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Abstract: In this note, we establish several results concerning the gliding hump

properties of matrix domains. In order to discuss F -WGHP, we introduce the UAK-

property and find that this sort of property has close relationship with F -WGHP. In

the course of discussing F -WGHP and WGHP of (c0)Cn
, we discuss the F -WGHP

and WGHP of the almost-null sequence space f0.

Key words: matrix domain, UAK-property, gliding hump property, sequence space

2000 MR subject classification: 40C05, 46A04, 46A45

Document code: A

Article ID: 1674-5647(2009)01-0069-10

1 Introduction

Recently, Boos and his collaborators have presented classes of infinite matrices A such that

the matrix domain EA has a certain gliding hump property whenever a given sequence space

E has this property in [1]. In this note we discuss the F -WGHP and WGHP of (c0)Cn
, then

give the F -WGHP and WGHP of the almost-null sequence space f0.

The gliding hump technique of proof was originally introduced by Lebesgue (see [2]).

Now this kind of method has been used to treat numerous topics in analysis, and this

kind of property was generalized extensively and used to establish some important results,

and you can refer to [3], [4] for detailed information. While there are known examples

of sequence spaces possessing the various gliding hump properties, there are few known

examples of spaces with signed gliding hump and signed F -gliding hump properties so it

would be of interest to have constructions which provide examples of sequence spaces with
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various gliding hump properties. In [1], Boos and his collaborators introduced a general

procedure for constructing a sequence space from a given sequence and an infinite matrix.

In this note we continue to use this procedure given by J. Boos to construct examples of

sequence spaces with singed F -weak gliding hump and F -weak gliding hump properties.

2 Notations and Preliminaries

We begin by fixing the notations and describing the general procedure which we employ

for generating sequence spaces from infinite matrices. Let E be a vector space of scalar

sequences which contains the subspace c00 of all sequences which are eventually 0. Let

A = [aij ]

be an infinite matrix. If x = (xj) is a scalar sequence, let

Ax =
( ∞∑

j=1

aijxj

)

be the image of x under the matrix A provided each series
∞∑

j=1

aijxj converge for every i.

We use the sequence space E and matrix A to generate a further sequence space. We define

EA to be the vector space of all sequences x such that Ax ∈ E. Then A is a linear map from

EA into E. Some of the familiar sequence spaces can be generated by this construction.

In particular, cA and (c0)A are the spaces of all sequences which are A-summable and A-

summable to 0, respectively. Note, EA is an FK-space whenever E is.

Example 2.1 Let B = [bij ] be the matrix with bij = 1 for j ≤ i and bij = 0 otherwise.

Then l∞B = bs, the space of bounded series, and cB = cs, the space of convergent series.

Example 2.2 Let n be an arbitrary nonnegative integer and Cn = (cij) be the matrix

with cij = 1/i for n + 1 ≤ j ≤ i + n and cij = 0 otherwise. Then Cn becomes the Cesàro

matrix when n = 0. So we call Cn to be generalized Cesàro matrix. In particular, l∞Cn
is the

vector space of sequences with bounded averages

l∞Cn
=

{
x : sup

k∈N

∣∣∣
1

k

k+n∑

j=n

xj

∣∣∣ < ∞
}

.

Example 2.3 More generally, we consider Riesz matrices (means) Rp (instead C0) also

known as weighed means: we consider exclusively real sequences p = (pk) with

p1 > 0, pk ≥ 0 (k ∈ N), and Pn :=

n∑

k=1

pk (k ∈ N) (2.1)

Then the Riesz matrix Rp = (rij) (associated with p) is defined by

rij =

{
pj/Pi, if j ≤ i;

0, otherwise.

Note that if p = (1, 1, · · · ), then Rp = C1. Each Riesz matrix Rp is conservative and is

either regular (being equivalent to p /∈ l1) or coercive (see [5], Section 3.2).
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Example 2.4 Let B1 = [bij ] be the matrix with bii = 1, bi+1,i = −1 and bij=0 otherwise.

Then

l1B1
= bv,

the space of sequences of bounded variation. Also csB1
= c and bsB1

= l∞.

Example 2.5 Let Dn = [dij ] be the matrix with di,i+n = i, di+1,i+n = −i and dij=0

otherwise, in which n is a nonnegative integer. Then (l∞C0
)D0

= l∞. Also ((c0)C0
)D0

= c0.

3 An Algebra Problem

In [1], the authors posed the following general (algebraic) problem:

(A) If the sequence space E has the (algebraic) property P, for what matrices A does

the space EA have the property P?

We now consider problem (A) for the weak gliding hump, F -weak gliding hump, signed

weak gliding hump and signed F -weak gliding hump properties. In [1], the authors have

discussed the problems (A) for the weak gliding hump property and signed weak gliding

hump property. They obtained some beautiful results and, in the same time, posed some

open problems on these two kinds of gliding hump property; it is suggested to see [1] for

more information. An interval in N is a set of the form

[m, n] = {k ∈ N : m ≤ k ≤ n}, m ≤ n.

A sequence of intervals (Ik) is increasing if for all k

max Ik < min Ik+1.

If x = (xk) is a scalar sequence and I is an interval, then χIx denotes the coordinatewise

product of x and χI the characteristic function of I. Let F be a finite subset of N . Then F

is a net if F is directed by inclusion.

Definition 3.1 The space E is said to have the signed weak gliding hump property (simply

signed WGHP) if whenever x ∈ E and (Ik) is an increasing sequence of intervals, there is a

strictly increasing sequence (nk) and a sequence of signs (sk), (sk) = ±1 for every k, such

that the coordinatewise sum

x̃ =

∞∑

j=1

skχInk
x

belongs to E. The space E has the weak gliding hump property (WGHP) if the sign sk above

is equal to 1 for each k.

Definition 3.2[6] E is said to have the signed F -weak gliding hump property (signed F -

WGHP) if whenever x ∈ E and {σk} is an increasing sequence of subsets of F , there is a

sequence of signs {sk} and a subsequence {nk} such that the coordinatewise sum of the series
∞∑

k=1

skχσnk
x belongs to E; if all the signs sk are equal to 1, E is said to have the F -WGHP.
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Of course, the difference between the signed WGHP and the property defined above is

the use of increasing sequences of arbitrary finite subsets of N or intervals.

Remark 3.1 Any monotone space obviously has signed F -WGHP. An example which is

a non-monotone space with F -WGHP was given in [6]. Obviously, signed F -WGHP (F -

WGHP) implies signed WGHP (WGHP). The converse implication does not hold. In fact,

bs has signed WGHP but it does not have signed F -WGHP. The proof is contained in the

example 31 in [6].

Example 3.1 The space cs has WGHP, but we show that it does not have F -WGHP. Let

x = {1, −1,
1

2
, −

1

2
, · · · } ∈ cs.

Set

σ0 = {1}, σ1 = {3, 5, 7}, · · ·

where σk consists of 3k consecutive odd integers. Let

yk =
∑

j∈σk

xj .

We show that
∞∑

j=0

yj = lim
n

n∑

j=0

yj = ∞,

which implies that

Σχσnk
x /∈ cs.

In fact, for each j ∈ N , we have

yj =
∑

j∈σk

xj =

(3k+1−1)/2∑

j=(3k+1)/2

1

j
> 3k 2

3k+1
=

2

3
.

A similar argument shows that
∑

χσk
x /∈ cs for any subsequence {nk}, so cs does not have

F -WGHP.

Theorem 3.1 If E has F -WGHP (signed F -WGHP) then ED has F -WGHP (signed

F -WGHP) for any diagonal matrix D.

Proof. The proof is similar to that of Theorem 3.2 in [1].

Corollary 3.1 Suppose that E does not F -WGHP (signed F -WGHP) and WGHP (signed

WGHP). Let D be the diagonal matrix with dk 6= 0 down the diagonal. Then ED does not

have F -WGHP (signed F -WGHP) and WGHP (signed WGHP).

Proof. If D be the diagonal matrix with dk 6= 0 down the diagonal, then D−1 be the

diagonal matrix with 1/dk 6= 0 down the diagonal. So if ED has, for example, F -WGHP,

then E = (ED)D−1 would have F -WGHP by Theorem 3.1, which contradicts the assumption

of E. For the case of other properties, the proof is similar.

Since bs does not have WGHP and signed F -WGHP, cs does not have F -WGHP, and c

does not have signed WGHP, we have the following
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Corollary 3.2 Let D be the same as in Corollary 3.1. Then bsD does not have WGHP

and signed F -WGHP, csD does not have F -WGHP, and cD does not have signed WGHP.

Example 3.2 Note that c0 is a monotone space, so it has WGHP, signed WGHP, signed

F -WGHP and F -WGHP. But (c0)D0
(in Example 2.5, when n=0, Dn becomes D0) has none

of the four GHPs. It is clear that F -WGHP and signed F -WGHP imply WGHP and signed

WGHP respectively. So if (c0)D0
does not have WGHP (signed WGHP), then it does not

have F -WGHP (signed F -WGHP). Thus it is sufficient to check that (c0)D0
does not have

F -WGHP and signed F -WGHP. It is obvious that

x = {1,
1

2
, · · · ,

1

k
, · · · } ∈ (c0)D0

,

since

D0x = (1, 0, 0, · · · ) ∈ c0.

But if (Ik) is an increasing sequence of intervals and (nk) is an arbitrary subsequence of {k},

then

x̃ =

∞∑

k=1

χInk
x /∈ (c0)D0

,

since D0x̃ has infinite many zeros and ones, i.e., D0x̃ /∈ c0. Thus it is to say that the

conclusion is true for WGHP. In the case of signed WGHP, x, (Ik) and (nk) are the same

as described above. Let (sk) be a sequence of signs. Then

ỹ =

∞∑

k=1

snk
χInk

x /∈ (c0)D0

since D0ỹ has infinite many zeros, ones, and negative ones, i.e., D0ỹ /∈ c0.

Example 3.3 Note that l∞ is a monotone space, so it has signed F -WGHP, but l∞B = bs

does not have signed F -WGHP. So Theorem 3.1 does not hold for arbitrary triangular ma-

trices. On the contrary, though bs does not have signed F -WGHP, bsB1
= l∞ has signed

F -WGHP.

We next consider the case when the space E has a locally convex Hausdorff topology

under which E is a K-space, i.e., under which the coordinate functionals

x = (xk) → xk

are continuous. We say that E has the property AK if each pn is continuous and

pnx → x, ∀x ∈ E,

in which pn is the section map E → E which sends x = (x1, x2, · · · ) to (x1, x2, · · · , xn, 0,

· · · ). Let P be a family of semi-norms which generates the topology of E. We give EA the

locally convex topology generated by the semi-norms

pA(x) = p(Ax), p ∈ P

and

pk(x) = |xk|, k ∈ N.

Note that EA is a K-space and A : EA → E is a continuous linear map.
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In [1], it is shown that for any p satisfying (2.1) the space (c0)Rp
has WGHP. Boos did

this by showing that (c0)Rp
is an FK-AK-space (see its definition in [5], p. 357) and any

such space has WGHP (see [7], Theorem 3.31d and also [8], Theorem 3.1 where it is shown

that FK-AK-spaces enjoy even the so-called absolute strong P GHP which is essentially

stronger than WGHP).

Remark 3.2[6] In general, there is no comparison between WGHP and AK. For example,

let E = l∞ with the sup-norm. Then E has WGHP but not AK. While (c, ω(c, l1)) has

Ak but does not have WGHP, since scalar sequence space λ is AK for ω(λ, λβ).

Let ω be the space of all scalar sequences

x = (xk)

and

H := {h ∈ ω|hk = 0 or hk = 1 for all k}.

Let

Hφ = H
⋂

c00.

Then the set Hφ is a directed set under the relation

h′′ ≻ h′

defined by

h′′
k ≥ h′

k, ∀k.

The space E is said to have the property UAK if for each

x = (xk),

the net

h · x = (hkxk),

where h = (hk) ranges over Hφ, converges to x under the topology of E.

Proposition 3.1 FK-UAK space E has the F -WGHP.

Proof. Suppose σk be an increasing sequence of finite subset of F and x ∈ E. Then there

is a subsequence nk such that {χ∪σnk
x : k ∈ N} is a Cauchy sequence with the assumption

that this space has the UAK-property. So when k → ∞, there exists another element x̃,

such that

χ∪σnk
x =

∞∑

n=1

χσnk
x = x̃ ∈ E

since the space E is an FK space, i.e., E has F -WGHP.

Example 3.4 For each nonnegative integer n, (c0)Cn
does not have UAK-property and

F -WGHP.

It is obvious that

x = {1, −1, · · · , 1, −1, · · · } ∈ (c0)Cn
,
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since

Cnx = {(−1)n+1, 0,
(−1)n+3

3
, 0, · · · ,

(−1)n+k

k
, 0, · · · } ∈ c0.

Set

σ0 = {1}, σ1 = {3, 5, 7}, · · ·

where σk consists of 3k (k = 0, 1, 2, · · · ) consecutive odd integers. Let

x̃ =

∞∑

k=0

χσk
x.

In the following we show that x̃ /∈ (c0)Cn
. In fact, we have

Cnx̃ =
{ 1

n + 1
,

1

n + 2
,

2

n + 3
,

2

n + 4
, · · · ,

i

n + 2i − 1
,

i

n + 2i
, · · ·

}
,

which implies that Cnx̃ /∈ c0 since
i

(n + 2i)
→

1

2
, i → ∞.

In the same time, for each j ∈ N , let

xk = χσk
x, p = 3k.

We have

Cnxk =
{
0, · · · , 0,

1

p + n + 1
,

1

p + n + 2
,

2

p + n + 3
,

2

p + n + 4
, · · · ,

p

3p + n
,

p

p + n + 1
, 0, · · ·

}
.

This implies that

‖xk‖Cn
= ‖Cnxk‖ 9 0

since
p

p + n + 1
=

3k

3k+1 + n + 1
→

1

3
, k → ∞.

So (c0)Cn
does not have F -WGHP and UAK-property.

The following two problems were presented in [1]: For what further classes of (triangular)

matrices A, does (c0)A have the AK-property (WGHP)? If E has WGHP, does EC0
(or even

ERp
) have WGHP? The remainder of this section is devoted to solve these two problems.

Theorem 3.2 For each nonnegative integer n, (c0)Cn
has WGHP.

Proof. Cn is defined in Example 2.2 and (c0)Cn
is an FK-space under the semi-norm

x → ‖x‖Cn
= ‖Cnx‖∞,

where ‖ · ‖∞ is the supremum norm, and the semi-norms qk defined by

qk(x) := |x|.

So it suffices to show that (c0)Cn
has the AK-property which is equivalent to

x −

n−1∑

j=1

xkek → 0

with respect to ‖Cnx‖∞, where ek is the canonical unit vector with a 1 in the kth coordinate

and 0 in the other coordinates.
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Let x ∈ (c0)Cn
. It suffices to show that

tn = x −

n−1∑

j=1

xkek → 0

with respect to ‖Cnx‖∞, that is,

sup
r≥n

∣∣∣
1

r

r+p∑

k=n+p

xk

∣∣∣ → 0 (n → ∞).

Let ǫ > 0. Since Cnx ∈ c0, there exists N such that

1

m

∣∣∣
m+p∑

k=p

xk

∣∣∣ <
ǫ

2
, m ≥ N.

Suppose that n > N , r ≥ n. Then

1

r

∣∣∣
r+p∑

k=n+p

xk

∣∣∣ ≤
1

r

∣∣∣
r+p∑

k=p+1

xk

∣∣∣ +
1

r

∣∣∣
n+p−1∑

k=p+1

xk

∣∣∣

<
ǫ

2
+

1

n − 1

∣∣∣
n+p−1∑

k=p+1

xk

∣∣∣

< ǫ.

Hence,

‖tn‖Cn
≤ ǫ, n > N.

Obviously, the following proposition is easy to prove.

Proposition 3.2 Let {An} be a sequence of matrices. If for each n, E and EAn
have

WGHP, then
⋂

EAn
and

⋃
EAn

also have WGHP.

The space f was introduced by Lorentz[9]. We say that (xk) ∈ f if and only if there

exists l ∈ C such that

1

r

∣∣∣
p+r∑

k=p+1

xk

∣∣∣ → l (r → ∞, uniformly in p ≥ 0).

If we take l in the above equal to 0 only, then f becomes the almost-null sequence space

f0. We have

c0 ⊂ f0 ⊂ f ⊂ l∞

with strict inclusions, and c0, f0, f are closed subspaces of l∞, which is a Banach space with

‖x‖ = sup |xk| for each x = (xk) ∈ l∞.

But it is interest that f0 can have the following representation

f0 =
∞⋂

n=0

(c0)Cn
.

Thus we can obtain the WGHP of f0 by Theorem 3.2 and Proposition 3.2.

Corollary 3.3 The space f0 has WGHP.

Though the space f0 has WGHP, we have the following result about F -WGHP and

UAK-property of f0 by the Example 3.4 and Proposition 3.2.
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Proposition 3.3 The space f0 does not have the F -WGHP and UAK-property.

Theorem 3.3 If the local convex space E is an FK-AK-space and ECn
⊆ bs, then for

each nonnegative integer n, ECn
has the FK-AK-property.

Proof. Because E is a local convex and FK-space, E is considered to be a separate complete

paranormed space, and ‖ · ‖ is paranorm of E and

‖x‖Cn
= ‖Cnx‖

is the paranorm of ECn
.

It suffices to show that

tn = x −

n−1∑

j=1

xkek → 0

with respect to ‖ · ‖Cn
, that is,

‖(0, · · · , 0, xn, xn+1, · · · )‖Cn

= ‖(0, · · · , 0,
xn+p

n
,

xn+p + xn+p+1

n + 1
, · · · )‖ → 0 (n → ∞).

Since x ∈ ECn
⊆ bs and E has AK-property, so we have

‖(0, · · · , 0,
1

n

n+p∑

k=p+1

xk,
1

n + 1

n+p+1∑

k=p+1

xk, · · · )‖ → 0 (n → ∞).

In the same time,

‖(0, · · · , 0,
1

n

n+p−1∑

k=p+1

xk,
1

n + 1

n+p−1∑

k=p+1

xk, · · · )‖ → 0 (n → ∞).

Thus when n → ∞

‖(0, · · · , 0, xn, xn+1, · · · )‖Cn

= ‖(0, · · · , 0,
1

n

n+p∑

k=p+1

xk,
1

n + 1

n+p+1∑

k=p+1

xk, · · · )

− (0, · · · , 0,
1

n

n+p−1∑

k=p+1

xk,
1

n + 1

n+p−1∑

k=p+1

xk, · · · )‖

≤ ‖(0, · · · , 0,
1

n

n+p∑

k=p+1

xk,
1

n + 1

n+p+1∑

k=p+1

xk, · · · )‖

+ ‖(0, · · · , 0,
1

n

n+p−1∑

k=p+1

xk,
1

n + 1

n+p−1∑

k=p+1

xk, · · · )‖ → 0.
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