\left(0, T ; \mathbf{R}^{n}\right)$.

Let $H(y, Y, z, Z): \mathbf{R}^{n} \times \mathbf{R}^{n} \times \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\Phi(y): \mathbf{R}^{n} \rightarrow \mathbf{R}$ be C^{1} functions. Find a triple

$$
(y, Y, z, Z) \in M^{2}\left(0, T ; \mathbf{R}^{n}\right)
$$

such that a boundary problem for a doubly stochastic Hamiltonian system satisfies the following form

$$
\left\{\begin{array}{l}
d y_{t}=H_{Y}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right) d t+H_{Z}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right) d W_{t}-z_{t} d B_{t} \tag{2.1}\\
y(0)=y_{0} \\
-d Y_{t}=H_{y}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right) d t+H_{z}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right) d B_{t}-Z_{t} d W_{t} \\
Y_{T}=\Phi_{y}\left(y_{T}\right)
\end{array}\right.
$$

where $H_{y}, H_{Y}, H_{z}, H_{Z}$ are gradients of the function H with respect to y, Y, z, Z respectively.
This is a sort of time-symmetric FBSDE introduced by Peng and Shi ${ }^{[13]}$. Let

$$
\begin{gathered}
\xi=(y, Y, z, Z)^{\top} \\
\Lambda(t, \xi)=\left(-H_{y}, H_{Y},-H_{z}, H_{Z}\right)^{\top}(t, \xi)
\end{gathered}
$$

We assume the following:
(H1) For each $\xi \in \mathbf{R}^{4 n}, \Lambda(\cdot, \xi)$ is an \mathcal{F}_{t}-measurable vector process defined on $[0, T]$ with $\Lambda(\cdot, 0) \in M^{2}\left(0, T ; \mathbf{R}^{4 n}\right)$, and for each $y \in \mathbf{R}^{n}, \Phi(y)$ is an \mathcal{F}_{T}-measurable random vector with $\Phi(0) \in L^{2}\left(\Omega, \mathcal{F}_{T}, P ; \mathbf{R}^{n}\right)$.

We also assume that Λ and Φ satisfy Lipschitz condition respectively as follows:

$$
\begin{array}{ll}
\left|\Lambda(t, \xi)-\Lambda\left(t, \xi^{\prime}\right)\right| \leq c\left|\xi-\xi^{\prime}\right|, & \forall \xi, \xi^{\prime} \in \mathbf{R}^{4 n} \\
\left|\Phi(y)-\Phi\left(y^{\prime}\right)\right| \leq c\left|y-y^{\prime}\right|, & \forall y, y^{\prime} \in \mathbf{R}^{n} \tag{H2}
\end{array}
$$

The main assumptions are the following monotonicity conditions

$$
\begin{equation*}
\left\langle\Lambda(t, \xi)-\Lambda\left(t, \xi^{\prime}\right), \xi-\xi^{\prime}\right\rangle \leq-\alpha\left|\xi-\xi^{\prime}\right|^{2} \tag{H3}
\end{equation*}
$$

where α is a constant and $\alpha>0$, and

$$
\begin{equation*}
\left\langle\Phi(y)-\Phi\left(y^{\prime}\right), y-y^{\prime}\right\rangle \geq 0, \quad \forall y, y^{\prime} \in \mathbf{R}^{n} \tag{H4}
\end{equation*}
$$

The Theorem 2.2 in [13] is given as follows.
Proposition 2.1 Under the assumptions (H1)-(H4), there exists a unique solution

$$
(y, Y, z, Z)(\cdot) \in M^{2}\left(0, T ; \mathbf{R}^{4 n}\right)
$$

of equation (2.1).

3 Eigenvalue Problem of Linear DSHS

We consider the FBDSHS as follows:

$$
\left\{\begin{align*}
d y_{t}= & {\left[H_{Y}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right)+\lambda h_{2} h^{\top}\left(y_{t}, Y_{t}, z_{t}, Z_{t}\right)\right] d t } \tag{3.1}\\
& +\left[H_{Z}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right)+\lambda h_{4} h^{\top}\left(y_{t}, Y_{t}, z_{t}, Z_{t}\right)\right] d W_{t}-z_{t} d B_{t} \\
-d Y_{t}= & {\left[H_{y}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right)+\lambda h_{1} h^{\top}\left(y_{t}, Y_{t}, z_{t}, Z_{t}\right)\right] d t } \\
& +\left[H_{z}\left(t, y_{t}, Y_{t}, z_{t}, Z_{t}\right)+\lambda h_{3} h^{\top}\left(y_{t}, Y_{t}, z_{t}, Z_{t}\right)\right] d B_{t}-Z_{t} d W_{t} \\
y(0)= & 0, \quad Y_{T}=0
\end{align*}\right.
$$

We assume that

$$
H_{\xi}(\cdot, 0)=0, \quad h(\cdot, 0)=0, \quad \text { for } \xi=\left(y_{t}, Y_{t}, z_{t}, Z_{t}\right)^{\top} .
$$

Obviously, the system has an only trivial solution as $\lambda=0$. The eigenvalue problem of DSHS is to find some $\lambda \neq 0$, such that this system has a nontrivial solution. The corresponding nontrivial solution is called eigenvalue function (the reader can see [14] for details of eigenvalue problem of stochastic differential equations).

Assume that
(H5) $h(\xi)$ is bounded and satisfies Lipschitz condition:

$$
\left|h(\xi)-h\left(\xi^{\prime}\right)\right|^{2} \leq \mu\left|\xi-\xi^{\prime}\right|^{2}, \quad \forall \xi, \xi^{\prime} \in R^{4 n} .
$$

We have the following main results.
Theorem 3.1 Assume that (H1)-(H5) hold. Then the DSHS (3.1) has at most numerable eigenvalues. These eigenvalues are discrete, positive real numbers. Moreover, $\frac{1}{\lambda} \geq 0$ and has a limit 0.

Let

$$
\eta=(u, v, r, s) \in M^{2}\left(0, T ; R^{4 n}\right)
$$

For the sake of proving Theorem 3.1, we investigate the forward backward doubly stochastic differential equations (FBDSDE for short) as follows:

$$
\left\{\begin{array}{l}
d y_{t}=\left[H_{Y}(t, \xi)+h_{2}(\eta)\right] d t+\left[H_{Z}(t, \xi)+h_{4}(\eta)\right] d W_{t}-z_{t} d B_{t} \tag{3.2}\\
-d Y_{t}=\left[H_{y}(t, \xi)+h_{1}(\eta)\right] d t+\left[H_{z}(t, \xi)+h_{3}(\eta)\right] d B_{t}-Z_{t} d W_{t} \\
y(0)=0, \quad Y_{T}=0
\end{array}\right.
$$

We assume that (H1)-(H4) hold. By Proposition 2.1, for any $\eta \in M^{2}\left(0, T ; R^{4 n}\right)$, we obtain that the FBDSDE (3.2) has a unique solution $\xi_{\eta} \in M^{2}\left(0, T ; R^{4 n}\right)$. So we introduce the following map:

$$
\begin{aligned}
\mathcal{A}: & \eta(\cdot) \in M^{2}\left(0, T ; R^{4 n}\right) \rightarrow \xi_{\eta}(\cdot) \in M^{2}\left(0, T ; R^{4 n}\right), \\
& \mathcal{A}(\eta(\cdot))(t)=h^{\top}(\eta) \xi_{\eta}(t) .
\end{aligned}
$$

Firstly, for the map \mathcal{A} we have as follows.
Lemma 3.1 For any $\eta, \eta^{\prime} \in M^{2}\left(0, T ; R^{4 n}\right)$,

$$
\begin{equation*}
\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, \Lambda\left(\xi_{\eta}\right)-\Lambda\left(\xi_{\eta^{\prime}}\right)\right\rangle \mathrm{d} t=-\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, h(\eta)-h\left(\eta^{\prime}\right)\right\rangle \mathrm{d} t \tag{3.3}
\end{equation*}
$$

where ξ_{η}, $\xi_{\eta^{\prime}}$ are the solutions of $F B D S H S$ (3.2) with respect to η, η^{\prime} respectively.
Proof. Applying the generalized Itô formula (see the Lemma 1.3 of [12] for details) to $\left\langle y_{\eta}(t)-y_{\eta^{\prime}}(t), \quad Y_{\eta}(t)-Y_{\eta^{\prime}}(t)\right\rangle$, we have

$$
\begin{aligned}
& d\left\langle y_{\eta}(t)-y_{\eta^{\prime}}(t), Y_{\eta}(t)-Y_{\eta^{\prime}}(t)\right\rangle \\
= & \left\langle y_{\eta}(t)-y_{\eta^{\prime}}(t), d\left(Y_{\eta}(t)-Y_{\eta^{\prime}}(t)\right)\right\rangle+\left\langle d\left(y_{\eta}(t)-y_{\eta^{\prime}}(t)\right), Y_{\eta}(t)-Y_{\eta^{\prime}}(t)\right\rangle \\
& +\left\langle d\left(y_{\eta}(t)-y_{\eta^{\prime}}(t)\right), d\left(Y_{\eta}(t)-Y_{\eta^{\prime}}(t)\right)\right\rangle \\
= & \left\langle\left(\begin{array}{c}
y_{\eta}-y_{\eta^{\prime}} \\
Y_{\eta}-Y_{\eta^{\prime}} \\
z_{\eta}-z_{\eta^{\prime}} \\
Z_{\eta}-Z_{\eta^{\prime}}
\end{array}\right),\left(\begin{array}{c}
-\left[H_{y}\left(t, \xi_{\eta}\right)-H_{y}\left(t, \xi_{\eta^{\prime}}\right)\right]-\left[h_{1}(\eta)-h_{1}\left(\eta^{\prime}\right)\right] \\
{\left[H_{Y}\left(t, \xi_{\eta}\right)-H_{Y}\left(t, \xi_{\eta^{\prime}}\right)\right]+\left[h_{2}(\eta)-h_{2}\left(\eta^{\prime}\right)\right]} \\
-\left[H_{z}\left(t, \xi_{\eta}\right)-H_{z}\left(t, \xi_{\eta^{\prime}}\right)\right]-\left[h_{3}(\eta)-h_{3}\left(\eta^{\prime}\right)\right] \\
{\left[H_{Z}\left(t, \xi_{\eta}\right)-H_{Z}\left(t, \xi_{\eta^{\prime}}\right)\right]+\left[h_{4}(\eta)-h_{4}\left(\eta^{\prime}\right)\right]}
\end{array}\right)\right\rangle d t \\
& +\left\langle\binom{ y_{\eta}-y_{\eta^{\prime}}}{Y_{\eta}-Y_{\eta^{\prime}}},\left(\begin{array}{c}
-\left[H_{z}\left(t, \xi_{\eta}\right)-H_{z}\left(t, \xi_{\eta^{\prime}}\right)\right]-\left[h_{3}(\eta)-h_{3}\left(\eta^{\prime}\right)\right] \\
z_{\eta^{\prime}}(t)-z_{\eta}(t) \\
Z_{\eta^{\prime}}(t)-Z_{\eta}(t)
\end{array}\right)\right\rangle d B_{t} \\
& +\left\langle\binom{ y_{\eta}-y_{\eta^{\prime}}}{Y_{\eta}-Y_{\eta^{\prime}}},\left(\begin{array}{c}
{\left[H_{Z}\left(t, \xi_{\eta}\right)-H_{Z}\left(t, \xi_{\eta^{\prime}}\right)\right]+\left[h_{4}(\eta)-h_{4}\left(\eta^{\prime}\right)\right]}
\end{array}\right)\right\rangle d W_{t} .
\end{aligned}
$$

Noting that

$$
y_{\eta}(0)=y_{\eta^{\prime}}(0)=Y_{\eta}(T)=Y_{\eta^{\prime}}(T)=0,
$$

we integrate it from 0 to T and take expectation on both sides. Then we have that

$$
0=\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, \Lambda\left(\xi_{\eta}\right)-\Lambda\left(\xi_{\eta^{\prime}}\right)\right\rangle \mathrm{d} t+\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, h(\eta)-h\left(\eta^{\prime}\right)\right\rangle \mathrm{d} t
$$

This completes the proof of Lemma 3.1.
Noting the assumption (H3) and (3.3), we have that

$$
\begin{align*}
\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, h(\eta)-h\left(\eta^{\prime}\right)\right\rangle \mathrm{d} t & =-\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, \mathcal{A}\left(\xi_{\eta}\right)-\mathcal{A}\left(\xi_{\eta^{\prime}}\right)\right\rangle \mathrm{d} t \\
& \geq \alpha \mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t \tag{3.4}
\end{align*}
$$

Thus by assumption (H5) and Hölder inequality, we have

$$
\begin{aligned}
\mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t & \leq \frac{1}{\alpha} \mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}-\xi_{\eta^{\prime}}, h(\eta)-h\left(\eta^{\prime}\right)\right\rangle \mathrm{d} t \\
& \leq \frac{1}{\alpha}\left(\mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \cdot\left(\mathrm{E} \int_{0}^{T}\left|h(\eta)-h\left(\eta^{\prime}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& \leq \frac{\mu}{\alpha}\left(\mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t\right)^{1 / 2} \cdot\left(\mathrm{E} \int_{0}^{T}\left|\eta-\eta^{\prime}\right|^{2} \mathrm{~d} t\right)^{1 / 2}
\end{aligned}
$$

Thus

$$
\mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t \leq \frac{\mu^{2}}{\alpha^{2}} \mathrm{E} \int_{0}^{T}\left|\eta-\eta^{\prime}\right|^{2} \mathrm{~d} t
$$

So

$$
\begin{align*}
\left\|\mathcal{A}(\eta(\cdot))-\mathcal{A}\left(\eta^{\prime}(\cdot)\right)\right\|^{2} & =\mathrm{E} \int_{0}^{T}\left|h^{\top}(\eta) \xi_{\eta}-h^{\top}(\eta) \xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t \\
& \leq\left\|h^{\top}(\eta)\right\|^{2} \mathrm{E} \int_{0}^{T}\left|\xi_{\eta}-\xi_{\eta^{\prime}}\right|^{2} \mathrm{~d} t \\
& \leq \frac{\mu^{2}\left\|h^{*}\right\|^{2}}{\alpha^{2}} \mathrm{E} \int_{0}^{T}\left|\eta-\eta^{\prime}\right|^{2} \mathrm{~d} t \tag{3.5}
\end{align*}
$$

This shows that $\mathcal{A}(\eta(\cdot))$ is a bounded continuous map.
Now we assume that the original DSHS is linear, i.e.,

$$
\left\{\begin{align*}
& d y_{t}=\left(H_{21} y_{t}+H_{22} Y_{t}+H_{23} z_{t}+H_{24} Z_{t}\right) d t \tag{3.6}\\
&+\left(H_{41} y_{t}+H_{42} Y_{t}+H_{43} z_{t}+H_{44} Z_{t}\right) d W_{t}-z_{t} d B_{t} \\
&-d Y_{t}=\left(H_{11} y_{t}+H_{12} Y_{t}+H_{13} z_{t}+H_{14} Z_{t}\right) d t \\
&+\left(H_{31} y_{t}+H_{32} Y_{t}+H_{33} z_{t}+H_{34} Z_{t}\right) d B_{t}-Z_{t} d W_{t} \\
& y_{0}=0, \quad Y_{T}=0
\end{align*}\right.
$$

The monotonicity condition (H3) is equivalent to which there exists $\beta>0$ such that

$$
\left[\begin{array}{cccc}
-H_{11} & -H_{12} & -H_{13} & -H_{14} \tag{3.7}\\
H_{21} & H_{22} & H_{23} & H_{24} \\
-H_{31} & -H_{32} & -H_{33} & -H_{34} \\
H_{41} & H_{42} & H_{43} & H_{44}
\end{array}\right] \leq-\mu I_{4 n}
$$

Suppose (3.7) holds. Considering the preceding map \mathcal{A}, we obtain as follows.
Lemma 3.2 The map \mathcal{A} is a linear, bounded, self-adjoint, positive operator.
Proof. It is easy to see that \mathcal{A} is a linear operator. Noticing that $\mathcal{A}(0)=0$ and (3.4), we
have that

$$
\begin{aligned}
\mathrm{E} \int_{0}^{T}\langle\mathcal{A}(\eta(t)), \eta(t)\rangle \mathrm{d} t & =\mathrm{E} \int_{0}^{T}\left\langle\xi_{\eta}(t), h(\eta)\right\rangle \mathrm{d} t \\
& \geq \alpha \mathrm{E} \int_{0}^{T}\left|\xi_{\eta}\right|^{2} \mathrm{~d} t \\
& \geq 0
\end{aligned}
$$

So \mathcal{A} is positive.
We then prove \mathcal{A} is self-adjoint. Applying the generalized Itô formula to $\left\langle y_{\eta}, Y_{\eta^{\prime}}\right\rangle$, $\left\langle y_{\eta^{\prime}}, Y_{\eta}\right\rangle$, we have that

$$
\begin{aligned}
d\left\langle y_{\eta}, Y_{\eta^{\prime}}\right\rangle= & \left\langle y_{\eta},\left(-H_{y} \xi_{\eta^{\prime}}-h_{1} \eta^{\prime}\right) d t-\left(H_{z} \xi_{\eta^{\prime}}+h_{3} \eta^{\prime}\right) d B_{t}+Z_{\eta^{\prime}} d W_{t}\right\rangle \\
& +\left\langle Y_{\eta^{\prime}},\left(H_{Y} \xi_{\eta}-h_{2} \eta\right) d t+\left(H_{Z} \xi_{\eta}+h_{4} \eta\right) d W_{t}-z_{\eta} d B_{t}\right\rangle \\
& +\left\langle Z_{\eta^{\prime}}, H_{Z} \xi_{\eta}+h_{4} \eta\right\rangle d t-\left\langle z_{\eta}, H_{z} \xi_{\eta^{\prime}}+h_{3} \eta^{\prime}\right\rangle d t, \\
d\left\langle y_{\eta^{\prime}}, Y_{\eta}\right\rangle= & \left\langle y_{\eta^{\prime}},\left(-H_{y} \xi_{\eta}-h_{1} \eta\right) d t-\left(H_{z} \xi_{\eta}+h_{3} \eta\right) d B_{t}+Z_{\eta} d W_{t}\right\rangle \\
& +\left\langle Y_{\eta},\left(H_{Y} \xi_{\eta^{\prime}}-h_{2} \eta^{\prime}\right) d t+\left(H_{Z} \xi_{\eta^{\prime}}+h_{4} \eta^{\prime}\right) d W_{t}-z_{\eta^{\prime}} d B_{t}\right\rangle \\
& +\left\langle Z_{\eta}, H_{Z} \xi_{\eta^{\prime}}+h_{4} \eta^{\prime}\right\rangle d t-\left\langle z_{\eta^{\prime}}, H_{z} \xi_{\eta}+h_{3} \eta\right\rangle d t .
\end{aligned}
$$

Noting that

$$
y_{\eta}(0)=y_{\eta^{\prime}}(0)=Y_{\eta}(T)=Y_{\eta^{\prime}}(T)=0
$$

we integrate it from 0 to T and take expectation on both sides. Then we have that

$$
\begin{aligned}
& \mathrm{E} \int_{0}^{T}\left\{\left\langle y_{\eta},-H_{y} \xi_{\eta^{\prime}}-h_{1} \eta^{\prime}\right\rangle+\left\langle Y_{\eta^{\prime}}, H_{Y} \xi_{\eta}-h_{2} \eta\right\rangle\right. \\
& \left.+\left\langle z_{\eta}, H_{z} \xi_{\eta^{\prime}}+h_{3} \eta^{\prime}\right\rangle+\left\langle Z_{\eta^{\prime}}, H_{Z} \xi_{\eta}+h_{4} \eta\right\rangle\right\} \mathrm{d} t \\
= & \mathrm{E} \int_{0}^{T}\left\{\left\langle y_{\eta^{\prime}},-H_{y} \xi_{\eta}-h_{1} \eta\right\rangle+\left\langle Y_{\eta}, H_{Y} \xi_{\eta^{\prime}}-h_{2} \eta^{\prime}\right\rangle\right. \\
& \left.-\left\langle z_{\eta^{\prime}}, H_{z} \xi_{\eta}+h_{3} \eta\right\rangle+\left\langle Z_{\eta}, H_{Z} \xi_{\eta^{\prime}}+h_{4} \eta^{\prime}\right\rangle\right\} \mathrm{d} t .
\end{aligned}
$$

Noting that H is symmetric and the definition of $\mathcal{A}(\eta(\cdot))$, we have that

$$
\mathrm{E} \int_{0}^{T}\left\langle\mathcal{A}(\eta(t)), \eta^{\prime}(t)\right\rangle \mathrm{d} t=\mathrm{E} \int_{0}^{T}\left\langle\mathcal{A}\left(\eta^{\prime}(t)\right), \eta(t)\right\rangle \mathrm{d} t
$$

This completes the proof of Lemma 3.2.
Now considering the eigenvalue problem of operator \mathcal{A}, we find some $\lambda \neq 0$ such that

$$
\lambda \mathcal{A}(\eta)=\eta
$$

has nontrivial solutions. By the definition of \mathcal{A}, we have that

$$
\eta=\lambda h^{\top} \xi_{\eta} .
$$

Substituting it into (3.2), we obtain (3.1). Hence the eigenvalue problem of DSHS (3.1) is equivalent to the eigenvalue problem of operator \mathcal{A}. By Lemmas 3.1, 3.2 and Hilbert-Schmidt spectrum theory, we get Theorem 3.1.

References

[1] Kushner, H. J., Necessary conditions for continuous parameter stochastic optimization problems, SIAM J. Control, 10(1972), 550-565.
[2] Bismut, J. M., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44(1973), 384-404.
[3] Bismut, J. M., An introductory approach to duality in optimal stochastic control. SIAM Rev., 20(1)(1978), 62-78.
[4] Haussmann, U. G., General necessary conditions for optimal control of stochastic system, Math. Programm. Stud., 6(1976), 34-48.
[5] Bensoussan, A., Lectures on Stochastic Control, Lecture Notes in Math., Vol. 972, Nonlinear Filtering and Stochastic Control, Proceeding, Cortona, 1981.
[6] Peng, S., A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28(1990), 966-979.
[7] Antonelli, F., Backward-forward stochastic differential equations, Ann. Appl. Probab., 3(1993), 777-793.
[8] Ma, J., Protter, P. and Yong, J., Solving forward-backward stochastic differential equations, Systems Control Lett., 14(1990), 55-61.
[9] Hu, Y. and Peng, S., Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103(1995), 273-283.
[10] Peng, S. and Wu, Z., Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37(1999), 825-843.
[11] Yong, J., Finding adapted solutions of forward-backward stochastic differential equations method of continuation, Probab. Theory Related Fields, 107(1997), 537-572.
[12] Pardoux, E. and Peng, S., Backward doubly stochastic differential equations and systems of quasilinear parabolic SPDE's, Probab. Theory Related Fields, 98(1994), 209-227.
[13] Peng, S. and Shi, Y., A type of time-symmetric forward-backward stochastic differential equations, C. R. Math. Acad. Sci. Paris, 336(2003), 773-778.
[14] Peng, S., Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions, Stochastic Process. Appl., 88(2000), 259-290.

[^0]: *Received date: July 4, 2008.
 Foundation item: The NSF (10601019 and J0630104) of China, Chinese Postdoctoral Science Foundation and 985 Program of Jilin University.

