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Abstract: In this paper, we investigate the eigenvalue problem of forward-backward

doubly stochastic differential equations with boundary value conditions. We show

that this problem can be represented as an eigenvalue problem of a bounded continu-

ous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we

can characterize the eigenvalues exactly.
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1 Introduction

Stochastic Hamiltonian systems were introduced in the theory of stochastic optimal con-

trol as a necessary condition of an optimal control, known as the stochastic version of the

maximum principle of Pontryagin’s type (see [1]–[6]). In fact, those stochastic Hamiltonian

systems with boundary conditions are forward-backward stochastic differential equations

(FBSDE for short). These have been extensively investigated by Antonelli[7], Ma et al.[8],

Hu and Peng[9], Peng and Wu[10], Yong[11]. Recently, combining the FBSDE and the back-

ward doubly stochastic differential equations introduced by Pardoux and Peng[12], Peng and

Shi[13] have investigated a type of time-symmetric FBSDE. They showed the uniqueness and

existence of solutions for these equations under certain monotonicity conditions.

In this paper, we study a special type of time-symmetric FBSDE, namely doubly stochas-

tic Hamiltonian systems (DSHS for short). We discuss the eigenvalue problem of this type
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of stochastic Hamiltonian system in a standard functional analysis way.

The rest of this paper is organized as follows. The next section begins with a general

formulation of time-symmetric FBSDE, then a special case, DSHS with boundary conditions.

In Section 3, we give the proof of the main results.

2 Preliminaries

Let (Ω ,F , P ) be a probability space and T > 0 be fixed throughout this paper. Let {Wt :

0 ≤ t ≤ T } and {Bt : 0 ≤ t ≤ T } be two mutually independent standard Brownian motions

which are Rd-valued processes defined on (Ω ,F , P ). Without loss of generality, we assume

that d = 1. Let N denote the class of P -null sets of F . For each t ∈ [0, T ], we define

Ft
∆
= Fw

t ∨ FB
t,T ,

where

Fw
t = N ∨ σ{Wr −W0 : 0 ≤ r ≤ t},

FB
t,T = N ∨ σ{Br −Bt : t ≤ r ≤ T }.

Note that the collection {Ft : t ∈ [0, T ]} is neither increasing nor decreasing. Thus it

does not constitute a filtration.

Let M2(0, T ;Rn) denote the set of all classes (dt × dP is equal a.e.) Ft-measurable

stochastic processes {ϕt : t ∈ [0, T ]} which satisfy

E

∫ T

0

|ϕt|
2dt < +∞.

For a given ϕt, ψt ∈M2(0, T ;Rn), one can define the forward Itô integration

∫ ·

0

ϕsdWs

and the backward Itô integration

∫ T

·

ψsdBs. They are both in M2(0, T ;Rn).

Let H(y, Y, z, Z) : Rn ×Rn ×Rn ×Rn → R and Φ(y) : Rn → R be C1 functions. Find

a triple

(y, Y, z, Z) ∈M2(0, T ;Rn)

such that a boundary problem for a doubly stochastic Hamiltonian system satisfies the

following form


























dyt = HY (t, yt, Yt, zt, Zt)dt+HZ(t, yt, Yt, zt, Zt)dWt − ztdBt,

y(0) = y0,

−dYt = Hy(t, yt, Yt, zt, Zt)dt+Hz(t, yt, Yt, zt, Zt)dBt − ZtdWt,

YT = Φy(yT ),

(2.1)

whereHy,HY ,Hz ,HZ are gradients of the functionH with respect to y, Y , z, Z respectively.

This is a sort of time-symmetric FBSDE introduced by Peng and Shi[13]. Let

ξ = (y, Y, z, Z)⊤,

Λ(t, ξ) = (−Hy, HY ,−Hz, HZ)⊤(t, ξ).

We assume the following:
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(H1) For each ξ ∈ R4n, Λ( · , ξ) is an Ft-measurable vector process defined on [0, T ] with

Λ( · , 0) ∈ M2(0, T ;R4n), and for each y ∈ Rn, Φ(y) is an FT -measurable random vector

with Φ(0) ∈ L2(Ω ,FT , P ;Rn).

We also assume that Λ and Φ satisfy Lipschitz condition respectively as follows:

(H2)
|Λ(t, ξ) − Λ(t, ξ′)| ≤ c|ξ − ξ′|, ∀ξ, ξ′ ∈ R4n;

|Φ(y) − Φ(y′)| ≤ c|y − y′|, ∀y, y′ ∈ Rn.

The main assumptions are the following monotonicity conditions

(H3) 〈Λ(t, ξ) − Λ(t, ξ′), ξ − ξ′〉 ≤ −α|ξ − ξ′|2,

where α is a constant and α > 0, and

(H4) 〈Φ(y) − Φ(y′), y − y′〉 ≥ 0, ∀y, y′ ∈ Rn.

The Theorem 2.2 in [13] is given as follows.

Proposition 2.1 Under the assumptions (H1)–(H4), there exists a unique solution

(y, Y, z, Z)( · ) ∈M2(0, T ;R4n)

of equation (2.1).

3 Eigenvalue Problem of Linear DSHS

We consider the FBDSHS as follows:






































dyt = [HY (t, yt, Yt, zt, Zt) + λh2h
⊤(yt, Yt, zt, Zt)]dt

+[HZ(t, yt, Yt, zt, Zt) + λh4h
⊤(yt, Yt, zt, Zt)]dWt − ztdBt,

−dYt = [Hy(t, yt, Yt, zt, Zt) + λh1h
⊤(yt, Yt, zt, Zt)]dt

+[Hz(t, yt, Yt, zt, Zt) + λh3h
⊤(yt, Yt, zt, Zt)]dBt − ZtdWt,

y(0) = 0, YT = 0.

(3.1)

We assume that

Hξ( · , 0) = 0, h( · , 0) = 0, for ξ = (yt, Yt, zt, Zt)
⊤.

Obviously, the system has an only trivial solution as λ = 0. The eigenvalue problem of

DSHS is to find some λ 6= 0, such that this system has a nontrivial solution. The corre-

sponding nontrivial solution is called eigenvalue function (the reader can see [14] for details

of eigenvalue problem of stochastic differential equations).

Assume that

(H5) h(ξ) is bounded and satisfies Lipschitz condition:

|h(ξ) − h(ξ′)|2 ≤ µ|ξ − ξ′|2, ∀ξ, ξ′ ∈ R4n.

We have the following main results.

Theorem 3.1 Assume that (H1)–(H5) hold. Then the DSHS (3.1) has at most numerable

eigenvalues. These eigenvalues are discrete, positive real numbers. Moreover,
1

λ
≥ 0 and

has a limit 0.
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Let

η = (u, v, r, s) ∈M2(0, T ;R4n).

For the sake of proving Theorem 3.1, we investigate the forward backward doubly stochastic

differential equations (FBDSDE for short) as follows:














dyt = [HY (t, ξ) + h2(η)]dt+ [HZ(t, ξ) + h4(η)]dWt − ztdBt,

−dYt = [Hy(t, ξ) + h1(η)]dt + [Hz(t, ξ) + h3(η)]dBt − ZtdWt,

y(0) = 0, YT = 0.

(3.2)

We assume that (H1)–(H4) hold. By Proposition 2.1, for any η ∈M2(0, T ;R4n), we obtain

that the FBDSDE (3.2) has a unique solution ξη ∈ M2(0, T ;R4n). So we introduce the

following map:

A : η(·) ∈M2(0, T ;R4n) → ξη(·) ∈M2(0, T ;R4n),

A(η(·))(t) = h⊤(η)ξη(t).

Firstly, for the map A we have as follows.

Lemma 3.1 For any η, η′ ∈M2(0, T ;R4n),

E

∫ T

0

〈ξη − ξη′ , Λ(ξη) − Λ(ξη′)〉dt = −E

∫ T

0

〈ξη − ξη′ , h(η) − h(η′)〉dt, (3.3)

where ξη, ξη′ are the solutions of FBDSHS (3.2) with respect to η, η′ respectively.

Proof. Applying the generalized Itô formula (see the Lemma 1.3 of [12] for details) to

〈yη(t) − yη′(t), Yη(t) − Yη′(t)〉, we have

d〈yη(t) − yη′(t), Yη(t) − Yη′(t)〉

= 〈yη(t) − yη′(t), d(Yη(t) − Yη′(t))〉 + 〈d(yη(t) − yη′(t)), Yη(t) − Yη′(t)〉

+ 〈d(yη(t) − yη′(t)), d(Yη(t) − Yη′(t))〉

=

〈















yη − yη′

Yη − Yη′

zη − zη′

Zη − Zη′















,















−[Hy(t, ξη) −Hy(t, ξη′ )] − [h1(η) − h1(η
′)]

[HY (t, ξη) −HY (t, ξη′ )] + [h2(η) − h2(η
′)]

−[Hz(t, ξη) −Hz(t, ξη′)] − [h3(η) − h3(η
′)]

[HZ(t, ξη) −HZ(t, ξη′ )] + [h4(η) − h4(η
′)]















〉

dt

+

〈(

yη − yη′

Yη − Yη′

)

,

(

−[Hz(t, ξη) −Hz(t, ξη′ )] − [h3(η) − h3(η
′)]

zη′(t) − zη(t)

)〉

dBt

+

〈(

yη − yη′

Yη − Yη′

)

,

(

Zη′(t) − Zη(t)

[HZ(t, ξη) −HZ(t, ξη′)] + [h4(η) − h4(η
′)]

)〉

dWt.

Noting that

yη(0) = yη′(0) = Yη(T ) = Yη′(T ) = 0,

we integrate it from 0 to T and take expectation on both sides. Then we have that

0 = E

∫ T

0

〈ξη − ξη′ , Λ(ξη) − Λ(ξη′)〉dt + E

∫ T

0

〈ξη − ξη′ , h(η) − h(η′)〉dt.
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This completes the proof of Lemma 3.1.

Noting the assumption (H3) and (3.3), we have that

E

∫ T

0

〈ξη − ξη′ , h(η) − h(η′)〉dt = − E

∫ T

0

〈ξη − ξη′ , A(ξη) −A(ξη′ )〉dt

≥ αE

∫ T

0

|ξη − ξη′ |2dt. (3.4)

Thus by assumption (H5) and Hölder inequality, we have

E

∫ T

0

|ξη − ξη′ |2dt ≤
1

α
E

∫ T

0

〈ξη − ξη′ , h(η) − h(η′)〉dt

≤
1

α

(

E

∫ T

0

|ξη − ξη′ |2dt
)1/2

·
(

E

∫ T

0

|h(η) − h(η′)|2dt
)1/2

≤
µ

α

(

E

∫ T

0

|ξη − ξη′ |2dt
)1/2

·
(

E

∫ T

0

|η − η′|2dt
)1/2

.

Thus

E

∫ T

0

|ξη − ξη′ |2dt ≤
µ2

α2
E

∫ T

0

|η − η′|2dt.

So

‖A(η(·)) −A(η′(·))‖2 = E

∫ T

0

|h⊤(η)ξη − h⊤(η)ξη′ |2dt

≤ ‖h⊤(η)‖2E

∫ T

0

|ξη − ξη′ |2dt

≤
µ2‖h∗‖2

α2
E

∫ T

0

|η − η′|2dt. (3.5)

This shows that A(η(·)) is a bounded continuous map.

Now we assume that the original DSHS is linear, i.e.,


































dyt = (H21yt +H22Yt +H23zt +H24Zt)dt

+(H41yt +H42Yt +H43zt +H44Zt)dWt − ztdBt,

−dYt = (H11yt +H12Yt +H13zt +H14Zt)dt

+(H31yt +H32Yt +H33zt +H34Zt)dBt − ZtdWt,

y0 = 0, YT = 0.

(3.6)

The monotonicity condition (H3) is equivalent to which there exists β > 0 such that














−H11 −H12 −H13 −H14

H21 H22 H23 H24

−H31 −H32 −H33 −H34

H41 H42 H43 H44















≤ −µI4n. (3.7)

Suppose (3.7) holds. Considering the preceding map A, we obtain as follows.

Lemma 3.2 The map A is a linear, bounded, self-adjoint, positive operator.

Proof. It is easy to see that A is a linear operator. Noticing that A(0) = 0 and (3.4), we
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have that

E

∫ T

0

〈A(η(t)), η(t)〉dt = E

∫ T

0

〈ξη(t), h(η)〉dt

≥ αE

∫ T

0

|ξη|
2dt

≥ 0.

So A is positive.

We then prove A is self-adjoint. Applying the generalized Itô formula to 〈yη, Yη′〉,

〈yη′ , Yη〉, we have that

d〈yη, Yη′〉 = 〈yη, (−Hyξη′ − h1η
′)dt− (Hzξη′ + h3η

′)dBt + Zη′dWt〉

+ 〈Yη′ , (HY ξη − h2η)dt+ (HZξη + h4η)dWt − zηdBt〉

+ 〈Zη′ , HZξη + h4η〉dt− 〈zη, Hzξη′ + h3η
′〉dt,

d〈yη′ , Yη〉 = 〈yη′ , (−Hyξη − h1η)dt− (Hzξη + h3η)dBt + ZηdWt〉

+ 〈Yη, (HY ξη′ − h2η
′)dt+ (HZξη′ + h4η

′)dWt − zη′dBt〉

+ 〈Zη, HZξη′ + h4η
′〉dt− 〈zη′ , Hzξη + h3η〉dt.

Noting that

yη(0) = yη′(0) = Yη(T ) = Yη′(T ) = 0,

we integrate it from 0 to T and take expectation on both sides. Then we have that

E

∫ T

0

{〈yη, −Hyξη′ − h1η
′〉 + 〈Yη′ , HY ξη − h2η〉

+ 〈zη, Hzξη′ + h3η
′〉 + 〈Zη′ , HZξη + h4η〉}dt

= E

∫ T

0

{〈yη′ , −Hyξη − h1η〉 + 〈Yη, HY ξη′ − h2η
′〉

− 〈zη′ , Hzξη + h3η〉 + 〈Zη, HZξη′ + h4η
′〉}dt.

Noting that H is symmetric and the definition of A(η(·)), we have that

E

∫ T

0

〈A(η(t)), η′(t)〉dt = E

∫ T

0

〈A(η′(t)), η(t)〉dt.

This completes the proof of Lemma 3.2.

Now considering the eigenvalue problem of operator A, we find some λ 6= 0 such that

λA(η) = η

has nontrivial solutions. By the definition of A, we have that

η = λh⊤ξη.

Substituting it into (3.2), we obtain (3.1). Hence the eigenvalue problem of DSHS (3.1) is

equivalent to the eigenvalue problem of operatorA. By Lemmas 3.1, 3.2 and Hilbert-Schmidt

spectrum theory, we get Theorem 3.1.

References

[1] Kushner, H. J., Necessary conditions for continuous parameter stochastic optimization prob-
lems, SIAM J. Control, 10(1972), 550–565.



36 COMM. MATH. RES. VOL. 25

[2] Bismut, J. M., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl.,
44(1973), 384–404.

[3] Bismut, J. M., An introductory approach to duality in optimal stochastic control. SIAM Rev.,

20(1)(1978), 62–78.

[4] Haussmann, U. G., General necessary conditions for optimal control of stochastic system,
Math. Programm. Stud., 6(1976), 34–48.

[5] Bensoussan, A., Lectures on Stochastic Control, Lecture Notes in Math., Vol. 972, Nonlinear
Filtering and Stochastic Control, Proceeding, Cortona, 1981.

[6] Peng, S., A general stochastic maximum principle for optimal control problems, SIAM J.

Control Optim., 28(1990), 966–979.

[7] Antonelli, F., Backward-forward stochastic differential equations, Ann. Appl. Probab., 3(1993),
777–793.

[8] Ma, J., Protter, P. and Yong, J., Solving forward-backward stochastic differential equations,
Systems Control Lett., 14(1990), 55–61.

[9] Hu, Y. and Peng, S., Solution of forward-backward stochastic differential equations, Probab.

Theory Related Fields, 103(1995), 273–283.

[10] Peng, S. and Wu, Z., Fully coupled forward-backward stochastic differential equations and
applications to optimal control, SIAM J. Control Optim., 37(1999), 825–843.

[11] Yong, J., Finding adapted solutions of forward-backward stochastic differential equations -
method of continuation, Probab. Theory Related Fields, 107(1997), 537–572.

[12] Pardoux, E. and Peng, S., Backward doubly stochastic differential equations and systems of
quasilinear parabolic SPDE’s, Probab. Theory Related Fields, 98(1994), 209–227.

[13] Peng, S. and Shi, Y., A type of time-symmetric forward-backward stochastic differential equa-
tions, C. R. Math. Acad. Sci. Paris, 336(2003), 773–778.

[14] Peng, S., Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,
Stochastic Process. Appl., 88(2000), 259–290.


